УДК 541.49+541.66

БУДОВА ТА ТЕРМІЧНО-ІНДУКОВАНІ ПЕРЕТВОРЕННЯ КООРДИНАЦІЙНИХ СПОЛУК ТИТАНУ(IV) ТА ФЕРУМУ(III) З АДАМАНТИЛ-1-ГІДРОКСАМОВОЮ КИСЛОТОЮ

Бузаш В.М.

Ужгородський національний університет, 88000, м.Ужгород, вул. Підгірна 46

Гідроксамові кислоти ïχ та координаційні сполуки з перехідними металами представляють інтерес як з теоретичної [1-4], так і з практичної [5-8] точок зору. Крім того, велике сімейство координаційних сполук феруму(III) 3 кислотами гідроксамовими як макроциклічної, так і ациклічної будови сидерофорів виконують роль транспортних агентів іонів Fe(III), через клітинні мембрани В числених мікроорганізмах [9].

Ряд гідроксамових кислот та їх координаційних сполук характеризуються вираженою антидотною дією, являючись реактиваторами інгібованої фосфорорганічними отруйними речовинами ацетилхолінестерази [10].

У зв'язку з цим представлялось цікавим синтезувати і вивчити склад, хімічну будову координаційних поліедрів, властивості та термічно індуковані перетворення координаційних сполук Ti(IV) та Fe(III) з адамантил-1-гідроксамовою кислотою(H-AГК):

Експериментальна частина Синтез вихідних речовин

1-Бромадамантан (I) одержують шляхом бромування адамантану згідно [11]. Адамантан-1-карбонову кислоту (II) та її хлорангідрид (III) отримують у відповідності до [12]. Адамантил-1гідроксамову кислоту (IV) синтезують згідно [13] обробкою хлорангідриду (III) гідроксиламіном гідрохлоридом у присутності карбонату натрію. Отриманий продукт Н-АГК (IV) плавиться з розкладом при температурі 151-153°С.

Загальна методика синтезу координаційних сполук складу TiCl₄×2H-AГК (V), FeCl₃×1H-AГК(VI) та FeCl₃×2H-AГК(VII)

TiCl₄×2 H-AГК (V) та FeCl₃×2H-АГК(VII). Наважку хлориду металу 0,01 моля розчиняють у мінімальній кількості очищеного і висушеного [14] хлороформу додають до розчину 0,02 моля H-АГК (IV) у хлороформі при інтенсивному перемішуванні, витримують реакційну суміш при нагріванні до температури 40-45°С протягом 5-7 хв. без доступу повітря, після чого розчин охолоджують до кімнатної температури, утворений осад фільтрують, промивають кількома порціями холодного очищеного і висушеного хлороформу і висушують у вакуум-ексикаторі до сталої маси.

FeCl₃×1 H-АГК(VI). Сполуку (VI) синтезують, як вищезгадані сполуки V і VII, використовуючи наважки FeCl₃ та H-АГК в кількості по 0,01 моля. Колір сполук V-VII, їх забарвлення, молярні маси та результати аналізу на вміст металу, С, Н, Сl, N приведені в таблиці 1.

Фізико-хімічні методи досліджень

Визначення вмісту металів у складі сполук V-VII виконували комплексонометричним методом [15], вміст С, H, Cl, N визначали згідно [16]. ІЧ-спектри IV–VII та продуктів їх термодеструкції реєстрували за допомогою спектрофотометра UR-20 в інтервалі 4000-400 см⁻¹ з використанням методик пресування досліджуваних зразків в таблетках KBr, розчиненням IV – VII в хлороформі, CCl₄, або суспендуванням IV– VII у нуйолі (рис.7-11). Теромогравіграми реєстрували на деріватографі OD-102 в політермічному режимі у струмені Ar зі швидкістю нагрівання 10°C/хв, в якості еталона використовували свіжо прожарений Al₂O₃ (рис.2). Дослідження термічного розкладу продуктів IV-VII здійснювали на установці, приведені на рис. 1

Рис.1. Установка для дослідження термічного розкладу сполук.

