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ON COHOMOLOGIES OF THE KLEIN FOUR-GROUP

A free resolution of the trivial G-module Z, where G is the Klein four-group, is constructed.
Its relation with the standard resolution is established. Also H?(G, M) for some modules M is
calculated.

Mu 6yayemo BinbHY pe3osbBeHTy Tpubiasbaoro G-momyns Z, ne G — dersepua rpyna Kieiina,
BCTAHOBJIIOEMO 3B’430K i3 CTAaHIAPTHOIO PE30JbBEHTOI0 Ta obumciaoemo H 2(G,]M ) IS aedaKwux
MomymiB M.

Theory of group cohomology is widely used in the theory of representations and the
theory of groups, in particular, for the description of special classes of groups. Thus
group cohomology plays an important role in the study of group extensions, for
instance, in the study of Chernikov groups [1]. In the last case the corresponding
G-modules are just dual to integral representations. The usual way to calculate
cohomologies is by the standard resolution [2,3]. Nevertheless, sometimes it is
convenient to simplify this resolution. We propose a simplified resolution for the
Klein four-group and use it to calculate cohomologies for duals of indecomposable
integral representations with at most 3 irreducible components.

Let G = (a,b | a®> = b* = (ab)? = 1) be the Klein four-group. We construct a free
resolution of the trivial ZG-module Z, which can be used to calculate cohomologies
of this group.

A resolution of Z for the cyclic group Cy = (a) is well-known:

P, .. "L zo, 7o, Ao, —

From the Kiinneth formulas [3] it follows that a resolution for G = (a) x (b) can be
constructed as P = P4, ®z Pp, where P, is a resolution for the first factor and Pg

is a resolution for the second factor. We write the resolution P, for the first factor
Cy as
...— Rz — R2* — Rx — R

with the differential dz* = (a + (—1)*)z*~!, and the resolution Py for the second
factor as
...— Ry — Ry>— Ry — R

with the differential dy* = (b+ (—1)*)y*~1. Then the n-th component

Py= @ Pai® Ps

i+j=n

can be considered as the module of homogeneous polynomials of degree n from

Rz, y], where R = ZG and
d(z'y’) = (a+ (1)) "y + (=1)"(b+ (1) )a'y’ .
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So we can write the matrix defining this differential as

a+1 1-b6 0 0
0 a—1 b+1 O
0 0 a+1 1-0

if n is even and as

a—1 —(b+1) 0 0
0 a+l b-1 0

0 0 a—1 —(b+1)
if n is odd. Note that for n = 2 this results was obtained in [4].
Recall that in the standard resolution

r. . ...—F—F—F—4Z—0,

the ZG-module F,, has a basis [g1|ga]|...|gn], where g; € G\{1} (we also set
[g1]92| - - - |gn] = 0 if some g; = 1) and
n—1
dlgilgal - \gn) = g1lg2 - -] + D _(=1)'[g1lgel - - |giginal - - - |gn] +
i=1

+(=1)"[g11g2] - - - |gn]-

There is a map o : F — P, which defines a homotopy equivalence of these resolu-
tions such that

o1la] = x, o1[b] = oslala) = 22,

oalbf) = . ool = T p— N
oolablab] = ba? — xy + y?, o2lablb] = oolabla) = bz? + xy,
osalab] = z?, o9lblab] = —xy + ay®.

We calculate H?(G, M), for G-modules M such that M as an abelian group is
m@, where @ is the quasicyclic p-group (or the group of type p°). Then the action
of G on M is given by an integral p-adic representation of G [1]. We consider the
cases when M is indecomposable and not faithful as Z,G-module.

If m = 1, there are 4 such representations M, s (o, f € {1, —1}) which map
a v+ a, b— [. Evidently M, _ (M_.) can be obtained from M__ if we replace a
by ab (resp. b by ab). So we only have to calculate cohomology for M, and M__.

