РЕЗОНАНСНО-ІОНІЗАЦІЙНА ЛАЗЕРНА СПЕКТРОСКОПІЯ ПАРНИХ ЗВ'ЯЗАНИХ СТАНІВ АТОМА САМАРІЮ

О.І. Гомонай, О.І. Плекан

Інститут електронної фізики НАН України, 88017 Ужгород, вул. Університетська, 21 e-mail: <u>vkel@mail.uzhgorod.ua</u>

Методом трифотонної резонансно-іонізаційної спектроскопії досліджено спектр високолежачих парних зв'язаних станів атома самарію. Визначено енергії та повні моменти 307 парних зв'язаних станів атома самарію, розташованих в області енергій 33036.0–40526.7см⁻¹.

Вступ

Надзвичайно складний спектр електронних станів атома самарію (Sm), зумовлений наявністю незаповненої $4f^6$ – підоболонки, на сьогодні є недостатньо вивченим. Достатньо повні дані, наявні в літературі, стосуються тільки низьколежачих рівнів атома самарію, які розташовані в області енергій до 30000 см⁻¹ [1]. Для них відомі енергії, повні моменти, електронні конфігурації й терми, а у випадку непарних станів ще й часи життя, сили осциляторів, тензорні поляризованості та абсолютні значення ймовірностей відповідних електронних переходів [2-6].

Щодо більш високолежачих зв'язаних станів атома самарію (парних і непарних), то для них, здебільшого, відомі лише значення енергій і повних моментів [7-11]. Переважна більшість даних про такі стани отримана методом багатоступінчастої спектроскопії [7-11], при якому кількість спостережуваних рівнів суттєво залежить від конкретної схеми збудження. Тому для отримання більш повної інформації про парні високолежачі стани атома Sm інтерес становить проведення спектроскопічних досліджень з використанням різноманітних схем їх збудження.

У даній роботі методом трифотонної резонансно-іонізаційної спектроскопії досліджено спектр високолежачих парних зв'язаних станів атома самарію, розташованих в області енергій E > 33000 см⁻¹.

Експеримент

Загальна схема постановки експерименту зображена на рис. 1. Випромінювання імпульсного перестроюваного барвникового лазера фокусувалося за допомогою лінзи з фокусною відстанню 16 см у вакуумну камеру, де перетиналося під прямим кутом із пучком атомів самарію. Іонізація атомів Sm відбувалася внаслідок поглинання трьох фотонів. Іони, що утворювалися в області взаємодії атомного й лазерного пучків, витягувалися постійним електричним полем (~100 В/см) за допомогою іонно-оптичної системи, розділялися за масою та зарядом у часопролітному мас-спектрометрі і детектувалися мікроканальним детектором типу ВЭУ-7. Усі вимірювані в ході експерименту сигнали надходили на вхід системи реєстрації, де відбувалося їх перетворення в цифровий код, який в подальшому зчитувався ЕОМ.

Джерелом випромінювання служив перестроюваний барвниковий лазер FL-2001 (Lambda Physik) з накачкою гармонікою твердотільного другою Nd:YAG лазера. В якості активного середовища використовувалися барвники родамін 6G та родамін незаміщений. Частота повторення імпульсів лазера – 2 Гц, максимальна вихідна енергія – 1 мДж, ширина лінії випромінювання ≤ 0.2 см⁻¹, тривалість імпульсу ~ 12 нс, напруженість світлового поля в області перетинання пучків $\leq 10^6$ В/см.

Рис 1. Схема експериментальної установки: ЧМС – часопролітний мас-спектрометр, ПГ – поляризатор, Ф1,Ф2 – фотодіоди, ІФП – інтерферометр Фабрі-Перо, Л – фокусуюча лінза, МКП – мікроканальний детектор, ЦФ – циліндр Фарадея, ЕОМ – комп'ютер.