1-скляний реактор; 2-піч; 3-газова кювета для реєстрації ІЧ-спектрів; 4-вловлювач продуктів розкладу; 5-посуд Дюара для рідкого азоту.

ІЧ-спектри газоподібних продуктів термічного розкладу координаційних сполук реєструвались з використанням газової кювети (рис.1).

Віднесення смуг поглинання в ІЧспектрах Н-АГК та синтезованих продуктів V-VII дозволив виявити наступне. В ІЧ-V-VII спектрах смуги (таблиця 2) поглинання v(0H) зміщені на 20-110см⁻¹ у довгохвильову область порівняно з Н-АГК. Так само спостерігається довгохвильове зміщення v(C=O) у сполуках V-VII на 20-55см⁻¹ порівняно з Н-АГК. Крім того в V-VII частоти сполуках валентного коливання v(N-O) зсунуті по відношенню до згаданої чистоти Н-АГК в y

короткохвильову область IЧ-спектру. Ці дані дозволяють зробити висновок про бідентантність ліганду – Н-АГК у сполуках V-VII, причому, донорними атомами в Н-АГК виступають атоми оксигену карбонільної групи та угрупування – NH-OH що добре узгоджується з літературними даними [17-19].

З урахуванням результатів ІЧспектроскопічного дослідження, синтезованим сполукам слід приписати таку будову координаційних поліедрів:

Ν	Сполука	Mr	Забарвления		Знайдено, %					
п/п	Сполука	г/мол	Jaoapi	ысппл	С	Н	Cl	Μ	Ν	
1	Н-АГК,	105 262	Біле		67,62	8,74	-	-	7,12	
1	IV	195,202	DIJ		67,71	8,79	-	-	7,18	
2	TiCl₄x2H-АГК,	580 236	Яскраво-жовте		45,62	5,94	24,39	8,21	4,85	
2	V	500,250			45,58	5,90	24,46	8,24	4,87	
3	FeCl ₃ x1H-AΓK,	357 468	Темно-		36,98	4,76	29,71	15,5	5 3,87	
5	VI	557,400	корич	неве	36,93	4,77	29,68	15,54	4 3,85	
4	FeCl ₃ x2H-АГК, VII	552,730	Темно-бурий з перламутровим		47.76	6.18	19.11	10.0	2 5.01	
					47.84	6.22	19.17	10.14	4 5.03	
			В1ДЛИ	BOM	,.					
Ν	_				Обч	Вихід,				
п/п	Сполука	Брутто формула		С	Н	Cl	М	Ν	% від	
				_		-			теор.	
1	H-Al K,	$C_{11}H_{17}NO_2$		67,66	8,78	-	-	7,17	84,0	
				-						
2	$I1Cl_4X2H-AIK,$	$C_{22}H_{34}Cl_4N_2O_4Ti$		45,54	5,91	24,44	8,26	4,83	87,5	
3	FeCl ₃ XIH-AIK, VI	$C_{11}H_{17}Cl_3FeNO_2$		39,96	4,79	29,75	15,62	3,92	88,3	
4	FeCl ₃ x2H-AГК,	H-A Γ K, C ₂₂ H ₃₇ Cl ₃ FeN ₂ O ₄		17.81	6.20	10.24	10.10	5.07	85.8	
4	VII			4/,81		17,24	10,10	5,07	05,0	

Таблиця 1. Дані елементного аналізу і деякі фізико-хімічні властивості синтезованих продуктів IV-VII

Таблиця 2. Віднесення найважливіших смуг поглинання в ІЧ-спектрах Н-АГК та координаційних сполуках V-VII, см⁻¹

