-14-

УДК 546.683+546.817+546.221+546.23+544.015.3

Філеп М.Й., к.х.н., н.с.; Сабов М.Ю., к.х.н., доц.

КВАЗІПОТРІЙНА СИСТЕМА ТІ₂S–ТІ₂Se–ТІ₄PbSe₃

ДВНЗ «Ужгородський національний університет», хімічний факультет, вул. Підгірна,46, м. Ужгород, 88000, e-mail:mfilep23@gmail.com

Пошук нових функціональних матеріалів обумовлює дослідження систем на основі відомих бінарних сполук і твердих розчинів на їх основі. Бінарні халькогеніди талію (I) представляють значний науковопрактичний інтерес як перспективні функціональні матеріали [1-3] і дослідженню фізико-хімічної взаємодії у квазібінарних системах за їх участю присвячено значну кількість робіт [4-6]. Але постійне зростання вимог ЛО параметрів функціональних матеріалів зумовлює збільшення компонентного складу досліджуваних систем. З огляду на сказане, метою даної роботи є дослідження фізико-хімічної взаємодії у системі Tl₂S-Tl₂Se-Tl₄PbSe₃ і встановлення областей гомогенності вихідних компонентів.

Експериментальна частина

Вихідні бінарні Tl₂S, Tl₂Se, PbSe одержували сплавлянням елементарних компонентів (чистота не менше 99.99 мас.%) у вакуумованих (10⁻³ Па) кварцових ампулах згідно методик [7, 8].

Тернарну фазу Tl₄PbSe₃ одержували сплавлянням у відповідному стехіометричному відношенні бінарних селенідів Tl₂Se і PbSe у вакуумованих (10⁻³ Па) кварцових ампулах прямим однотемпературним методом. Максимальна температура синтезу становила 910 К (витримка 24 год), температура гомогенізуючого відпалу – 570 К (витримка 168 год).

Синтез сплавів системи Tl₂S–Tl₂Se– Tl₄PbSe₃ здійснювали із попередньо синтезованих бінарних та тернарної сполук прямим однотемпературним методом. Максимальна температура синтезу становила 860 К з витримкою зразків при даній температурі протягом 24 год. Гомогенізуючий відпал сплавів проводився протягом 168 год при температурі 570 К.

Ідентифікацію вихідних халькогенідів дослідження сплавів на їх основі та проводили методами диференційного термічного (ДТА, комбінована хромельалюмелева термопара, нагрів здійснювали за допомогою програмованого нагрівача РИФрентгенівського фазового 101), (РФА, дифрактометр ДРОН-4.07, СиК_а-випромінювання, Ni-фільтр, діапазон сканування кутів 5° ≤2 Θ ≤ 60° із кроком $\Delta 2\Theta$ = 0.02°) та мікроструктурного (МСА, металографічний мікроскоп Ломо Метам Р-1) аналізів. Для обробки і візуалізації даних досліджень методом РФА використовувались програми PowderCell2.4 [9], UnitCell [10] та VESTA [11].

Результати та їх обговорення

Експериментальні термограми сполук Tl_2S , Tl_2Se та Tl_4PbSe_3 характеризуються одним ендотермічним ефектом на кривій нагріву при температурах 725, 660 та 803 К відповідно, що добре узгоджується з літературними даними [3, 6].

Селеніди Tl₂Se та Tl₄PbSe₃ кристалізуються у тетрагональній сингонії, ПГ P4/ncc [6, 12], а Tl₂S у тригональній сингонії, ПГ R3H [13]. Співставлення експериментальних та літературних кристалографічних даних наведено у табл. 1.

Досліджувані селеніди відносяться до структурного типу Cr_5B_3 [14]. Структурним мотивом є з'єднані між собою вершинами октаедри [MeSe₆] (де Me–Tl,Pb). Різниця в октаедрах [TlSe₆] і [PbSe₆] полягає у асиметричності положення атому Pb відносно геометричного центру октаедра [PbSe₆] (рис. 1.а), на відміну симетричного розташування центрального атому у -15-

структурі Tl₂Se (рис. 1.б). Фаза Tl₂S володіє шаруватою структурою, що відноситься до деформованою структурою типу анти-CdCl₂, у якій з'єднані між собою гранями октаедри [STl₆] формують паралельні шари (рис. 1.в).

