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Introduction

Nowadays, the theory of stochastic processes is widely used in various
fields of science and not only. Using stochastic processes, we can describe
a large number of production processes, as well as processes occurring in
economics, finance, insurance, radiophysics, etc. Since the covariance functi-
on is one of the most important characteristics of stochastic processes, the
tasks of evaluating this function and constructing the criteria for its identi-
fication are an actual direction in the theory of stochastic processes and are
widely used in solving statistical problems of stochastic processes. Another
actual direction in the theory of stochastic processes is computer simulation
of stochastic processes and fields, which is an effective means of reproducti-
on and prediction of various phenomena and processes of the environment.
Due to the powerful possibilities of computer techniques the problems of
numerical simulations become especially important and allow to predict the
behavior of a random process. The given monograph is dedicated to these
tasks, namely, the tasks of simulation of stochastic processes and fields and
the problem of identifying the covariance function of stochastic processes
and fields.

In the first chapter we consider the space of sub-Gaussian random vari-
ables Sub(Ω), the Orlicz spaces of random variables LU (Ω) and the space
of quadratically Gaussian random variables SGΞ(Ω). The concept of sub-
Gaussian random value was introduced in 1960 by Kahan. Later, in 1985,
Kozachenko and Ostrovsky introduced and investigated certain properties
of ϕ-sub-Gaussian random variables. The partial case of ϕ-sub-Gaussian
random variables are quadratically Gaussian random variables. Quadrati-
cally Gaussian stochastic processes appeared in the literature in the mi-
ddle of the twentieth century and were intensively investigated by many
scholars, in particular by Kozachenko and his students. Since estimates for
quadratically Gaussian stochastic processes are used in the evaluation of
the spectral and covariance functions of stochastic processes and fields and
the construction of criteria for the identification of these characteristics, it
is precisely to this class of random variables and stochastic processes we
devotes considerable attention. In the first section we consider the problem
of evaluation of the exponential moments of quadratic forms from random
variables from the space SGΞ(Ω) and limits in square mean of such quadratic
forms. The upper and lower estimates for distributions of quadratic forms of
quadratically Gaussian random variables and limits in square mean of such
quadratic forms are found. The necessary definitions and assertions about
the random variables from the Orlicz spaces are given for further work.

The second chapter is devoted to the construction of models of Gaussi-
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an non-stationary stochastic processes with given accuracy and reliability.
A well-known, suggested by Mikhailov, method for constructing models of
Gaussian stationary processes, namely, the method of partition and randomi-
zation of the spectrum, was modified here. Using the modified method of
partition and randomization of the spectrum we constructed the models of
Gaussian non-stationary stochastic processes. In addition, were investigated
the conditions for selecting a partition of a set are so that the constructed
model approximates a Gaussian non-stationary stochastic process with gi-
ven reliability and accuracy in the spaces C(T) and Lp(T).

The third chapter is devoted to the construction of models of Gaussian
non-stationary stochastic fields with given accuracy and reliability. At the
beginning of the section, we constructed a model of stochastic field and
obtained the estimates of k-th moments of sub-Gaussian random variables.
With the help of these estimates, we investigated the accuracy and reliability
of the constructed models and established a sufficient condition that the
model of a stochastic Gaussian non-stationary field approximates it with
given reliability and accuracy in the space Lp(T), p > 1. In addition, in
Section 3.4, new estimates for Bessel functions of the first kind are found.
Also, the differences between the Bessel functions with different arguments
are considered. Estimates for differences between two and four functions are
obtained.

In the fourth chapter, a separable, real, stationary Gaussian stochastic
process ξ(t) is considered. Using previously obtained inequalities, estimates
for the deviation of normalized correlogram from the covariance function
in the metric of the space L2(0, B), 0 < B < ∞ are found for a stochastic
process ξ(t). Here we considered the case when the process ξ(t) is a centered
stochastic process and the case when the mean of the process is different
from 0. The covariance function is evaluated using correlograms.

In the fifth chapter we proved the theorem on the deviation of the covari-
ance function from its estimate, that is, the correlogram. The criteria for
testing the hypotheses about the covariance function of the Gaussian stati-
onary stochastic process and the Gaussian non-stationary stochastic process
are formulated. A theorem on the deviation of a covariance function from its
estimate is proved in the case when the value of the process is known only
for a finite set of points. On the basis of this theorem, a criterion for testi-
ng the hypothesis about the covariance function of a Gaussian stationary
stochastic process is formulated. We proposed a criterion for comparing two
hypotheses about the covariance function and a criterion for testing the
hypothesis about the covariance function of a Gaussian stochastic process
in the case when the mean of this process is different from zero. All these
results are based on the estimates of the norms of quadratically Gaussian
stochastic processes in the space Lp(T ), p > 1, that were obtained in Section
1.6.