N	Віднесення смуг поглинання по	Сполуки								
		Η-ΑΓΚ, ΙV		TiCl ₄ ×2H-AΓK (V)	FeCl ₃ ×1H-АГК (VI)	FeCl ₃ ×2H-AΓK (VII)				
п/п		Табл.	Розчин в	Табл.	Табл.	Табл.	Розчин			
	формам коливань	KBr	CHCl ₃	КBr	КBr	KBr	в CHCl ₃			
1	V(NH)	3373	3450	3320	3310	3320	340			
	V(INII)	3342	3300	3250	3240п.	3230	320			
2	ν(O-H)	3150	3180	3120-	3040-	3130 3050				
		5150	3045	3070ш.	3120ш.	3060	5050			
3	v(>CH ₂)	3000		2920	2920	2925				
	$\nu (\ge C-H)$	2800	-	2856	2856	2870				
4	v(>C=0),	1650	1640	1(0)	1620	1595				
	Амід Ш	1605	1040	1002	1050	1545				
~	ν(N-H),	1517	1520	1520	1510	1505	1509			
3	Амід II	1317	1500	1550	1510	1303	1308			
6	v(-CH ₂ -)	1473		1460	1467	1462				
		1380		1380	1402	1403				
7	ν(HNC+HNO),	1286		1292	1283	1284				
	Амід III	1200		1202	1205	1204				
8	v(N-O)	929		948	945	950				
9	$\Delta \nu(OH)$			-30	-30	-20				
		-	-	-80	-110	-90				
10	Δν(C=0)	-	-	-48	-20	-55				
11	Δv (N-O)	-	-	+19	+16	+21				

Деріватограми Н-АГК, FeCl₃×1H-АГК, FeCl₃×2H-АГК приведені на рис.2-4. Результати термогравіметричного дослідження приведені в таблиці 3. На підставі результатів термогравіметричного дослідження нами запропоновано схеми термічно-індукованих реакцій розкладу як індивідуальної Н-АГК, так і координаційних сполук V-VII (рис.3-6).

Таблиця 3: Результати термогравіметричного дослідження вихідних та координаційних сполук складу Н-АГК (Адамантилгідроксамова кислота) MeCl_x × _nH-АГК та [Fe(АГК)₂(H₂O)]Cl₂×2H₂O

	Сполука №	Mr г/мол	Початкова		Тип	Відщеплю-	Втрата маси зразка (Дт), ми			\m), мг
Ν			маса зразка,	аса зразка, t°C		вальний		%	теор	%
			МΓ		ефекту	фрагмент	експ			
1	Н-АГК	195,262	35,0	81	ендо.	-1 H ₂ O	1,60	4,57	3,23	9,23
				145	сильно ендо.	-A-N=C=O	22,0	69,25	31,77	90,77
2	TiCl ₄ x2H-AΓK	580,236	44,0	205	екзо.	-2HCl	5,50	12,50	5,53	12,57
				240	сильно екзо.	-2ANCO	27,00	61,36	26,88	61,09
				280	ендо.	-0,5 TiCl ₄	7,20	16,36	7,19	16,35
				350	екзо.	-1 H ₂ O	1,40	3,18	1,37	3,10
				500		твер. зал. TiO ₂	3,30	7,50	3,03	6,88
3	FeCl₃x1H-AΓK	357,468	42,0	146	ендо.	-1 HCl	4,30	10,24	4,28	10,20
				168	сильно екзо.	-1 ANCO	20,90	49,76	20,83	49,58
				314	екзо.	-1 HCl	4,30	10,24	4,28	10,20
				410	екзо.	-1/3 FeCl ₃	4,25	10,12	4,20	10,00
						твер. зал. -2/3Fe ₂ O ₂	8,25	19,64	8,40	20,01
4	FeCl₃x2H-AΓK	552,730	40,0	155	енло.	-1HCl	2.60	6.50	2.64	6.60
				178	екзо.	-1 ANCO	12.80	32.00	12.83	32.07
				198	ендо.	-1 HCl	2,70	6,75	2,64	6,60
				298	екзо.	-1 ANCO	12,80	32,00	12,83	32,07
				375	екзо.	-1 HCL	2,60	6,50	2,64	6,60
				406	екзо.	-0,5 H ₂ O	1,35	3,37	1,30	3,26
				500		твер.зал. 0,5Fe ₂ O	5,20	13,00	5,12	12,80

Рис.2. Деріватограми сполук: а) Н-АГК; б) FeCl₃×1 Н-АГК; в) FeCl₃×2 Н-АГК.

