УДК541.12 + 541.13

ОДЕРЖАННЯ І ВЛАСТИВОСТІ ТВЕРДИХ РОЗЧИНІВ У СИСТЕМІ Cu₇GeS₅I - Cu₇GeSe₅I

Кохан О.П., Панько В.В., Стасюк Ю.М., Ковач С.К., Горячева Л.В.

УжНУ, 88000, Ужгород, Підгірна, 46

На сучасному етапі гостро стоїть проблема енергозберігаючих технологій, використання нетрадиційних джерел енергії, підвищення ККД хімічних джерел струму, тощо. У цьому аспекті зріс інтерес до матеріалів, що володіють іонною провідністю у твердому стані -- суперіоніків. Деякі з них уже знайшли практичне використання в хімічних джерелах струму, іоноселективних електродах, іоністорах, іонних перемикачах, датчиках. Але переважна більшість таких матеріалів володіє недостатньою хімічною стійкістю, дорога (містить Ад), піддається деградації. Особливої уваги заслуговує технологія нових матеріалів зі структурою аргіродиту [1], які є хімічно стійкими, можуть володіти високим значенням іонної провідності у твердому стані, здатні утворювати тверді розчини особливостям їх кристалічної завдяки структури

Сполуки $Cu_7B^{IV}X_5Hal$ (X – S, Se; Hal – Cl, Br, I) відносяться до складних галогенхалькогенідних двохкатіонних фаз, що кристалізуються у структурі аргіродиту. Особливістю цих сполук є висока рухливість іонів Купруму (I) у твердій фазі.[2,3,4]. Ці сполуки можуть знайти використання у якості матеріалів твердотільної іоніки [4,5,6]. Систематичне дослідження властивостей сполук даного класу проводиться на кафедрі неорганічної хімії УжНУ [2,3,5,7].

<u>Метою даної роботи</u> було дослідження характеру взаємодії у системі Cu₇GeS₅I – Cu₇GeSe₅I, одержання монокристалів твердих розчинів та вивчення їх фізико-хімічних властивостей.

Синтез вихідних тетрарних сполук Cu_7GeS_5I , Cu_7GeSe_5I проводили в двозонній трубчатій електричній печі опору з простих речовин Cu, Ge, S, Se і бінарної CuI в вакуумованих кварцових ампулах. Регулювання і контроль температури

електронного проводили за допомогою РИФ-101. регулятора Режим синтезу: нагрівання з швидкістю 100 К/год до 713 К, витримка 16 год (для максимального зв'язування сірки, селену Купрумом); потім (50 К/год) до 873 К, витримка 14-16 год., далі з швидкістю 50 К/год до 1073 К, і витримка при цій температурі 24 год. Під час синтезу температура у верхній зоні печі підтримується на 50 К вище за температуру нижньої зони, щоб уникнути розносу шихти всередині ампули.

У зв'язку з тим, що сполуки Cu₇GeS₅I та Cu₇GeSe₅I мають інконгруентний характер плавлення, синтези сплавів системи Cu₇GeS₅I - Cu₇GeSe₅I проводили методом твердофазних реакцій по модифікованій методиці, розробленій для синтезу тетрарних сполук з характером інконгруентним плавлення. Сплави синтезували прямим однотемпературним методом з попередньо синтезованих Одержані тетрарних сполук. кристали розтирали в порошок у агатовій ступці. Розраховану кількість вихідних речовин зважували на аналітичних терезах з точністю до 2.10-7 кг, завантажували в кварцові ампули, ретельно перемішували, відкачували до 0,13 Па і запаювали.

Режим синтезу: температуру підвищували з швидкістю 50 К/год до 1023 К. При цій температурі робили витримку протягом 240 годин. Охолодження ДО кімнатної температури проводили З швидкістю 50 К/год. З метою гомогенізації після охолодження спечені взірці перетирали у агатовій ступці, повторно завантажували в ампули, відкачували до 0,13 Па і запаювали. Потім повторювали цикл твердофазного синтезу (нагрів – 50 К/год до 1023К, витримка – 72 год, охолодження – 50 К/год до кімнатної температури).

Ідентифікацію Cu₇GeS₅I та Cu₇GeSe₅I, а також дослідження сплавів

системи Cu₇GeS₅I – Cu₇GeSe₅I проводили методами рентгенівського фазового аналізу, мікроструктурного аналізу та визначення густини.

Густина зразків визначалася пікнометричним методом. Як індиферентну рідину вибирали толуен

За резли толуен

За резоведено розрахунки параметрів елементарної комірки сполук Cu₇GeS₅I, Cu₇GeSe₅I та сплавів на їх основі. Розрахунки дифрактограм досліджуваних сполук проводились за допомогою прикладних комп'ютерних програм LATTIC і KARTA.

