Випуск 15. 2006

УДК 541.017 + 546.13

ДОСЛІДЖЕННЯ ФАЗОВИХ РІВНОВАГ У СИСТЕМІ CsI – CuI

Кохан О.П., Стасюк Ю.М., Ковач С.К., Резанов Є.В.

Ужгородський національний університет, 88000, м. Ужгород, вул. Підгірна, 46

В останній час велика увага приділяється матеріалам основі склалних новим на галогенідів та галогенхалькогенідів як перспективним для використання в елементах функціональної електроніки. У цьому аспекті значно зріс інтерес до матеріалів, що володіють високою іонною провідністю у твердому стані – суперіонних провідників. Особливої уваги заслуговує технологія нових купрумвмісних матеріалів, які є хімічно стійкими, володіють високим значенням іонної провідності у твердому стані [1], здатні утворювати тверді розчини завдяки особливостям їх кристалічної структури.

Цікавим є вивчення взаємодії галогенідів лужних металів з галогенідами Купруму(І), що проявили себе у якості твердих електролітів[2]. Не виключеним є утворення нових тернарних та тетрарних фаз на основі складних галогенідів. Дослідження фазових рівноваг у системах за вказаних речовин, участю визначення концентраційних меж існування твердих розчинів можуть стати надійною науковою основою одержання матеріалів із заданими властивостями.

Система CsI – CuI вивчалась N.Jouini i співр. [3] методами диференціально-термічного і рентгенофазового аналізу. Взірці сплавів нагріванням сумішей одержані вихідних бінарних галогенідів при 200°С (48 год.) і 600°С (7 діб) у запаяних кварцових ампулах. Авторами встановлено утворення трьох сполук V досліджуваній системі - CsI·9CuI, CsI·2CuI $(CsCu_2I_3)$ та 2CsI-CuI (Cs_2CuI_3) Сполуки CsCu_2I_3 та Cs₂CuI₃ утворюються по перитектичній реакції при 618 К та 658 К. Взаємодія між сполуками евтектична, координати евтектики -613 К, 36 мол.% CsI. Сполука CsI-9CuI розкладається у твердому стані при 601 К. Сполука CsCu₂I₃ кристалізується в ромбічній комірці з параметрами а=10,173(9), b=14,33(1),

c=11,53(1) Å. Структурних даних сполуки Cs₂CuI₃ автори не приводять.

Подальшими дослідженнями [4] встановлено, що сполука $CsCu_2I_3$ кристалізується в ромбічній комірці, просторова група *Стет*, з параметрами a=10,505(9) b=13,147(8) c=6,072(3) Å, V = 838,6 Å³, Z=4 [4].

Автори [5] встановили структуру сполуки $Cs_3Cu_2I_5$ (3CsI·2CuI), яка кристалізується в ромбічній комірці, просторова група **Рbnm** з параметрами a=14,386(6), b=10,147(5), c=11,675(5) Å, V=1704,3 Å³, Z=4.

Дещо пізніше Геллером і співр [6] при вивченні потрійної системи CuI – CuCl – CsCl було знайдено сполуку α -CsCu₄Cl₃I₂ з унікальними властивостями _ високою іонною провідністю $(0,76 \text{ Om}^{-1}\text{cm}^{-1})$ при 431 К), найвищою серед відомих твердих електролітів. Автори встановили структуру цієї сполуки, її іонну провідність в інтервалі температур 419 – 431 К. α -CsCu₄Cl₃I₂ кристалізується в кубічній комірці, просторова група $P4_132$ (аналог $RbAg_4I_5$), з параметрами а = 10,032 Å, z = 4 [6]. Низькотемпературна модифікація γ -CsCu₄Cl₃I₂ кристалізується у ромбічній комірці Стса з параметрами a=14,242(6), b=24,98(4), c=11,712 Å, z=16.

Протиріччя у дослідженнях фазових рівноваг у системі, кількість та характер утворення фаз спонукають провести детальне дослідження взаємодії у системі CsI – CuI. Метою даної роботи було вивчення взаємодії у системі CsI – CuI та пошук нових тернарних фаз.

Синтез сплавів системи CsI – CuI проводили з бінарних компонентів у вакуумованих (0,13 Па) кварцових ампулах в трубчатій електричній печі опору. Регулювання температури здійснювали за

13

допомогою хромель-алюмелевої термопари та електронної регулюючої системи РИФ-101 з програмованим режимом нагрівання і охолодження печі.