In the sixth chapter we find the estimates for the distribution of the
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supremum of quadratically Gaussian stochastic processes defined on R+.
The obtained results are used, in particular, to stationary in the wide means
quadratically Gaussian stochastic processes. For a real stationary Gaussi-
an stochastic process, with the help of the obtained inequalities, we find
estimates for the deviation of the correlogram from the covariance functi-
on in the uniform metric on (0,∞). We constructed a criterion for testing
hypothesis about the covariance function of the process on the interval (a, b)
by observing the trajectory of the process on a segment of arbitrary length.

In the seventh chapter homogeneous and isotropic mean-square conti-
nuous Gaussian random field ξ(x) defined in Rn with Eξ(x) = 0 is consi-
dered. For this random field, we obtained estimates for the distribution of
spherical mean deviations from the covariance function in L2-metric and
metric of the space Lp(Ω), p > 1. In Section 7.3 we considered the case
when the values of the field on a sphere are known. Using the obtained
inequalities, we constructed the criteria for testing the hypotheses about
the covariance function of a stochastic field. The evaluation is carried out
by observing the stochastic field on the ball, and the spherical mean is used
as the estimate of the covariance function.
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Chapter 1
Orlicz, SGΞ(Ω) and Sub(Ω) spaces of random
variables.

1.1. Orlicz spaces of random variables.

Definition 1.1. [88] A continuous even convex function U = {U(x), x ∈
R} is called Orlicz C-function, if it is monotone increasing, U(0) = 0, U(x) >

0, x 6= 0.

Example 1.1. The next functions are Orlicz C-functions:

1) U(x) = a|x|α, x ∈ R a > 0, α > 1;

2) U(x) = c(exp{a|x|α} − 1), x ∈ R, c > 0, a > 0, α > 1;

3) U(x) = c(exp{ϕ(x)} − 1), x ∈ R, c > 0, ϕ = {ϕ(x), x ∈ R}–arbitrary
Orlicz C-function.

The main properties of Orlicz C-function reviewed in the book [88].
Let {Ω,B, P} is the probability space. Denote:

• L0(Ω)- space of all random variables defined on the probability space
{Ω,B, P};

• Lp(Ω)-space of random variables with finite p-th absolute moment
(p > 1);

• L(0)
p (Ω)-space of zero-mean random variables with finite p-th absolute

moment (p > 1).

The space Lp(Ω) is Banach with respect to the norm

‖ξ‖p = [E|ξ|p]1/p , ξ ∈ Lp(Ω).

Example 1.2. Let U(x) = |x|p, x ∈ R, p > 1. In this case LU (Ω) is a
Lp(Ω) space and Luxemburg norm ‖ξ‖U and norm ‖ξ‖p are equivalent.
Convergence in the space L2(Ω) by the norm ‖ • ‖2 called the convergence
in the mean square and if ξn −→ ξ in the space L2(Ω), then we can write
down ξ = l.i.m.n−→∞ξn.
Definition 1.2. [19] Let U -arbitrary Orlicz C-function. The Orlicz space,
generated by the function U(x), is defined as the family of random variables
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ξ ∈ LU (Ω) where for each function ξ there exists a constant rξ > 0 such
that

EU

(
ξ

rξ

)
<∞.

Theorem 1.1. [19] The Orlicz space LU (Ω) endowed with the Luxemburg
norm

‖ξ‖U = inf

{
r > 0 : EU

(
ξ

r

)
6 1

}
(1.1)

is a Banach space and
LU (Ω) ⊆ L1(Ω). (1.2)

The functional ‖•‖U can take value∞ on the space L0(Ω) and ‖ξ‖U <∞
if and only if ξ ∈ LU (Ω), namely

LU (Ω) = {ξ ∈ L0(Ω) : ‖ξ‖U <∞}.

By LU (Ω) we denote the Orlicz space generated by Orlicz C-function
U(x).

Since (1.2) is true, than the space of zero-mean random variables can be
written as

L
(0)
U (Ω) = {ξ ∈ LU (Ω) : Eξ = 0}.

Lemma 1.1. [19] The space L
(0)
U (Ω) is Banach subspace in the LU (Ω)

space with respect to the norm ‖ • ‖U .