перетворень сполуки V

Вторинні реакції:

A-N=C=O + H₂O
$$\rightarrow$$
 A-NH₂ + CO₂
adamantrun-amin
O
A-N=C=O + A-NH₂ \rightarrow A-NH-C-NH-A
CUM-adamantrun-ceчовина
A-CONHOH + H₂O \rightarrow A-COOH + NH₂OH
A-COOH + A-NH₂ \rightarrow A-COOH + NH₂OH
A-COOH + C-A + H₂O
Puc.6. Cxemu tepmiчho-ihdykobahux
nepetbopehb cnonyku VII

Термічно-індуковані перетворення синтезованих продуктів IV–VII досліджували за допомогою установки, яку наведено на рис.1.

Н–АГК. При підвищенні температури в пічці до 152-153°С починався термічний розклад Н-АГК, причому, частина продуктів виносилась із реакційної зони інертним газом і осаджувалась на холодних стінках реактора, а інша частина залишалась в нижній частині реактора. Газоподібні продукти виморожувались Ha рис.7 представлені ІЧ-спектри всіх продуктів термолізу. Із рис.7 видно, що спектри продуктів термодеструкції у значній мірі відрізняються від спектру вихідної Н-АГК (спектр а). Привертає до себе увагу той факт, що ні в ІЧ-спектрі летких продуктів (спектр б), ні В ІЧ-спектрі залишку (спектр в) не спостерігається смуг поглинання, характерних для ізоціанатної групи. І лише на ІЧ-спектрі розчину (спектр г) при 2253 см⁻¹ видно смугу інтенсивності, незначної яку можна приписати валентному коливанню v(NCO) [17,19].

Аналіз отриманих даних засвідчує, що у спектрі леткого продукту, який осів на холодних стінках реактора (рис.2, спектр б), при 3335, 3263 та 3165 см⁻¹ присутні смуги поглинання валентних коливань N-Hзв'язків. Перші дві смуги слід віднести, відповідно, антисиметричних до i симетричних коливань зв'язків N-H у групі -NH₂. Додатковим доказам на користь зробленого віднесення служить той факт, що для цих двох смуг поглинання задовільно виконуються емпіричне співвідношення: v_{сим}=345,3+0,876v_{антисим}, виведене для IЧспектрів значного числа первинних амінів [17].

Із ІЧ-спектрів виморожених продуктів (рис.7, спектр е) видно, що дану фазу складає, в основному, CO_2 (інтенсивна смуга при 2330-2380 см⁻¹) і H_2O (дублетні смуги при 3600 і 3700 см⁻¹). Таким чином, при нагріванні H– $A\Gamma K$ утворюється 1адамантил-ізоціанат згідно перегрупування Лосеня (рис.6). Однак у присутності водяної пари ANCO вступає у вторинні перетворення з утворенням 1адамантиламіну та CO₂, які ідентифікуються IЧ-спектрально.

ІЧ-спектр нелеткого залишку (рис.7, спектр в) у значній мірі відрізняється від спектру летких продуктів. Так, в області 3344 см⁻¹ спостерігається лише одна смуга валентних коливань зв'язків N-H. Можна припустити, що ця смуга відноситься до коливань зв'язків N-H у вторинному аміді, так як в області 1623 і 1520 см⁻¹ спостерігаються інтенсивні смуги поглинань, які можна віднести до валентного коливання v(>C=O) та деформаційного коливання б(NH) відповідно Таким вторинним амідом може бути симетрично заміщена диадамантоїл-сечовина (див. схему термолізу Н-АГК) – продукт взаємодії 1-адамантилїх-ізоціаната та 1-адамантиламіну. В ІЧ-спектрі (рис.7, спектр в) окрім зазначених смуг, спостерігаються інтенсивні смуги при 1550 та 1390 см⁻¹, які є характерними для карбоксильної групи -СОО- [19]. Очевидно, Н-АГК при підвищених температурах вступає не тільки у вищезгадані перетворення, але й реагує з водяною парою за іншим механізмом (рис.6). У присутності водяної пари, утвореної в процесі протікання перегрупування Лосеня, стає можливим протікання наступного процесу, пов'язаного з утворенням 1-адамантан-карбонової кислоти (див.схему термолізу Н-АГК). Утворена 1-адамантанкарбонова кислота, взаємодіючи з наявним у реакційній суміші 1-адамантил-аміном, утворює адамантил-1-карбоксилат-адамантил-1-амонію [А-NH₃]⁺[ОСОА]⁻. ІЧ-спектр такої солі повинен володіти двома характеристичними групами смуг. Перша з них – смуги карбоксилу, відзначені нами вище (при 1550 та 1390 см⁻¹), друга – смуги валентних коливань групи -N+H3. Як це видно із рис.7, у спектрі в у області 3025 см⁻¹ спостерігається поглинання, яке слід приписати групі $-NH_3^+$ [19]. Спостережувана при 3670 см⁻¹ смуга поглинання у спектрі розчину продуктів термолізу Н–АГК (рис.7, спектр г), ймовірно, відповідає валентним коливанням v(OH) в утвореному за реакцією гідролізу (рис.3) гідроксиаміну [17].