Режим синтезу: температуру підвищували з швидкістю 50 К/год до 923 К. При цій температурі робили витримку протягом 24 годин. Охолодження до кімнатної температури проводили з швидкістю 50 К/год до 450 К. З метою приведення сплавів у рівноважний стан після охолодження до 450 К проводили відпал протягом 120 годин. Після відпалу усі сплави загартовували на повітрі. Одержані сплави досліджували методами ДТА, РФА та визначення густини.

Літературні дані, а також наші попередні дослідження вказують на те, що сполуки, які утворюються у системі CsI – CuI, мають інконгруентний характер плавлення. Тому для синтезу сполук був розроблений спеціальний режим.

Спочатку температуру підвищували з швидкістю 50 К/год до 923 К. При цій температурі робили витримку протягом 24 годин. При цій температурі усі сплави системи (включаючи і вихідні бінарні сполуки) знаходяться у рідкому стані. Далі проводили загартування на повітрі. Одержані дрібнокристалічні взірці піддавали гомогенізації при температурах, на 20 – 30 К нижчих за температури перитектичного розпаду сполук. Гомогенізуючий відпал при температурі 573 К проводили протягом 120 годин. Охолодження кімнатної температури проводили ло 3 швидкістю 50 К/год. Після синтезу усі сплави системи. а також тернарні сполуки досліджували методами фізико-хімічного аналізу.

Сплави системи CsI – CuI були одержані у вигляді щільних полікристалічних взірців від білого до кремового кольору (по мірі збільшення вмісту CuI), розтерті в порошок – білого. Усі сплави стійкі на повітрі, негігроскопічні, не гідролізують.

Диференціальний термічний аналіз сплавів системи CsI – CuI показав, що на термограмах сплавів присутні від двох до п'яти ендоефектів, що свідчить про складний характер взаємодії у досліджуваній системі.

За результатами рентгенофазового аналізу побудовані штрих-діаграми сплавів системи CsI – CuI, які приведені на рис.1.

На дифрактограмах сплавів із вмістом 90 – 75 мол.% СиІ спостерігаються дві системи ліній, що відповідають сполукам $CsCu_2I_3$ та α -CuI. На сплаві із вмістом 66,67 мол.% СиІ спостерігається одна система ліній, що

відповідає сполуці $CsCu_2I_3$. На сплавах із вмістом 67 – 50 мол.% CuI спостерігаються дві системи ліній, що відповідають сполукам $CsCu_2I_3$ та $Cs_3Cu_2I_5$, Сплав із вмістом 40 мол.% CuI – одна система ліній, що відповідає сполуці $CsCu_2I_3$. Сплави із вмістом 33 – 10 мол.% CuI – дві системи ліній, що відповідають сполукам $Cs_3Cu_2I_5$ та CsI_4 .

Результати рентгенофазового аналізу зразків, відпалених при 573 К показали, що для деяких з приведених у літературі складів сполук системи CsI – CuI спостерігаються дві системи ліній.

Склад	Сполука	Фазовий	Літ.
		склад	джерело
		сплаву	
CsI - 9CuI	CsCu ₉ I ₁₀	2-фазний	3
CsI - 4CuI	CsCu ₄ I ₅	2-фазний	3
CsI - 2CuI	CsCu ₂ I ₃	1-фазний	3,4
3CsI - 2CuI	$Cs_3Cu_2I_5$	1-фазний	5
2CsI - CuI	Cs_2CuI_3	2-фазний	3

Отже, не всі сполуки можуть бути одержані за даних умов синтезу, або їх існування потребує детального дослідження.

На дифрактограмах сплавів із вмістом 90 і 80 мол.% СиІ спостерігаються дві

системи ліній, що відповідають сполукам $CsCu_2I_3$ та α -CuI.

На сплаві із вмістом 66,67 мол.% Сul спостерігається одна система ліній, що відповідає сполуці $CsCu_2I_3$. На рис.2 приведені теоретично розрахована (за даними [3]) та експериментально одержана нами дифрактограма сполуки $CsCu_2I_3$ Як видно з рисунка, усі лінії, що спостерігаються на експериментальній дифрактограмі, можуть бути проіндексовані у

системі ліній сполуки $CsCu_2I_3$ На сплаві із вмістом 40 мол.% CuI спостерігається одна система ліній, що відповідає сполуці $Cs_3Cu_2I_5$. На рис.3 приведені теоретично розрахована (за даними [4]) та експериментально одержана нами дифрактограма сполуки $Cs_3Cu_2I_5$ Усі лінії, що спостерігаються на експериментальній дифрактограмі, можуть бути проіндексовані у системі ліній сполуки $Cs_3Cu_2I_5$