Абсолютне калібрування частоти лазерного випромінювання з точністю не гірше ± 0.2 см⁻¹ здійснювалося за реперним оптогальванічним спектром Си-Ne лампи з порожнистим катодом та спектром пропускання інтерферометра Фабрі-Перо, які вимірювалися одночасно з досліджуваним спектром трифотонної іонізації атома Sm. Вимірювання проводилися при лінійній поляризації випромінювання. Концентрація атомів Sm в області взаємодії становила ~10¹⁰ см⁻³, при цьому залишковий тиск у вакуумній камері становив 10⁻⁵ Па.

У ході експерименту вимірювалися залежності ефективності утворення однозарядних іонів самарію від частоти лазерного випромінювання $A^+(\omega)$. При цьому величина напруженості світлового поля в області взаємодії підтримувалася незмінною. Для прикладу, на рис. 2 наведено залежність ефективності трифотонної іонізації атома самарію $A^+(\omega)$ в діапазоні частот $\omega = 17200 - 17350$ см⁻¹, виміряну при двох значеннях напруженості світлового поля в області взаємодії $\varepsilon_l = 4.7 \times 10^5$ В/см (верхня крива) і $\varepsilon_2 = 1.7 \times 10^5$ В/см (нижня крива). З рис .2 добре видно, що процес утворення ioнiв Sm⁺ має яскраво виражений резонансний характер, про що свідчить велика кількість максимумів різної амплітуди і форми. Загалом у роботі спостерігалося понад 700 максимумів. Така насичена резонансна структура зумовлена своєрідністю спектра електронних станів досліджуваного елемента: мультиплетною структурою основного і збуджених термів, надзвичайно високою густиною збуджених станів та можливістю переходів із різних рівнів основного терму $^{7}F_{0-6}$. Зазначимо, що переважна кількість максимумів, що спостерігалася в залежності $A^{+}(\omega)$ пов'язана з двофотонним збудженням високолежачих парних зв'я-заних рівнів атома самарію.

Ідентифікація резонансної структури

Специфікою спектра електронних станів атома самарію є те, що його основний терм септет – $4f^{6}6s^{2} \ ^{7}F_{Jo}$ ($J_{o} = 0-6$) [12], усі сім рівнів якого заселяються навіть при відносно невисоких температурах. Саме тому резонансна структура спектрів трифотонної іонізації самарію являє собою сукупність максимумів, зумовлених переходами з усіх семи рівнів основного терму. При температурі атомного джерела ~ 973 °К заселеність рівнів основного терму була наступною: 18% ($^{7}F_{0}$), 35% ($^{7}F_{1}$), 26% ($^{7}F_{2}$), 13% ($^{7}F_{3}$), 5% ($^{7}F_{4}$), 2% ($^{7}F_{5}$), 0,5% ($^{7}F_{6}$).

Рис. 2. Залежності ефективності трифотонної іонізації атома самарію від частоти лазерного випромінювання в діапазоні $\omega = 17200-17350 \text{ см}^{-1}$, виміряні при двох значеннях напруженості світлового поля: $\varepsilon_l = 4.7 \times 10^5$ В/см (верхня крива) та $\varepsilon_2 = 1.7 \times 10^5$ В/см (нижня крива).

Ідентифікація резонансних максимумів відповідними двофотонними переходами ${}^{7}F_{Io} \rightarrow E(J)$, визначення енергій Е і повних моментів Ј збуджених парних рівнів здійснювалася на підставі спостереження груп максимумів, які відповідали переходам з різних початкових рівнів F_{Jo} на той самий збуджений E(J) (див. рис. 3). При цьому кількість можливих максимумів у групі залежала від повного моменту Ј збуджуваного стану, кількості фотонів, необхідної для його збудження, а також діапазону зміни частоти лазерного випромінювання. При цьому можливі переходи визначалися наступними правилами відбору [13]:

 $J_{o}=0, 2 \to J=0; J_{o}=1-5 \to J=3; J_{o}=4-6 \to J=6;$ $J_{o}=1-3 \to J=1; J_{o}=2-6 \to J=4; J_{o}=5, 6 \to J=7;$ $J_{o}=0-4 \to J=2; J_{o}=3-6 \to J=5; J_{o}=6 \to J=8,$ (1)

де J_o – повний момент початкового рівня основного терму 7F , J – повний момент збуджуваного рівня.