TiCl₄×2 H−AΓK **(V)**. Нагрівання координаційної сполуки V до 180°С у вакуумованих умовах (рис.1) призводить до незначного газовиділення внаслідок термодеструкції V. Лише при температурі 180°С і вище (рис.9) спостерігається значна втрати наважки зразка продукту V, яка супроводжується помітним газовиділенням. При цьому сполука втрачає жовте забарвлення і набуває білого кольору. Вивчення ІЧ-спектрів газової фракції (рис.9 б) дозволило виявити смуги поглинання в області 3715 та 3615 см⁻¹ (дублетні смуги), які можна віднести до антисиметричних та симетричних коливань збурених молекул води, водневими зв'язками [20]. Смуги в області 3000-2800 см⁻¹ слід приписати валентним коливанням зв'язків v(-CH₂-) та $\nu (\equiv C - H)$ адамантильного каркасу [19]. Смуги в області 2330-2380 см-і можна віднести, згідно [17], до валентних коливань СО₂. Смугу поглинання при 2230см⁻¹ в продуктах розкладу сполуки V як при температурі 180°С, так і при 280°С слід приписати 1адамантил-ізоціанату.

В ІЧ-спектрах продуктів термодеструкції сполуки V як при температурі 180°С, так і при 280°С (див.рис.9) спостерігається поглинання в області 2600-2800 см⁻¹, викликаних коливальнообертальними переходами в молекулах HCl, утворених внаслідок термічно-індукованого депротонування координованої Н–АГК. При цьому (рис.4) в результаті термічного дегідрохлорування координовані молекули Н-АГК переходять із кето- в імілалкогольну форму. Привертає до себе увагу те, що процес термодеструкції сполуки V якісно відмінний від термічного розкладу Н-АГК. Як це добре видно зі схеми термолізу сполуки Vта IЧ-спектрів летких продуктів термолізу V при 180°С та 280°С, в газовій фазі знаходиться незначна кількість води. Це можна пояснити тим, що в процесі відщеплення А-N=C=О від сполуки V у лепротонованій формі, гідроксо-група практично повністю утримується Ti⁴⁺, центральним атомом утворюючи Ті(OH)₂Cl₂. У свою чергу, це і служить причиною порівняно меншої кількості вторинних термічно-індукованих перетворень участю 1-адамантилза ізоціанату. В цьому і полягає основна відмінність в механізмі термодеструкції некоординованої та координованої Н-АГК. термогравіметричного Ha підставі дослідження сполуки V зроблено висновок, що кінцевим продуктом її термолізу є ТіО₂.

Рис.7. ІЧ-спектр продуктів термолізу Н-АГК: а) спектр Н-АГК (табл..КВг); б) спектр летких продуктів термодеструкції (табл..КВг); в) спектр важко летких продуктів термодеструкції (табл..КВг); г) спектр суміші продуктів термолізу в розчині CHCl₃ (при низькій їх концентрації); д) теж саме при 5-кратному збільшенні концентрації; е) спектр газоподібних продуктів термолізу Н-АГК

Рис.8. ІЧ-спектри: а) Н-АГК (табл.КВг); б) Н-АГК (2% р-н в СНСl₃); в) Н-АГК (0,5% р-н в СНСl₃); г) Н-АГК (0,25% р-н в СНСl₃); д) ТіСl4×Н-АГК (табл.КВ)

