УДК 546. 14. 15. 19. 48 : 536. 422.1 : 544.173

ТЕНЗИМЕТРИЧНІ ДОСЛІДЖЕННЯ СПОЛУК Cd₂As₃Br та Cd₂As₃I

Гасинець С.М., Риган М.Ю., Шпирко Г.М.

Ужгородський науково-технологічний центр матеріалів оптичних носіїв інформації Інституту проблем реєстрації інформації НАН України 88000, Ужгород, Замкові сходи, 4а

Сполуки $Cd_2As_3Br(I)$ утворюються на розрізах $CdAs_2 - CdBr_2$ (CdI_2) по синтектичному процесу, тому вирощування монокристалів сполук проводили із газової фази [1, 2]. Авторами [3] було показано, що Cd_2As_3Br кристалізується в просторовій групі C2/c, а структура меркуро арсенідоброміда (Hg_2As_3Br) виявилась аналогічною, хоча сполука показує металічну провідність від 80 К до кімнатної температури.

Температурну залежність насиченого тиску монокристалічних зразків Cd₂As₃Br (I) досліджували статичним методом із використанням кварцового нуль-манометра з пласкою мембраною. Чутливість манометра знаходилась в межах +/- 0,5 гПа.

Як видно з рис. 1а, б залежності lgP - 1/Tдля сполук Cd_2As_3Br (I) мають складний характер, внаслідок часткового розкладу монокристалічних зразків речовин в робочій частині манометра з підвищенням температури. Це підтверджується також дослідженням масспектрів сполук.

Дослідження кривих ефективності іонізації і незмінність відношень температурних

залежностей іонних струмів молекулярних і уламкових іонів показує на те, що основними складовими парової фази над кристалами Cd₂As₃Br (I) являються молекули Br₂ (I₂), CdBr₂ (CdI₂), атоми Cd. Зростання As₄, As₂ i температури випарника при дослідженні Cd₂As₃I від 773 до 823 К не привело до суттєвих змін в мас-спектрі – якісний склад парової фази залишається незмінним, зростає тільки концентрація відповідних молекулярних іонів.

На залежностях парціального тиску від оберненої температури знайдені тангенси кута нахилу, по якому визначені теплоти випаровування компонентів парової фази:

 $\Delta H = R \ tg \alpha \cdot 10^3$, де R = 8.31431кДж/моль · град

Для Cd, I₂, CdI₂ та As₄ теплоти випаровування відповідно дорівнюють 303,42; 36,57; 274,34 та 64,81 кДж/моль. Мас-спектри сполук представлені в табл.1.

	Cd_2As_3I			Cd_2As_3Br	
Іони	Відносна	Молекулярний	Іони	Відносна	Молекулярний
	інтенсивність	попередник		інтенсивність	попередник
I_2^+	100	I_2	$\operatorname{Br_2}^+$	100	Br ₂
I^+	23.3	I_2	Br^+	18.2	Br ₂
$\mathrm{CdI_2}^+$	37.3	CdI ₂	$\operatorname{Cd}\operatorname{Br}_2^+$	43.1	Cd Br ₂
As_4^+	82.3	As_4	As_4^+	78.6	As_4
As_2^+	63.4	As_2	As_2^+	74.3	As_2
Cd^+	17.3	Cd	\overline{Cd}^+	28.4	Cd

Таблиця 1. Мас-спектри парів сполук Cd₂As₃I та Cd₂As₃Br при 773 та 873 К відповідно

Суттєвою відмінністю випаровування Cd₂As₃Br від Cd₂As₃I є зростання температури початку випаровування всіх складових парової фази на 50 К. Тільки при 823К в мас-спектрі поряд з іонами Br_2^+ та Br^+ з'являються іони Cd Br_2^+ , As_4^+ , As_2^+ і Cd⁺. На основі встановленого якісного складу парової фази і залежності його від температури

можна стверджувати, що Cd₂As₃I від 673 K, а Cd₂As₃Br від 723 K інконгруентно дисоціюють.

Рис. 1. Температурна залежність насиченого тиску для Cd₂As₃Br (а) та Cd₂As₃I (б)

Розрахунок зміщення складу монокристалічних зразків при нагріванні з врахування мас-спектрометричних даних конденсованих показав, що склад фаз напрямі концентраційних відхиляється В трикутників Cd_2As_3Br (I) – Cd_3As_2 – $CdBr_2$ (I₂) поблизу розрізів Cd₂As₃Br (I) – Cd₃As₂. Тому при інтепритації результатів необхідно враховувати властивості бінарних сполук - Cd₃As₂, CdAs₂, $CdBr_2$, $CdBr_2$ (I₂).

Дослідженню фізичних та термодинамічних властивостей арсенідів кадмію присвячена значна кількість робіт, частину з яких ми виділяємо [4-8]. Область гомогенності $CdAs_2$ та Cd_3As_2 є односторонніми та зміщені від стехіометричних складів в сторону Cd [9, 10].