Дифрактограми сполук Cu_7GeS_5I і Cu_7GeSe_5I , а також сплавів системи Cu_7GeS_5I – Cu_7GeSe_5I проіндексовані в гранецентрованій кубічній комірці F43m Кількість і характер рефлексів на дифрактограмах сплавів, що містять 10 – 90 мол.% Cu_7GeS_5I , вказують на те, що в системі утворюється неперервний ряд твердих розчинів. Розрахунки періодів решітки для сплавів системи Cu_7GeS_5I – Cu_7GeSe_5I різного складу приведені в таблиці 1. Там же наводяться дані вимірювання густини.

Періоди решітки і густина сплавів системи Си-GeS₅I – Си-GeSe₅I

Cu/00031 (
Склад,	Період	Густина,	
мол.%	решітки	*10° b	T/M [°]
Cu ₇ GeS ₅ I.	a, Å		
		$ ho_{e\kappa c \pi}$	$\rho_{\text{peht.}}$
100	10,037	5,222	5,284
90	10,093	5,315	5,348
80	10,124	5,410	5,449
70	10,171	5,505	5,522
60	10,186	5,627	5,645
50	10,219	5,685	5,736
40	10,25	5,807	5,829
30	10,29	5,882	5,904
20	10,327	5,945	5,983
10	10,358	5,955	6,069
0	10,405	6,010	6,125

Густина, розрахована за рентгенівськими даними ($\rho_{\text{розр}}$,), добре узгоджується з одержаними нами пікнометричним методом ($\rho_{\text{експ}}$.) даними.

На рис.1. приведена залежність періоду решітки від складу сплаву системи Cu₇GeS₅I – Cu₇GeSe₅I. Дана залежність має лінійний характер і відповідає правилу Вегарда, що свідчить про утворення неперервного ряду твердих розчинів на основі Cu₇GeS₅I.

Рис.1. Залежність періоду решітки від складу сплаву системи Cu₇GeS₅I – Cu₇GeSe₅I.

Для одержання кристалів, придатних для фізико-хімічних досліджень, був проведений вибір оптимальних умов вирощування. Оптимальними умовами виявились: температура в зоні випаровування на 50-55 К вища, ніж в зоні росту кристалів. Діаметр ампули – 22-24 мм, довжина – 240-260 мм. Транспортер – CuI з розрахунку 20 мг/мл вільного об'єму ампули При цих умовах методом газотранспортних реакцій одержано монокристали розміром до $6 \ge 5 \ge 2.5 \text{ мм}^3$. Методом хімічних транспортних реакцій монокристали були вирощені сполук Cu₇GeS₅I. Cu₇GeSe₅I, а також твердих розчинів з шихти різного складу. Одержані кристали сполук представлені на рис.2, а твердих розчинів – на рис.3.

Мікроструктурний аналіз показав, що як сплави, так і одержані кристали є однофазними. Однофазність одержаних монокристалів підтвердив і рентгенівський фазовий аналіз. Параметри комірки, розраховані з дифрактограм для монокристалів твердих розчинів, практично співпадають з даними для сплавів того ж складу, одержаних методом твердофазного синтезу.

Рис.2. Монокристали сполук Cu_7GeS_5I (a), Cu_7GeSe_5I (б), вирощені методом XTP

Рис.3. Монокристали твердих розчинів, вирощені методом XTP складу: a) (0,9 $Cu_7GeS_5I - 0,1Cu_7GeSe_5I;$ б) (0,7 $Cu_7GeS_5I - 0,3Cu_7GeSe_5I);$ в) (0,5 $Cu_7GeS_5I - 0,5Cu_7GeSe_5I);$ г) (0,3 $Cu_7GeS_5I - 0,7Cu_7GeSe_5I)$

Для сплавів складу 0 – 50 мол.% Cu_7GeSe_5I одержано спектри дифузійного відбивання порошків (рис.4). Як видно з рисунка, короткохвильова границя відбивання зміщується у бік довших хвиль (батохромний зсув) при збільшенні вмісту від 0 до 50 мол.% Cu_7GeSe_5I . Для сплавів з

більшим вмістом Cu_7GeSe_5I короткохвильова границя відбивання знаходиться у ближній інфрачервоній області і виходить за межі діапазону вимірювання СФ-18.

Рис.4. Спектри дифузійного відбивання сплавів системи $Cu_7GeS_5I - Cu_7GeSe_5I$ (1 –100%; 2 – 90%; 3 – 80%; 4 – 70%; 5 – 60%; 6 – 50% Cu_7GeS_5I)

За короткохвильовою границею відбивання за формулою

$$E_{g}(eB) = \frac{1.24}{\lambda(MKM)}$$

розраховано оптичну ширину забороненої зони E_g (табл.2). Залежність оптичної ширини забороненої зони від складу сплаву носить монотонний (практично лінійний) характер

Таблиця 2

Концентраційна залежність ширини забороненої зони для сплавів системи Cu₂GeS₅I – Cu₂GeSe₅I