Рис.9. ІЧ-спектри TiCl₄×H-AГК: а) витриманого при 180° С; б) витриманого при 280° С

Рис.10. ІЧ-спектри розчинених продуктів термодеструкції FeCl₃×1 H-AГК та ANCO: а) ANCO в CCl₄; б) суміш продуктів термодеструкції FeCl₃×1 H-AГК при 180⁰С в розчині CHCl₃; в) теж саме – при у 5 разів меншій концентрації; г) теж саме – в розчині CCl₄

Рис.11. ІЧ-спектри: а) Н-АГК (табл.КВг); б) FeCl₃×2 Н-АГК (табл.КВг); в) газоподібних продуктів термодеструкції FeCl₃×2 H-АГК (в1 – при 125[°]C, в2 – при 180[°]C, в3 – при 200[°]C); г)білих продуктів термодеструкції FeCl₃×2 H-АГК при 153[°]C; д) теж саме при 200[°]C; є) індивідуального А-N=C=O; ж) темних продуктів термодеструкції FeCl₃×2 H-АГК, витриманого протягом 45 хв при 125[°]C; з) теж саме, витриманого протягом 45 хв при 125[°]C; и)теж саме, витриманого протягом 60 хв при 153[°]C; і) теж саме, витриманого протягом 60 хв при 200[°]C

FeCl₃×1 H-АГК (VI). Як це видно з деріватограми (рис.2) термічно-індукований процес дегідрохлорування сполуки VI відбувається з ендотермічним ефектом при температурі 146[°]С. При цьому має місце перехід координованої Н-АГК із кетоформи в депротоновану імід-алкогольну форму, яка при подальшому підвищенні температури вступає в перегрупування Лосеня з сильним екзотермічним ефектом при 168°С, яке відбувається на матриці координаційної сполуки феруму(III) (рис.5). В результаті згаданого перегрупування Лосеня утворюється 1-адамантил-ізоціанат (рис.10) та гідроксохлорид феруму(III), який з екзотермічним ефектом при 314°C втрачає HCl. Утворений при цьому оксохлорид феруму(III) з екзотермічним ефектом при 410° С диспропорціонує на 1/3 FeCl₃ та 2/3 Fe₂O₃, що добре узгоджується з [21].

FeCl₃×2 H−АГК (VII). Деріватограма VII приведена сполуки на рис.2 в. Результати термогравіметричного дослідження приведені в таблиціЗ. Дослідження механізму термодеструкції сполуки VII з використанням установки, виконано приведеної на рис.1. Для ідентифікації продуктів термодеструкції нами використано ІЧ-спектроскопічний метод. Як слідує із ІЧ-спектрів (рис.11), нагрівання сполуки VII до температури 125°С не призводить до помітного газовиділення. Однак, починаючи від 150°С спостерігається суттєве газовиділення, яке при температурі 175-200[°]С переростає в дуже сильне. При нагріванні досліджуваного зразка VII в інтервалі 145-153°С, а потім до 200°С спостерігаються суттєві зміни його ІЧспектрів (рис.11). Так, в значній мірі зменшується інтенсивність смуги при 3287-3284 см⁻¹, яку ми приписали валентним коливанням зв'язку v(NH), зменшується також інтенсивність смуги v(C=O) при 1589 см⁻¹. Окрім того, в ІЧ-спектрі з'являється ряд нових смуг поглинання.

Зокрема, при 3410 см⁻¹ спостерігається смуга невеликої інтенсивності, виникає інтенсивна смуга при 3203 см⁻¹, а також смуги при 2800, 1548, 1509 см⁻¹ і ряд нових смуг в області 550-400 см⁻¹.

У спектрі (рис.11 и), одержаному при нагріванні зразка VII при 153°С протягом 1

години спектральні зміни є ще суттєвішими. згаданих смуг, В ІЧ-спектрі Крім з'являються нові смуги при 2205, 1641, 1628 см⁻¹ та ряд інших смуг, що свідчить про термодеструкцію координаційної сполуки VII. В ІЧ-спектрі газоподібних продуктів розкладу зразку VII (рис.11, в1-в3) з'являються смуги при 2250 см⁻¹, складна смуга в області 2350-2380 см⁻¹, дублетна смуга незначної інтенсивності при 2570 см⁻¹, складна смуга з яскраво вираженою обертальною 2650-3050 см⁻¹, структурою в області дублетна смуга в області 3475 см⁻¹, а також дві дублетні смуги при 3600 і 3700 см⁻¹.