Для пояснення залежностей lgP - 1/T для Cd_2As_3Br (I), крім використання літературних даних, додатково були дослідженні P - T залежності для $CdBr_2$ та Cd_3As_2 (рис. 2а, б). Із рис.1а, б видно, що залежність для Cd_2As_3I має складніший характер, ніж для Cd_2As_3Br , наявністю зламів при 800, 855, 880 та 890 К. Їх пояснення знаходимо із даних про поліморфізм Cd_3As_2 [11-13] та результатів температурної залежності насиченого тиску для Cd_3As_2 та

СdBr₂. На залежності lgP - 1/T для Cd₃As₂ (рис.2б) спостерігаються різкі злами при 851, 871 та 890 К. Злам при 887 К спостерігається також на залежності lgP - 1/T для CdBr₂ (рис.2а).

Рис. 2. Температурна залежність насиченого тиску для CdBr₂ та Cd₃As₂

Автори робіт [11-13] виявили поліморфні перетворення Cd₃As₂ при 503, 738, 851, 868 та 888 К, інтервалі між якими існують фази α, α', α" і β. Порівняння температур зламів поліморфних перетворень Cd_3As_2 3 температурами зламів для Cd₂As₃I в інтервалі 800-910 К показує на їхню хорошу кореляцію. Причому, якщо на залежності lgP – 1/Т (Cd₃As₂, рис. 2б) при температурах поліморфізму спостерігаємо значні стрибки тиску, то на аналогічній залежності для Cd₂As₃I (рис.1б) ïм відповідають просто злами, внаслідок незначної кількості Cd_3As_2 , що утворюється при зміщенні складу речовини за межі області гомогенності, починаючи з температури 800 К. Стрибок тиску на залежності lgP – 1/Т (рис.2б) при 900 К та злам при 948 К відповідальні за поліморфізм плавлення та по синтектичному процесу Cd_2As_3I , що непогано узгоджується з T - X діаграмою $CdAs_2 - CdI_2$ [2].

Для сполуки Cd_2As_3Br , як видно з рис.1а, залежність 1gP – 1/Т характеризується одним зламом при 772 К та стрибком тиску при 897 К, який узгоджується з Т – Х діаграмою системи [13] і відповідає поліморфізму Cd_2As_3Br . Аналіз зміни насиченого тиску досліджуваних речовин від температури (рис. 1 а, б та рис. 2 а, б) показує, що зміна кількості фаз або їхнього агрегатного стану приводить до появи зламу, а поліморфізм речовини викликає стрибок тиску.

Таким чином, при аналогічних умовах дослідження температурної залежності насиченого тиску парів потрійних фаз для

кадмій арсенідоброміда проходить незначне зміщення складу по розрізу в сторону CdBr₂; для кадмій арсенідойодида характерне зміщення складу в концентраційному трикутнику CdI_2 Cd₂As₃I - Cd₃As₂. Дані одержані з тензиметричних досліджень сполук дозволяють стверджувати, що невеликі незважаючи на області гомогенності потрійних сполук, все ж вона більша у Cd₂As₃Br.

Для лінійних ділянок залежності методом найменших квадратів розраховані коефіцієнти A і B рівняння $lgP_{(\Pi a)} = -A/T + B$ (табл.2).

A			
Сполука	Інтервал, К	А	В
Cd ₂ As ₃ Br	649-758	1186±35	5.400 ± 0.018
Cd ₂ As ₃ Br	778-883	4600±125	9.910±0.010
Cd ₂ As ₃ I	685-799	1890±57	5.974±0.017
Cd ₂ As ₃ I	805-855	4299±29	8.949±0.016

Таблиця 2. Коефіцієнти A і B рівняння $lgP_{(\Pi a)} = -A/T + B$

На всьому температурному інтервалі досліджень однакових температурах при насичений тиск для кадмій арсенідоброміда вищий за насичений тиск для кадмій арсенідойодида. Ця різниця зростає i3 збільшенням температури і коливається в межах від 4700 до 51900 Па. Попередньо монокристали арсенідоброміда кадмій та кадмій арсенідойодида розмірами до 3 мм вирощували з газової фази без транспортера. Враховуючи інконгруентний характер випаровування сполук (по даним мас-спектрів), першочергове значення одержання якісних кристалів для має температура зони випаровування та зони

конденсації. Градієнт температури зменшували на стільки, щоб швидкість масопереносу перевищувала не лімітуючого процесу росту кристалів. Досліджені P-T діаграми потрійних сполук дозволили вибрати умови вирощування монокристалів близькі до оптимальних, позначені на рис.1а,б штрихпунктирною лінією. Температури 818 та 822 К та тиски 20100 та 5300 Па для Cd₂As₃Br та Cd₂As₃I відповідно, при яких проходить вирощування монокристалів знаходяться в диваріантній області Р – Т – Х діаграм (табл.3).