Енергія збудженого стану *E*(*J*) визначалася за формулою:

$$E(J) = \frac{\sum_{i} (E(J_o) + 2\omega_i)}{i}, \qquad (2)$$

де $E(J_o)$ – енергія відповідного початкового рівня [1], ω_i – частота, на якій спостерігається максимум, що відповідає двофотонному переходу $E(J_o) \rightarrow E(J)$, *i* – кількість максимумів у групі (див. рис. 3). Повний момент *J* визначався згідно належності до відповідної групи у відповідності з (1).

Визначені нами енергії та моменти парних зв'язаних станів атома самарію приведені у табл. 1. Порівняння наших даних з даними інших авторів [7-11] добре (в межах ± 1.0 см⁻¹) узгоджуються між собою.

Зазначимо, що багатофотонна спектроскопія має ряд переваг над багатоступінчастою. По-перше, можливість використання тільки одного лазерного джерела, що в технічному плані є набагато простішим. По-друге, можливість отримання інформації про рівні, які не спостерігаються при застосуванні схем багатоступінчастого збудження. Зокрема, нами були виявлені парні зв'язані стани атома самарію, дані про які в роботах [7-11] відсутні. У табл. 1 вони відзначені символом "#" і знаходяться в області енергій E = 35768.9 - 38855.7 см⁻¹. Зауважимо, що всі ці стани, у відповідності до правил відбору за *J*, могли збуджуватися в роботі [11], а найбільш низьколежачі з них – у роботах [7-9], однак їх збудження там не спостерігалося. Можливою причиною цього є мала ймовірність двоступінчастого збудження цих станів.

N⁰

Енергія (см⁻¹)

J

N⁰	Енергія (см-1)	J
1	33036 1 ^{ac}	2
1.	33030.1	1
2.	33117.2 33278 g ac	1
5.	22206 6 ^{ac}	2
4. 5	22278 0 ac	2
5.	22595 7 ^{ac}	2
6.	33585.7	2
7.	33607.7 **	1,3
8.	33627.5 **	2
9.	33631.0 °	2
10.	33646.0 ^{a c}	1
11.	33703.2 °	1
12.	33736.9 °	1
13.	33748.0 ^{a c}	2
14.	33834.0 ^{a c}	2
15.	33850.0 ^{a c}	2
16.	33894.1 ^{a c}	2
17.	33956.1 ^{a c}	2
18.	33957.9 ^{a c}	2
19	33975 5 °	13
20	33998 5 ^{ac}	2
20.	34041 8 ^{a c}	13
21.	34106 3 ^a	2
22.	3/116 0 ^a	2
23.	34110.0 34138.0 ^a	²
24.	34130.U	1,3
23.	34130.4 24196.0 ^{ac}	2
26.	34186.0 **	5
27.	34206.6 **	2
28.	34212.3 ª C	2
29.	34222.9 ª	1,3
30.	34298.7 ^{a c}	2
31.	34312.1 ^{a c}	1,3
32.	34346.2 °	2
33.	34395.3 ^a	1,3
34.	34399.1 ^{a c}	1
35.	34420.5 ^{a c}	2
36.	34438.2 ^{a c}	2
37.	34517.3 ^a	1,3
38.	34522.4 ^{a c}	3
39.	34531.3 ^{a c}	2
40.	34561.9 ^a	2
41	34571.0°	2
42	34590 4 ^{acd}	2
13	34630.8 ^{cd}	1
43.	34030.0 34657 5 acd	1
44.	34037.3 24642.9 °	1
43.	34042.8	2
46.	34000.1	5
47.	34662.8	4
48.	34670.0	3
49.	34699.3 ^{a c}	2
50.	34713.1 ^{acd}	1
51.	34723.4 ^{a c}	2
52.	34736.5 ^{acd}	3
53.	34774.8 ^{a c d}	3
54.	34789.7 °	4
55.	34796.0 ^{acd}	2

	4 11	•			•
Табл.	1. Ha	DH1 C1	гани	атома	самарію.