У процесі термодеструкції речовини VII при 153°С і вище виділяється білий продукт, що осідає на холодних стінках реактора, і темний залишок. На рис.11 г,д приведені ІЧ-спектри білих продуктів термодеструкції комплексу VII, які осіли на реактора. холодних стінках Смуга поглинання в області 2263-2261 см⁻¹ була відсутня як в ІЧ-спекті Н-АГК, так і в координаційній сполуці FeCl₃×2H–AΓK. Згідно [17-19], в даній області поглинають ізоціанати. На рис.11 (спектр е) приведено ІЧ-спектр окремо синтезованого нами 1адамантил-ізоціанату.

Порівняння ІЧ-спектрів білих продуктів термолізу зразка VII та 1адамантил-ізоціанату виявило високий ступінь їх схожості, що підтверджує запропоновану нами схему термолізу сполуки VII, в результаті якої за реакцією Лосеня утворюється 1-адамантил-ізоціанат (рис.4).

Із деріватограми сполук V і VII (рис.2), даних таблиці 3 та схем термолізу V і VII (рис.3,5) видно, що механізми термодеструкції FeCl₃×2H–АГК і TiCl₄×2H– АГК дещо відмінні: перегрупування Лосеня на матриці координаційної сполуки титану(IV) протікає в одну стадію, а феруму(III) – у дві стадії, причому різниця в температурах між першою і другою стадіями становить 120° С.

Аналіз ІЧ-спектру білого продукту дозволив виявити, що в процесі термодеструкції продукту VII утворюються, окрім 1-адамантил-ізоціанату, й деякі інші продукти. Так, в області 3346-3343 см⁻¹, а також при 3430 см⁻¹ спостерігаються смуги

поглинання, характерні для валентного коливання v(NH). Ймовірно, в продуктах термодеструкції присутні аміни, аміди та інші сполуки, що містять =NH-групи. Привертає до себе увагу спектр г (рис.11) сполуки VII, витриманої при 153°С протягом 1 години, в якому спостерігається смуга при 2205 см⁻¹. Дану смугу поглинання, ймовірніше всього. сліл приписати валентному коливанню координованої ізоціанатної групи: Fe³⁺-O=C=N-A. Смуга поглинання в даній області спостерігається також в ІЧ-спектрах г,д (рис.11) продуктів термодеструкції VII, причому. як для (2203 см⁻¹), так і не координованого координованого (2255 см⁻¹) 1-адамантилізоціанату.

Поява в ІЧ-спектрі газоподібних продуктів (рис.11, спектри в1-в3) складної смуги поглинання при 2350-2380 см⁻¹, а також смуг поглинання при 3600 і 3700 см⁻¹ говорить про виділення в процесі термодеструкції сполуки VII значних кількостей CO₂ та H₂O. Смуги v(OH)_{as} і v(OH)_s зміщені в низькочастотну область порівняно з літературними даними [20], що можна пояснити існуванням у парогазовій фазі асоціатів молекул води з молекулами СО2. Такі асоціати - акватовані молекули СО₂ – описані в [22].

Таким чином, проведене дослідження виявило різницю в механізмах термодеструкції некоординованої і координованої Н-АГК. У випадку некоординованої Н-АГК продукти термодеструкції вступають у собою і 1-адамантилвзаємодію між ізоціанат знаходиться в них тільки в слідових кількостях. В той час як у процесі термодеструкції координованої Н–АГК ANCO утворюється в значних кількостях. Шe дозволяє зробити висновок про можливість використання термодеструкції координаційних сполук металів 3 гідроксамовими кислотами для здійснення препаративних синтезів сполук різного роду, в тому числі й ізоціанатів.