Сполука	Температура зони випаровування, К	Температура зони конденсації, К	Тривалість процеса, год.	Характеристика кристалів та їхні розміри, мм ³
Cd ₂ As ₃ Br	843	813	100-150	Багато дрібних кристаликів 1·1·1
	823	813	90-150	Добре огранені кристали 8·10·15
	837	830	90-180	Дрібні та середні кристали 3·4·4
Cd ₂ As ₃ I	797	784	180-240	Багато дрібних кристаликів менше 1·1·1
	819	810	160-210	Зростки і дрібні кристали 2·3·2
	827	816	480-530	Добре огранені кристали 6·7·10

Таблиця 3. Умови та результати вирощування монокристалів Cd₂As₃Br (I)

Література

1. Олексеюк И.Д., Гасинец С.М., Гам Н.С. и др. Характер взаимодействия компонентов системы $CdAs_2$ -CdBr₂ // ЖНХ. – 1985. – Т. 30, № 9. – С. 2362-2367.

2. Олексеюк И.Д., Гам Н.С., Ворошилов Ю.В., Герасименко В.С. Система CdAs₂- CdI₂ // ЖНХ. – 1979. – Т. 24, № 1. – С. 188-191.

3. Shevelkov A.V., Dikarev E.V., Popovkin B.A. A novel metallic halide, Hg_2As_3Br : synthesis and crystal structure of Cd_2As_3Br // Journal of Solid State Chemistry. – 1994. – V. 113, Issue 1. – P. 116-119.

4. Лазарев В.Б., Шевченко В.Я., Гринберг Я.Х., Соболев В.В. Полупроводниковые соединения группы А_{II}B_v. – М.: Наука, 1978. – 254 с.

5. Морозова В.А., Семененя Т.В., Маренкин С.Ф., Кошелев О.Г., Раухман А.М., Лосева С.М. Оптические переходы в структурно совершенных нелетрованных монокристаллах CdAs₂ на краю собственного поглощения и в примесной области // РАН Неорган. материалы. – 1996. – Т. 32, № 1. – С. 17-23.

6. Landl S., Desgreniers S., Carlone C., Aubin M.J. The raman spectrum of Cd_3As_2 // Journal of Raman Spectroscopy. – 2005. –V. 15, Issue 2. – P. 137-138.

7. Marenkin S.F., Morozova V.A., Koshelev O.G., Biskupski G. Lattice defects in undoped $CdAs_2$

monocrystals // Phys. stat. sol. (b). – 1999. – V.
210, Issue 2. – Р. 569-573.
8. Нипан Г.Д., Лазарев В.Б., Гринберг Я.Х. Р-Т-Х диаграмма системы Cd-As // ЖНХ. – 1982. – Т.27, № 7. – С. 1788-1791.
9. Нипан Г.Д., Гринберг Я.Х., Лазарев В.Б., Зельвенский М.Я. Тензометрическое сканирование отклонения от стеклометрии в CdAs₂ // ЖФХ. – 1989. – Т. LXIII, № 46. – С.
1042-1047.
10. Изотопов А.Д., Сангин В.П. Возможный механизм полиморфного превращения α'→α"– Cd₃As₂ // АН СССР. Неорган. матер. – 1982. –

T. 18, $\mathbb{N} = 4$. – C. 680-681. 11. Weglowski S., Lukaszewicz K. Physe transition of Cd₃As₂ and Zn₃As₂ // Crystallography. – 1968. – V.16, $\mathbb{N} = 4$. – P 177-182.

12. Trzebiatowski W., Krolicki F., Zdanowicz W. Dilatometric studies in the semiconducting system Cd₃As₂-Zn₃As₂ // Bull. Acad. polon. Sci. Ser. sci. chim. – 1968. – V. 16, № 7. –Р. 343-346. 13. Лазарев В.Б., Лужная Н.П., Маренкин С.Ф., Шевченко В.Я., Чистов С.Ф. Взаимодействие кадмия с мышьяком в области существования соединения Cd₃As₂ // ЖНХ. – 1972. – Т. XVII, вып. 11. – С. 3082-3085.

TENSIMETRIC INVESTIGATIONS OF THE Cd₂As₃Br AND Cd₂As₃I COMPOUNDS

Hasynets S.M., Rigan M.Yu., Shpyrko G.M.

The temperature dependence of saturated pressure of Cadmium Arsenidobromide and Cadmium Arsenidoiodide has been investigated. Due to shifting of the composition from the homogeneity region, lgP - 1/T in the temperature interval of 649-967 K for $Cd_2As_3Br(I)$ are observed both as fractures and as pressure jump on the dependences. Mass-spectra of ternary phases demonstrate incongruent character of the compounds evaporation. On the basis of tensimetric investigations, the optimal single crystal growing conditions of the compounds are determined.