	1	r
56.	34812.0 ^{a c d}	3
57.	34865.6 ^{a c}	2
58.	34921.6 ^{acde}	2
59.	34932.7 ^{acd}	1
60.	34969.8 ^{acde}	3
61.	35020.2 °	3
62	35045.6 ^{a c e}	3
63	35047.2 ^{acde}	1
64	35060 Q ^{acde}	1
65	35072.8 ^a	2
0 <u>5</u> .	25090 5 acde	2
00.	33089.3	3
67.	35101.0 25125 c ^{ac}	3
68.	35135.6	1
69.	35138.1 ***	2
70.	35155.1 acc	2
71.	35163.9 ^{acue}	1
72.	35169.5 ^{ace}	3
73.	35222.2 ^{a e}	2
74.	35226.0 ^{a c}	1,3
75.	35235.9 °	4
76.	35237.2 ^{ade}	3
77.	35242.9 ^{ae}	2
78.	35259.5 ^a	2
79	35262.5°	-
80	35202.5 35311.0 ^{ce}	4
81	35377.0°	4
81. 82	25242 5 ^a	4
82. 92	25240.7 ^a	1,5
83.	35348.7	1,5
84.	35371.0	1
85.	35414.0 ⁴⁰	3
86.	35444.4	1
87.	35461.2 ^{ae}	2
88.	35487.4 ^{a e}	2
89.	35491.4 ^{a e}	3
90.	35512.9 ^e	4
91.	35544.9 ^{a e}	1
92.	35547.6 ^{a e}	2
93.	35569.4 ^{a e}	2
94.	35580.0 °	4
95.	35582.0 ^e	3
96.	35589.2°	4
97.	35594.1 ^{a e}	2
98	35605 3 ^{ae}	3
99	35612.7°	4
100	35652 0 ^{a e}	1
100.	25670 7 ^{ae}	2
101.	25700 0°	J 1
102.	25720 7 ^{a e}	1
103.	55/50./	5
104.	33/42.2 257.47.0 ²⁶	1
105.	35/4/.0**	2
106.	35748.8 "	3
107.	35768.9 *	2
108.	35776.6°	4
109.	35779.3 ^{abe}	3
110.	35785.7 ^e	1

N₂	Енергія (см ⁻¹)	J
111.	35821.3 °	2
112	35839.1 °	2
113	35846.2.°	3
114	35874 3°	3
115	35879.8°	4
116	35906.0°	5
117	35920.6°	4
118	35920.0 35931.9 ^e	2
110.	35959.3°	12
120	36003.8 ^{ce}	4
120.	36003.0°	3
121.	36024 5 °	1
122.	36031.8°	3
123.	36057.8°	2
127.	36084.8°	3
125.	36087.5°	3
120.	36095.6°	4
127.	36134 0°	3
120.	36138 8 °	3
129.	36145.0 #	4
130.	36162.3°	1
131.	36188 0 °	2
132.	26102.0 ^e	2 1
133.	26201.2 °	1
134.	30201.5 26217.2°	2
135.	30217.2 26222.6°	3
130.	30223.0 26228.0 °	2
137.	26248 2 °	3
138.	30248.3	2
139.	30257.7	3
140.	30209.8	4
141.	36290.4	4
142.	30302.7	3
145.	30308.2	1
144.	30324.0	4
145.	30340.9	4
140.	30302.3	2
14/.	30304.1 26277 2°	3
148.	26201 4 °	1
149.	30391.4 26205.7°	4
150.	26404 0°	4
151.	30404.0 ⁻	1
152.	30409.3	5
153.	30457.1°	4
154.	36463.3	4
155.	36474.6°	2
156.	36483.1	4
157.	36515.4	2
158.	36535.3	3
159.	36536.7 "	1,3

Табл. 1. Продовження.