Література

1.Dobosz A., Dudarenko N., Fritsky I., Glowiak T., Karaczyn A., Kozlowski H., Sliva T., Swiatek-Kozlowska J. N-Bonding of the hydroxamic function of nicel(II) and copper(II) comlexce with 2–(hydroximino)propanohydroamic acid. // J.Chem.Sos., Dalton Trans. –1999. –P.743–749.

2.Swiatek–Kozlowska J., Fritsky I., Dobosz A., Karaczyn A., Dudarenko N., Sliva T., Gumienna– Kontecka E., Jerzykiewicz L. Chelating dihydroxamic acids: stady of metal speciation and coordination compounds with Ni²⁺ and Cu²⁺. // // J.Chem.Sos., Dalton Trans. –2000. –P.4064–4068.

3.Дударенко М.М., Слива Т.С. Синтез та магнітні властивості координаційних полімерів міді(ІІ) та нікелю(ІІ) з 2–оксимінопропангідроксамоваю кислотою. // Доп.НАН України. –2002. №1. –С.149–152.

4.Дударенко М.М. Координаційні сполуки нікелю(ІІ) та міді(ІІ) з бідентатними лігандами оксимного, амідного та гідроксаматного типів. // Автореферат канд. дис. Київ, 2002.

5.Коренман Н.М. Органические реагенты в неорганическом анализе. М.:Химия. –1980. –448с.

6.Умланд Ф., Ясен А., Тириг Д., Вюнш Г. Комплексне соединения в аналитической химии. –М.:Мир. –1975. –531с.

7.Пилипенко А.Т. Органічні реактиви в неорганічному аналізі. –К.:Вища школа. –1972. –216с.

8.Бузаш В.М. Координаційні сполуки 3d-металів з біфункціональними біциклічними лігандами. // Вісник УжНУ. Серія Хімія. –1999. Вип.4. –C.57–61.

9.Inorganic Biochemistry. Edited by Eichhorn G.I. – Amsterdam–London–New–York: Elsevier Scientific Publishing. –1973. –P.167–202.

10. Франке 3. Химия отравляющих веществ. -М.:Химия. -1973. Т.1. -С.280-282.

11.Landa S., Kriebel S., Knobloch E. // Chem.Listy. -1954. Vol.48. -P.61.

12.Stetter H., Scwarz M. Hirschorn A. // Ber. –1959. Vol.92. –S.1629.

13.Степанов Ф.Н., Столяров Е.С. // Ж. орган. химии. –1970. –№6. –С.360.

14.Вайсберг А., Проскауэр Э. Органические растворители. –М.:Изд–во ИЛ. –1958. –236с.

15.Шварценбах Г., Флашка Г. Комплексометрическое титрование. –М.:Химия. –1970. –360с.

16.Климова А.В. Основные методы анализа органических соединений. –М.:Химия. –1975. –75с.

17.Nakamato K. Infrared spectra inorganic and coordination compounds. –New–York. Wiley–Interscience. –1986. –248p.

18.Харитонов Ю.Я., Саруханов М.А. Колебательные спектры гидроксиламина и его координационных соединений. –Ташкент: ФАН. –1971. –191с.

19.Беллами А. Инфракрасные спектры сложных солекул. –М.:Изд–во ИЛ. –1963. –276с. 20.Карякин А.В.. Кривенцова Г.А. Состояние воды в органических и неорганических соединениях. –М.:Наука. –1973. –176с.

21.Некрасов Б.В. Основы общей химии. -М.:Химия. -1970. -Т.3. -164с.

22.Коттон Ф., Уилкинсон Дж. Современная неорганическая химия. Т.1–3. –М.:Мир. –1969.

STRUCTURE AND THERMIC INDUCED CONVERSIONS OF COORDINATION COMPOUNDS OF TITANE(IV) AND IRON(III) WITH ADAMANTYC-1-HYDROXAMIC ACID

Buzash V.M.

Synthesis of coordination compounds $TiCl_4 \times 2$ H-A Γ K, FeCl₃×1 H-A Γ K, FeCl₃×2 H-A Γ K, where H-A Γ K, their structure, properties, thermal induced conversions involving data of IR-spectra and thermogravimetrical analysis has been discussed.