Зразок, №	Склад,	λ _{1/2} , нм	E _g , eB
	мол.%		
	Cu7GeS5I		
1	100	590	2,10
2	90	610	2,03
3	80	630	1,97
4	70	655	1,89
5	60	685	1,81
6	50	715	1,73

Утворення неперервного ряду твердих розчинів в системі $Cu_7GeS_5I - Cu_7GeSe_5I$ можна пояснити тим, що вихідні сполуки кристалізуються в комірках одного структурного типу $F\overline{4}3m$ з близькими геометричними параметрами. Близькість

кристалохімічних іонних радіусів (за Бокієм і Бєловим) Сульфуру ($R_i(S^{2-}) = 1,82$ Å) і Селену $(R_{i}(Se^{2}))$ = 1,93 Å), будови валентної електронної оболонки дозволяє ïм необмежено заміщувати один одного В аніонній підрешітці структури аргіродиту. Зменшення ширини забороненої зони у твердих розчинах при заміні Сульфуру на Селен у аніонній підрешітці пояснюється збільшенням ковалентно-металевої i зменшенням іонно-ковалентної складової хімічного зв'язку, а монотонний характер цієї зміни підтверджує факт утворення твердих розчинів аніон-аніонного заміщення.

ВИСНОВКИ

- Методом твердофазного синтезу одержано 11 сплавів системи Cu₇GeS₅I – Cu₇GeSe₅I, проведено іх дослідження методами рентгенофазового, мікроструктурного аналізів та вимірювання густини.
- 2. У системі встановлено утворення необмеженого ряду твердих розчинів аніон-аніонного заміщення
- 3. Методом XTP вирощено монокристали твердих розчинів різного складу, придатні для фізичних та електрохімічних досліджень.
- 4. Вивчено залежність зміни ширини забороненої зони від складу. Показано що при заміні Сульфуру на Селен величина її зменшується, що пояснюється зменшенням іонно-ковалентної і збільшенням ковалентно-металевої складової хімічного

зв'язку у галогенхалькогенідах Купруму з структурою аргіродиту.

Література

1. Kuhs W.F., Nitsche R., Scheunemann K. The Argyrodites- a new Family of Tetrahedrally Close-Packed Structures.// Mat. Res.Bull.- 1979.-V.14, №2.-P.241-248

2. Стасюк Ю.М., Ковач С.К., Панько В.В., Ворошилов Ю.В. Електрохімічні процеси на границі розділу фаз Cu₆PS₅Br – електроліт.// Укр. хім. журн. – 1998. – т.64, №7. – С.36-39.

3. Стасюк Ю.М., Ковач С.К. Панько В.В., Ворошилов Ю.В., Кохан О.П. Електрохімічні процеси в об'ємі та на границі розділу фаз монокристалу Cu₆PS₅I //Укр. хім. журн. – 2000. – т.66, №8. – С.114–117.

4. Studenyak I.P., Stefanovich V.O., Krajcec M., Dsnica D.I., Azhnyuk Yu.M., Kovacs Gy.Sh., Panko V.V. // Solid State Ionics.-1997, N 95.-P 221-225.

5. Ковач С.К., Стасюк Ю.М., Панько В.В., Ворошилов Ю.В. Електронно-іонні процеси на контактах змішаного електронно-іонного провідника з електролітами та металами.// В сб.: Фотоэлектроника. Межведомств. науч.сб. – Одесса, 2000. – Вып.9. – с.90–93.

6. V.V. Kharton, F.M.B Marques. Mixed ionicelectronic conductors: effects of ceramic microstructure on transport properties // Current Opinion in Solid State & Materials Science. – 2002. – Vol.B6. – P.261-269

7. Кохан О.П., Стасюк Ю.М., Ковач С.К., Панько В.В. Одержання і властивості сполук Cu₇GeS₅I і Cu₇GeSe₅I.// Наук. вісник УжДУ, серія "Хімія".-Ужгород, 1999.- вип.4, с. 139-142.

OBTAINING AND PROPERTIES OF SOLID SOLUTIONS IN SYSTEM Cu7GeS5I – Cu7GeSe5I

Kokhan A.P., Panyko V.V., Stasyuk Yu.M., Kovach S.K., Goryacheva L.V.

By vapor transport reactions method single crystals of Cu_7GeS_5I , Cu_7GeSe_5I compounds and solid solutions suitable for physicochemical examinations were obtained. A series of physicochemical parameters is spotted on received monocrystals: a period of a lattice, density, bond gap. The bond gap is explored and is taken off diffusion spectroscopy of the performance $Cu_7GeS_5I - Cu_7GeSe_5I$ solid solution powder samples. It is shown, that the bond gap of Cu_7GeS_5I and Cu_7GeSe_5I sets at replacement of sulphur on selenium decreases, that is explained by diminution to ionic-covalent and magnification of a covalently-metal making chemical bond in chalcogalides of copper with argyrodite structure.