N⁰	Енергія (см ⁻¹)	J	N	2 E	нергія (см ⁻¹)	J		№	Енергія (см ⁻¹)	J
160.	36543.8 °	4	211	373	87.2 ^e	1.2]	262.	38413.4 ^e	2
161.	36553.4 ^e	4	212	374	16.5 ^e	1		263.	38439.6 ^e	3.4
162.	36565.5 °	1	213	374	30.3 ^e	1		264.	38443.6 ^e	3,4
163.	36572.0 ^e	3	214	374	45.6 ^e	4		265.	38528.4 ^e	3,4
164.	36576.9 ^e	4	215	374	49.6 ^e	2		266.	38591.2 ^e	3
165.	36587.4 ^e	3	216	374	77.4 #	5		267.	38596.0 ^e	3
166.	36592.8 ^e	2	217	374	94.0 ^e	1		268.	38605.6 #	4-6
167.	36618.1 ^e	2	218	375	68.7 ^e	3		269.	38608.9 ^e	2
168.	36625.9 ^e	4	219	375	76.8 ^e	2		270.	38700.6 ^e	2
169.	36628.4 ^e	1	220	375	88.3 ^e	4		271.	38709.0 ^e	4
170.	36637.8 ^e	4	221	376	16.5 ^e	3		272.	38713.5 #	4-6
171.	36644.6 ^e	1	222	376	29.9 [°]	2		273.	38720.4 ^e	3
172.	36682.5 ^e	3	223	376	56.2 ^e	3,4		274.	38734.0 ^e	3
173.	36701.8 ^e	2	224	376	78.6 [°]	1		275.	38760.5 ^e	3
174.	36732.4 ^e	4	225	377	07.5 ^e	1		276.	38764.2 ^e	3
175.	36748.3 ^e	4	226	377	12.3 #	3-5		277.	38773.5 ^e	3
176.	36760.1 ^e	2	227	377	17.8 ^e	3,4		278.	38793.3 ^e	3
177.	36763.2 ^e	3	228	377	62.5 ^e	3,4		279.	38803.7 ^e	4
178.	36776.5 ^e	3	229.	378	12.6 ^e	1		280.	38817.7 ^e	2
179.	36778.2 ^e	2	230	378	14.9 #	3-5		281.	38848.2 ^e	2
180.	36812.8 ^e	3	231	378	25.4 ^e	1,2		282.	38855.7 #	4-6
181.	36834.9 ^e	1	232	378	78.3 ^e	3,4		283.	38883.3 ^e	3
182.	36841.6 ^e	4	233	378	79.7 [°]	3,4		284.	38891.5 ^e	2
183.	36855.6 ^{be}	3	234	379	04.5 ^e	3,4		285.	38909.9 ^e	2
184.	36863.3 °	4	235	379	33.0 ^e	3,4		286.	38916.6 ^e	3
185.	36873.5 ^e	2	236	379	43.8 ^e	1		287.	38926.6 ^e	4
186.	36890.7 ^e	3	237.	379	67.8 [°]	1		288.	38946.3 ^e	3
187.	36912.4 ^{be}	3	238.	379	71.3 ^e	2		289.	38966.3 ^e	2
188.	36920.2 ^e	4	239.	380	34.1 ^e	3,4		290.	38990.1 ^e	4
189.	36929.4 ^e	2	240	380	35.8°	3,4		291.	39014.0 ^e	4
190.	36953.9 ^e	4	241	380	44.1 ^e	3,4		292.	39066.3 ^e	4
191.	36964.2 ^{be}	2	242	380	83.9 ^e	2		293.	39087.6 ^e	4
192.	36976.2 ^e	2	243.	380	89.9 ^e	3,4		294.	39114.2 ^e	4
193.	36996.6 ^e	3	244.	381	05.1 *	3-5		295.	39154.6 ^e	3
194.	37022.5 ^{be}	3	245.	381	09.4 ^e	2		296.	39191.5 ^e	4
195.	37029.9°	1	246	381	15.1°	3,4		297.	39233.1°	4
196.	37054.4 **	3	247	381	22.4 °	3,4		298.	39273.2°	3
197.	37067.0 **	2,3	248	381	28.6 ^e	2		299.	39408.3 °	4
198.	37070.9 ^e	1	249	381	47.6 ^e	2		300.	39537.1 °	3
199.	37077.6 **	2,3	250	381	66.6°	3,4		301.	39567.2°	4
200.	37130.1 "	2,3	251	381	84.7°	3,4		302.	39609.5°	4
201.	3/164.8	2	252	381	98.1°	2		303.	39723.7°	3
202.	3/1/1.2*	1	253	382	10.4°	3,4		304.	39931.3°	3,4
203.	3/1/5.0 "	2	254	382	46.4 ~ 5 4 7 #	2		305.	39987.2°	3,4
204.	5/214.3°	2	255	382	54./	3-5		306.	40070.5°	3,4
205.	5/244.5 "	5	256	382	58.9 ⁻	5,4		307.	40526.7	3,4
206.	3/2/0.4 -	1,2	257	382	92.0					
207.	3/340.0 27242.1 °	1	258	383	10./	2				
208.	37343.1 27256 5 °	3	259	202	00.5 91.5 °	3,4				
209.	3/330.3 27257 2°	1,2	260	204	01.J	2 4				
210.	51551.5	3	201	384	00.4	3,4	1			