Рис. 1. Координаційні поліедри у структурах Tl₄PbSe₃ (a), Tl₂Se (б) та Tl₂S (в).

Таблиця 1	 Кристалог 	рафічні параметр	и сполук Tl ₂ S(Se)	та Tl ₄ PbSe ₃
-----------	-------------------------------	------------------	--------------------------------	--------------------------------------

Фаза	ΠГ	Z	Літературні	Експериментальні
Tl_2S	R3H	27	a=12.200Å; c=18.170Å [13]	a=12.147Å; c=18.162Å; c/a=1.495
Tl ₂ Se	P4/ncc	10	a=8.520Å; c=12.680Å [12]	a=8.555Å; c=12.580Å; c/a=1.470
Tl ₄ PbSe ₃	P4/ncc	4	a=8.534Å; c=12.687Å [6]	a=8.511Å; c=12.640Å; c/a=1.485

Близькість параметрів кристалічної гратки фаз і подібність структурних мотивів вихідних сполук (табл.1) у поєднанні з високими значення функціональних параметрів обумовлюють доцільність дослідження фазових рівноваг на основі даних сполук 3 метою пошуку та встановлення меж граничних тверлих розчинів у системі Tl₂S-Tl₂Se-Tl₄PbSe₃.

Квазіпотрійна система $Tl_2S-Tl_2Se-Tl_4PbSe_3$ є вторинною системою потрійної взаємної системи $Tl_2S+PbSe \leftrightarrow Tl_2Se+PbS$ і обмежується перерізами Tl_2S-Tl_2Se , $Tl_2Se-Tl_4PbSe_3$ та $Tl_2S-Tl_4PbSe_3$ [15].

Перерізи Tl_2S-Tl_2Se і $Tl_2S-Tl_4PbSe_3$ відносяться до евтектичного типу, координати евтектичних точок: 73.5 мол.% Tl_2Se , 628 К [16] і 88 мол. % Tl_2S , 667 К [15] відповідно. Переріз $Tl_2Se-Tl_4PbSe_3$ характеризуються необмеженою розчинністю компонентів у рідкій і твердій фазах [6].

За результатами фазового аналізу одержаних сплавів встановлено склад та межі областей граничних твердих розчинів у системі $Tl_2S-Tl_2Se-Tl_4PbSe_3$ (рис. 2). Найбільшою областю гомогенності володіє твердий розчин $Tl_{4-2x}Pb_{1-x}Se_{3-2x}$ (x=0–1) на основі вихідних селенідів, що розміщується вздовж сторони $Tl_2Se-Tl_4PbSe_3$ концентраційного трикутника і має протяжність $19\div42$ мол.% всередині системи (рис. 2).

Рис. 2. Ізотермічний переріз (570К) системи Tl₂S–Tl₂Se–Tl₄PbSe₃.

Використовуючи температури первинної кристалізації сплавів було досліджено та побудовано проекцію поверхні ліквідусу системи Tl₂S–Tl₂Se–Tl₄PbSe₃ (рис. 3).

Рис. 3. Проекція поверхні ліквідусу системи Tl₂S–Tl₂Se–Tl₄PbSe₃.

-16-

Ліквідус досліджуваної системи складається з двох полів первинної кристалізації кристалів на основі Tl₂S (Tl₂Se1-e2-Tl₂S) та Tl_{4-2x}Pb_{1-x}Se_{3-2x} (Tl₄PbSe₃-e2-e1-Tl₂Se-Tl₄PbSe₃), що перетинаються вздовж лінії моноваріантної евтектичної рівноваги e2-e1 (667–628 K).

Висновки

Методами ДТА, ΡФА MCA та фізико-хімічну досліджено взаємодію y квазіпотрійній системі Tl₂S-Tl₂Se-Tl₄PbSe₃. Встановлено межі граничних твердих розчинів на основі вихідних компонентів та хіл лінії моноваріантної рівноваги V досліджуваній системі.