Дифрактограма сполуки $CsCu_2I_3$ проіндексована у ромбічній комірці, просторова група *Стет*, з параметрами а=10,52(9) b=13,11(8) c=6,10(3) Å, Z=4 (літ. дані a=10,505(9) b=13,147(8) c=6,072(3) Å, V = 838,6 Å³, Z=4 [3]). Дифрактограма сполуки Cs₃Cu₂I₅ проіндексована у ромбічній комірці, просторова група *Pbnm* з параметрами а=14,38(2), b=10,14(5), c=11,71(7) Å, , Z=4. що узгоджується з літературними даними

2)

(a=14,386(6), b=10,147(5), c=11,675(5) Å, V=1704,3, Z=4 [4]).

Диференціальний термічний аналіз сплавів системи CsI – CuI показав, що на термограмах сплавів присутні від одного до чотирьох ендоефектів, що свідчить про складний характер взаємодії у досліджуваній системі.

Для вивчення характеру утворення сполук у системі були проведені термографічні дослідження взаємодії бінарних вихідних CsI i CuI, взятих у відповідних стехіометричних відношеннях. Одержані результати термічного аналізу приведені на рис 4, 5.

На кривій нагрівання суміші вихідних CsI і CuI, що відповідає сполуці CsCu₂I₃ (рис.3.4, ділянка 1а), спостерігаються 3 ендоефекти (602, 617 і 638 \pm 5 K), перший відповідає початку взаємодії CsI і CuI, другий - інконгруентному плавленню сполуки по перитектичній реакції, а третій — ліквідусу. Тепловий ефект взаємодії бінарних компонентів незначний і спостерігається у вигляді пологого прогину між 602 і 617 К.

 $\uparrow \Delta T$

Рис.4. Термограма взаємодії суміші, що відповідає сполуці CsCu₂I₃

На кривій охолодження (рис. 4, ділянка 1в) спостерігаються два екзоефекти (638 К – ліквідус; 617 К- кристалізація сполуки). При повторному термографуванні взірця (рис.4. ділянка 2) спостерігаються тільки 2 ендоефекти: інконгруентне плавлення і ліквідус. На кривій нагрівання суміші вихідних CsI і CuI, що відповідає сполуці Сs₃Cu₂I₅ (рис.5, ділянка 1а). спостерігаються 3 ендоефекти: перший при 595 К відповідає початку взаємодії CsI і CuI, другий при 660 К – інконгруентному плавленню сполуки Cs₃Cu₂I₅ по перитектичній реакції, а третій – ліквідусу при 723 ±5 К. На кривій охолодження (рис.5, ділянка 1в) спостерігаються два екзоефекти (721 К -ліквідус; 655 Ккристалізація сполуки). При повторному взірця (рис.5, ділянка 2) термографуванні

спостерігаються тільки 2 ендоефекти, інконгруентне плавлення і ліквідус.

Рис.5. Термограма взаємодії суміші, що відповідає сполуці Cs₃Cu₂I₅

Для сплавів, що відповідають складам (CsI – 9CuI) і (CsI – 4CuI) на кривій нагрівання спостерігаються 4 ендоефекти при 593, 617, 643, 843 К ("CsCu₉I₁₀") і 593, 613, 643, 778 К ("CsCu₄I₅"). Ендоефекти при 593 і 643 К відповідають фазовим $\alpha \rightarrow \beta$ та $\beta \rightarrow \gamma$ перетворенням CuI, а останні ефекти – ліквідусу.

Для сплаву, що відповідаює складу (" Cs_2CuI_3 ") на кривій нагрівання спостерігаються 2 ендоефекти (663 і 768 ±5 К), але величина ефекту при 663 К менша за ту, що спостерігається для сполуки $Cs_3Cu_2I_5$.

Для сполук $Cs_3Cu_2I_5$ та $CsCu_2I_3$ пікнометричним методом була визначена густина ($\rho_{\text{експ}}$.), що становить для $Cs_3Cu_2I_5$ 4490 кг/м³ (розраховане значення рентгенівської густини – 4582 кг/м³), а для $CsCu_2I_3 - 4870$ кг/м³ (розраховане значення рентгенівської густини – 5116 кг/м³).