For M, that's whya=b=1,a+1=0+1=2,a—1=0—1=0 we have

y(x%) = (a — D)y(a?) =
(y*) = (b —1)y(y*) =0,
9y(z%y) = (a+ Dy(zy) + (b — 1)y(2?) = 2y(xy),

=
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as well as Ov(zy?) = 2v(zy).
We can replace v by 0¢ for some & : P, — M. Note that

As M is a divisible group, choosing appropriate &(x) and £(y), we can make
y(x?) = v(y?) = 0. Therefore, H*(G, M, ) ~ Z/2Z and the non-zero element 7 of
this group can be chosen as v(z?) = v(y*) = 0, v(zy) = &, where ¢ is the unique
element of () of order 2.

Just in the same way we obtain that H(G, M__) ~ (Z/2Z)?* and its elements are
the classes of cocycles v such that (z?) and v(y?) are from {0, e}, while v(zy) = 0.

If m = 2, there is an exact sequence
0— Maﬁ — M — Ma’,ﬂ’ — 0. (2)

Moreover, if M is indecomposable, («, 5) # (o/, 5') and M is defined by («, 5) and
(o, 5"). Note that if there is a sequence (2), there is also an exact sequence

0— Ma/ﬁ/ — M — Maﬂ — 0.

As before, applying an automorphism of G, we can suppose that («, 5) = (1,1) and
(@, ) = (—1,~1) or (o, B) = (~1,1) and (o, &) = (1, ~1).

Let 0O — M_, — M — M,_ — 0 be exact. Then M corresponds to the
representation of G such that

N y (1 -1
“ 0 1)’ 0 —1 )

Thus
-2 1 0 —1
“_1:< 0 0)’ b_lz(o —2)’
01 2 —1
a—i—l(o 2), b+1<0 0).
Let
2\ _ Uy 2\ U2 Uus
’y(x)—(vl), ’y(y)—(vz), v(fvy)—(v3>
Then

87(x2y):(a+1)(:j§)+(b—1)<5i):<22§:3;1 ) =0,
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av(ny):(a_l)(uZ ) _(bH)(ug > _ ( 2 vn = 2ty ) .

V2 U3

So, we have v; = v3 = 2u; = 2uy + 2us, v9 = 0.

Let
-(5) ew-(3)

Then

oo = a-1 (2 ) ~o-v( g ) =(TFnET )

Therefore, changing v by v+ 9¢, we can make u; = us = 0, whence also v; = v = 0,
2u3z = 0. Thus H*(G, M) ~ Z/2Z and the non-zero elements 7 of this group is the
class of the cycle v such that

v(@?) =~(y?) = (8) . () = (8) .

Let now 0 — M__ — M — M,, — 0 is exact, i.e.
o -1 1 b -1 1
¢ 0 1) 0 1)

21 0 1
a—l-b—l-( . 0)’ a+1_b+1—(0 2).

Then

) =@ (1 )ro-n( )= (Tt ) <o

(R} U1 2U3

Oy(zy?) = (a — 1) ( o ) —(b+1)(:j§ > = ( ‘2“2_232‘“3 ) =0.

So, we have v3 = 0, 2u; = vy, 2uy = vs.

Let
-(5) ew-(3)
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8§(x2)=(a+1)(21 ) :(2621 )’
af(y2)=<b+1>(§”; ) - ( 2@)

ostan) = (a-1) (3 ) -0-n (g )= ( THETE ),

Hence, changing v by v + 0¢, we can make u; = us = 0 as well as uz3 = 0 (as M is
divisible). Therefore, H*(G, M) = 0.