Список використаних джерел

1. Xinyi Chia, Ambrosi A., Sofer Z., Luxa J., Sedmidubský D., Pumera M. Anti-MoS₂ Nanostructures: Tl_2S and Its Electrochemical and Electronic Properties. *ACS Nano*. 2016, 10(1), 112– 123.

2. Ezema F.I., Ezugwu S.C., Asogwa P.U., Ekwealor A.B.C. Solid state properties and structural characterization of Sb_2S_3 and Tl_2S thin films. *J. Ovonic Research.* 2009, 5(5), 145–156.

3. Popescu M.A. Non-Crystalline Chalcogenides. *Kluwer Academic Publishers*: New York, Boston, Dordrecht, Londin, Moscow, 2002. P. 378.

4. Mucha I. Phase diagram for the quasi-binary thallium(I) selenide-indium(III) selenide system *Thermochimica Acta*. 2012, 550, 1–4.

5. Dzhafarov Ya.I., Babanly M.B. Tl₂S–Sb₂S₃–Bi₂S₃ Quasi-Ternary System *Russ. J. Inorg. Chem.* 2009, 54(11), 1839–1843. 6. Malakhovska-Rosokha T.O., Sabov M.Yu., Barchii
I. E., Peresh E. Yu. Phase Equilibria in the Tl₂Se– PbSe System and Growth and Properties of Tl₄PbSe₃ Single Crystals. *Inorg. Mater.*, 2011, 47(7), 700–702.
7. Самсонов Г.В. Дроздова С.В. Сульфиды. М.: *Металлургия*, 1972. С. 304.

8. Оболончик В.А. Селениды. М.: Металлургия, 1972. С. 296.

9. Kraus W., Nolze G. Powder cell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns *J. Appl. Crystallogr.* 1996, 29(3), 301–303.

10. Holland T.J.B., Redfern S.A.T. Unit cell refinement from powder diffraction data: the use of regression diagnostics. *Mineralogical Magazine*. 1997, 61, 65–77.

11. Momma K., Izumi F. VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.* 2011, 44, 1272–1276.

12. Стасова М.М., Вайнштейн Б.К. Электронографическое определение структуры Tl₂Se. *Кристаллография.* 1950, 3(2), 141–147.

13. Ман Л.И. Определение структуры Tl₂S методом дифракции электронов. *Кристалло-графия*. 1970, 15 (3), 471–476.

14. Schewe I., Bottcher P., Schnering H.G. The crystal structure of Tl_5Te_3 and its relationship to the Cr_5B_3 type. *Z. Kristallogr.* 1989, 188, 287–298.

15. Філеп М.Й., Барчій І.Є., Сабов М.Ю. Взаємодія компонентів у тернарних взаємних системах $Tl_2S+PbSe\leftrightarrow Tl_2Se+PbS$ та $Tl_2S+PbTe\leftrightarrow Tl_2Te+PbS$. *Наук. вісник Ужегородського ун-ту. Серія «Хімія».* 2012, 1(27), 22–24.

16. Асадов М.М., Бабанлы М.Б., Кулиев А.А. Фазовие равновесия в системах Tl₂S-Tl₂Se и Tl₂S-Tl₂Te. *Heopr. матер.* 1977, 13(8), 1520–1521.

Стаття надійшла до редакції: 17.05.2017.

QUASITERNARY SYSTEM Tl₂S-Tl₂Se-Tl₄PbSe₃

Filep M.J., Sabov M.Yu.

The physico-chemical interaction in the quasiternary system $Tl_2S-Tl_2Se-Tl_4PbSe_3$ was investigated by DTA, XRD and MSA methods. Established that in quasiternary system $Tl_2S-Tl_2Se-Tl_4PbSe_3$ at 570K exist two regions of solid solution based on Tl_2S and $Tl_{4-2x}Pb_{1-x}Se_{3-2x}$ (x=0–1) phases and one region of their co-crystallization. Based on the temperatures of the primary crystallization of alloys the projection of liquidus surface has been studied and built. Established that the fields of primary crystallization of Tl_2S and $Tl_{4-2x}Pb_{1-x}Se_{3-2x}$ phases are divided by the line of monovariant eutectic equilibria.