За результатами ДТА і РФА побудована діаграма стану системи CsI – CuI, яка приведена на рис.6 (всі значення температури наводяться з точністю \pm 5 K). У системі CsI – CuI нами встановлено утворення двох сполук. Сполука Cs₃Cu₂I₅ утворюється при 660 \pm 5 K по перитектичній реакції

$$L + CsI \leftrightarrow Cs_3Cu_2I_5$$

Сполука $CsCu_2I_3$ утворюється при 617 \pm 5 К по перитектичній реакції

 $L + \alpha - CuI \leftrightarrow CsCu_2I_3$

Взаємодія між $CsCu_2I_3$ та $Cs_3Cu_2I_5$ евтектична, координати евтектичної точки – 37 мол.% CsI, температура 612 ± 5 К. Горизонталь при 643 К відповідає фазовим $\beta \rightarrow \gamma$ перетворенням CuI.

Діаграму стану системи можна розділити на такі однофазне і двохфазні поля: L — рідина; L+ γ — рідина + кристали γ - CuI; L + β — рідина + кристали β - CuI; L + CsI — рідина + кристали CsI; I — L + Cs₃Cu₂I₅ — рідина + кристали Cs₃Cu₂I₅; II — β -CuI + CsCu₂I₃; III — α -CuI + CsCu₂I₃; IV — CsCu₂I₃ + Cs₃Cu₂I₅; V — Cs₃Cu₂I₅+ CsI

Нами не знайдено сполук $CsCu_9I_{10}$ та $CsCu_4I_5$ однак вони можуть існувати у вузькому інтервалі температур. Існуваня сполуки Cs_2CuI_3 не підтверджується за результатами РФА і ДТА.

Не виключено існування сполуки CsCu₄I₅, аналога «срібного електроліту» RbAg₄I₅, по аналогії зі сполукою КCu₄I₅ що утворюється системі КІ – CuI по твердофазній реакції [7] і існує у вузькому інтервалі температур. Можливість існування такої фази підтверджується і існуванням стабільної кімнатній температурі при фази CsCu₄Cl₃I₂ для якої встановлено структуру (просторова група Р4132, параметр гратки a=10,100(3) Å, Z=4) [6]. Можливо також, що структура, характерна для «срібного електроліту» RbAg₄I₅, стабільна тільки в обмеженій області заміни Йоду на Хлор у кристалічній гратці СsCu₄I_{5.} Вивчення цього питання потребує подальших досліджень.

Література

1. А.К.Иванов-Шиц, И.В.Мурин, Ионика твердого тела, т.1, изд-во СПб. Унив., 2000, 615 с.

2. Geller S., Akridge J.R. and Wilber S.A. Crystal structure and conductivity of the solid electrolyte α - RbCu₄Cl₃I₂ // Phys. Rew. B. 1979. - v.19, N $_{2}10. - p. 5396-5402.$

3. Jouini N, Guen L, Tournoux M. Diagrammes d'equilibre des systemes CuJ –CsJ et BJ₂–AJ (B = Cr,Te et A = Cs, Tl) // Rev. Chim. Miner. 1984. - t.21. N_{23} – p.335-343.

4. Jouini N, Guen L, Tournoux M. Structure cristalline de $CsCu_2J_3$ // Revue de Chimie Minerale. 1980. - t.17, No. - p.486-491.

5. Bigalke K.P, Hans A, Hartl H. Synthese und Strukturuntersuchungen von Iodocupraten(I). IX Synthese und Kristallstrukturen von $Cs_3Cu_2I_5$ und $RbCu_2I_3$ // Z. fuer Anorg. und Allgem. Chemie. - 1988. – T.563. – S. 96 - 104.

6. Geller S., Ray A.K., Fardi H.Z., Nag K. New solid electrolyte $CsCu_4Cl_3I_2$ // Phys Rew. B - 1982. – V.25, N $_2$ 4. - P.2968 - 2970.

7. Bradley J.N. and Greene P.D. Solids with high ionic conductivity in group 1 halide systems // Transactions of the Faraday Society, 1967, - v.63, p.424 - 430.

INVESTIGATION OF PHASE INTERACTION IN THE CsI – CuI SYSTEM

Kokhan A.P., Stasyuk Yu.M., Kovach S.K., Rezanov E.V.

By one-temperature syntheses method 11 samples of CsI - CuI system in whole concentration range were obtained. The investigation of alloys was carried out by differential thermal analyses (DTA), and XRD methods. Phase diagram of CsI - CuI system has been built. The formation of two compounds in CsI - CuI system was discovered. The compounds $CsCu_2I_3$ and $Cs_3Cu_2I_5$ are formed by peritectic reaction on 617 and 660 K. Some properties of ternary compounds were elaborated: cell parameters, density, melting point.