Then

Let m = 3. If M is indecomposable, there is a chain of submodules
M:MoDMlDMQDM:g:O

such that all quotients L; = M;_; /M, are of the form M,, s, and all M,, g, are differ-
ent. Moreover, we can change the ordering of L; arbitrarily. Up to an automorphism
of G, there are four cases:

1) M is cyclic (a17ﬁ1) = (1, 1)7 <a2762> = (17 _1>7 (Oé3,ﬂ3) = (_17 1);

) (
2) M, is cyclic (ay, 81) = (=1, 1), (a9, B2) = (=1,1), (a3, B3) = (1, —1);
3) Mj is not cyclic (ay, £1) = (—1,1), (a9, B2) = (1, —1), (as, 53) = (1,1);
4) M4 is not CyChC (alaﬁl> = (_17 _1)7 <a27ﬁ2) = (_]—7 1)7 (043763) - (17 _]-)
Case 1. Here
-1 0 1 1 00
a— 010 |, b—1 0 -1 1 |,
0 01 0 01
-2 0 1 0 00
a—1= 000 |, b—1=(0 =2 1 ],
0 00 0 00
0 01 2 00
a+1=10 2 0 |, b+1=10 0 1 |.
0 0 2 0 0 2
Let
Uy U9 U3
@)= v |, )= w |, ey =] v
w1 Wo w3
Then
Uy —2uy + wy
@)= (a—-1) v | = 0 =0,
wy 0
U 0
Ny )=0b-1)| v | =] 2v24+w | =0,
Wa 0
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us Uy W3
0’7($2y) = (CL + 1) V3 + (b — 1) U1 = 2’03 - 2U1 + wq = O,
W3 w1 2’[1]3
U9 Us —QUQ + wo — 2U3
oywy ) =(a—1)| vo | =0+ v3 | = —ws = 0.
wao W3 —2w3

So, we have w3 = 0, wy = 2uy, wy = 2v,.

Let
C1 Co
)= & |, &y =| do
S fa
Then
C1 Ji
k@) =(a+1)| d | =1 2d, |,
i 2f1
Co 202
W)=+ | d | = f |,
Ja 2fs
Ca C1 —2cy + fo
f2 Ji 0

So we can make u; = upy = v; = vy = 0, which gives H*(M) = (Z/2Z)?, consisting
of the classes of cocycles v such that

where u,v € {0,¢}.
The calculations in other cases are quite similar, so we only present the results,
with some comments in Case 3.

Case 2.
1 0 1 -1 0 0
a— | 0 -1 0], b— 01 1
0 0 —1 0 0 —1

Here we have H*(G, M) = Z/2Z and the nonzero element of this group is the class
of the cocycle v with v(z?) = vy(y?) = 0, while

€
Y(zy) = {0
0
Case 3.
1 0 1 1 1 0
a— | 01 0], b—10 -1 0
00 -1 0 01
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For v : G — M such that

C1 Co
()= {di ], Yy) = |dz |,
J1 fo
we obtain
201 + f1 262 + dg f2 — d1
M)y =| 240 |, )= 0 . Oy(ey) = 24
0 2fs =25

Therefore, changing & by & + 07, we can make

0 0 us
£<ZE2) = 0 ) g(yZ) = v ) f(l‘y) = U3
w 0 w3

The condition 9§ = 0 implies that w = v = 0, v3 = w3 = 2uz and 2v3 = 0. Hence
v3 € {0,e}, whence H*(G, M) = Z/2Z with the non-zero element being the class of
the cocycle ¢ such that &(x?) = £(y?) = 0,

where ¢’ is an element of order 4 (any of two such elements can be chosen).

Case 4.
1 1 1 -1 -1 0
a— | 0 —1 0], b— 0 1 0
0 0 -1 0 0 -1

0 0 0
Ea*)=|v], €@H=(0], <Eay=( v |,
v w U+ w

where v,w € {0,¢}.
Note that, using formula (1), we can find the cocycles in the “standard” form.
For instance, in Case 4 above, we obtain:

0 0 0
v(a,a) =~(a,ab) = (v |, ~(a,b)= [0, ~(bb)=n~(abb)=1|0[,
v 0 W
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0 w
yba)=1 v |, Aybab)=| v |,
U+ w U+ w
v v
v(ab,a) = 0 . 7(ab,ab) = | 0
V4w w
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