Примітка. Індексами позначені енергії парних станів яки спостерігалися у роботах: "a"– [8], "b"– [9], "c"– [10], "d"– [11], "e"– [12], "#"– нові стани.

Рис. 3. Схема двофотонного збудження парних станів при трифотонній іонізації. Для прикладу показано збудження станів E(J = 3) та E(J=2) з різних початкових рівнів основного терму атома самарію.

Література

- 1. W.C.Martin, R.Zalubas and L.Hagan. Atomic Energy Levels – The Rare-Earth Elements NSRDS-NBS 60 (1978).
- 2. В.А.Комаровский. Опт. и спектр. 71, 559 (1991).
- 3. В.А.Комаровский, Ю.М.Смирнов. Опт. и спектр. 80, 357 (1996).
- 4. Л.М.Барков, М.С.Золоторев, Д.А.Мелик-Пашаев. Опт. и спектр. 62, 243 (1987).
- S.Rochester, C.J.Bowers, D.Budker, D.DeMille, M.Zolotorev. Phys.Rev. A. 59, 3480 (1999).
- K.B.Blagoev, V.A.Komarovskii. Atomic Nuclear Data Tables – Lifetimes of Levels of Neutral and Singly Ionized Lanthanide Atoms. 56 (1994).

Висновки

Методом трифотонної резонансноіо-нізаційної спектроскопії досліджено енергетичний спектр високозбуджених парних зв`язаних станів атома Sm, розташованих в області енергій 33036.0– 40526.7 см⁻¹. Визначено енергії і повні моменти 307 рівнів. Результати засвідчують перспективність використання методу багатофотонної резонансно-іонізаційної спектроскопії для дослідження складних атомних систем, зокрема атома самарію.

Робота виконана за підтримки ДФФД, проект №GP/F11/0098 згідно договору №Ф11/16-2006.

- 7. А.Д.Зюзиков, Препринт, ИСАН–21 (1988).
- 8. L.Jia, C.Jing, Z.Zhou and F.Lin. J.Opt. Soc. Am. B. 10, 1317 (1993).
- 9. J.T.Jayasekharan, MAN Razvi and G.L.Bhale. J.Opt. Soc. Am. B. 13, 641 (1996).
- 10. H.Park, Hyun-chae Kim, Jong-hoon Yi, Jae-Min Han, L. Jongmin. JKPhS. 30, 453 (1997).
- 11. J.T.Jayasekharan, MAN Razvi and G.L.Bhale. J.Opt. Soc. Am. B. 17, 1607 (2000).
- 12. М.А.Ельяшевич. Спектры редких земель (Москва, 1953).
- 13. И.И.Собельман. Введение в теорию атомных спектров (Москва, 1977).

RESONANCE -IONIZATION LASER SPECTROSCOPY OF EVEN-PARITY STATES OF SAMARIUM ATOM

A.I. Gomonai, O.I. Plekan

Institute of Electron Physics, Ukrainian Academy of Sciences

21 Universytetska str., Uzhhorod 88017, Ukraine

e-mail: vkel@mail.uzhgorod.ua

Spectrum of even high-lying bound states of samarium atom was studied by three-photon resonance-ionization spectroscopy. Energies and total momenta of 307 even-parity bound states of samarium atom lying in the 33036.0 - 40526.7 cm⁻¹ energy range were determined.