1.2. Orlicz space of exponential type.

Let’s consider the spaces of Orlicz, for which there are corresponding
ones exponential moments.
Definition 1.3. [19] Suppose that ϕ = {ϕ(x), x ∈ R} is an arbitrary C-
function. The Orlicz space generated by the C-function

U(x) = exp{ϕ(x)} − 1, x ∈ R,

is called an Orlicz space of exponential type.

We denote this space by Expϕ(Ω) and the norm of the space Expϕ(Ω)
by ‖ • ‖Eϕ .

Random variables belonging to space of exponential type have power
moments any order, yielding the inclusion

Expϕ(Ω) ⊂ Lp(Ω)
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for any p > 1. By Theorem 3.2 in the book [19], this is a topological embeddi-
ng: that is, there exists a constant c > 0 such that

‖ξ‖p 6 c‖ξ‖Eϕ .

for any ξ ∈ Expϕ(Ω). In general, the calculation of c is cumbersome, but in
the case ofN -functions this constant can be represented in a form convenient
for applications.
Remark 1.1. In what follows, we will write Exp(α)(Ω) instead of Expϕ(Ω)

when ϕ = {|x|α, x ∈ R}, α > 1, and the corresponding norm ‖ • ‖Eϕ will be
denoted ‖ • ‖E(α).

Denote
Exp(0)

ϕ (Ω) = {ξ ∈ Expϕ(Ω) : Eξ = 0}.

From Lema 1.1 we obtainte that the space Exp(0)
ϕ (Ω) is Banach subspace

in the Expϕ(Ω) space with respect to the norm ‖ • ‖U . If we consider only
centered random variables, then we can easily determine norms that will be
equivalent to the Luxemburg norms.

Let γ is a Gaussian random variable with (0, σ2) parameters. This random
variable belong to LU (Ω) Orlicz space, where U(x) = exp{x2} − 1 and the
norm of this random variable is equal to C‖ • ‖L2

.

1.3. Sub-Gaussian random variable

Definition 1.4. [19] A random variable χ is sub-Gaussian if there exists
a > 0, such that the inequality

E exp{λχ} 6 exp

{
a2λ2

2

}
,

holds for all λ ∈ R.
The space of all sub-Gaussian random variables defined on a common

probability space {Ω,B,P} we denote Sub(Ω). The space Sub(Ω) is a Banach

space with respect to the norm τ(χ) = sup
λ 6=0

[
2 ln E exp{λχ}

λ2

] 1
2

.

Lemma 1.2. [19] Assume that ξ1, ξ2, ..., ξn are independent sub-Gaussian
random variables. Then

τ2

(
n∑
k=1

ξk

)
6

n∑
k=1

τ2(ξk)

Lemma 1.3. [19] Let ξ be a zero-mean random variable such that Eξ2k+1 =
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0 i θ(ξ) = sup
k>1

[
2kk!
(2k)!Eξ

2k
] 1

2k

<∞. Then ξ ∈ Sub(Ω) and τ(ξ) 6 θ(ξ).

Definition 1.5. [19] Let T be a parametric set. A stochastic process ξ =

{ξ(t), t ∈ T} is called sub-Gaussian if for all t ∈ T , ξ(t) ∈ Sub(Ω) and
supt∈T τ(ξ(t)) <∞.

1.4. Space of square Gaussian random variables
SGΞ(Ω)

Let

• ξ = (ξ1, . . . , ξN )T be N -dimensional Gaussian column vector (N > 1),
Eξk = 0, k = 0, . . . , N ;

• B = covξ = Eξξ
T
be the covariance matrix of the vector ξ;

• A = (ajk)Nj,k=1 be a symmetric matrix with real-valued entries
(AT = A).

Lemma 1.4. [59] For |s| < 1 and D
(
ξ
T
Aξ
)

= E
(
ξ
T
Aξ − EξTAξ

)2

> 0

the next inequality holds

E exp

 s√
2

 ξ
T
Aξ − EξTAξ(

D
(
ξ
T
Aξ
))1/2


 6 (1− |s|)−1/2 exp

{
−|s|

2

}
.

Remark 1.2. The conclusion of lemma also holds for an asymmetric matrix
A. In this case one can use the immediate equality

ξ
T
Aξ = ξ

T
(
A+AT

2

)
ξ,

and observe that the matrix 1
2 (A+AT ) is symmetric.

Remark 1.3. Assume that ξ = (ξ1, . . . , ξN1
)T ,N1 > 1 and η = (η1, . . . , ηN2

)T ,
N2 > 1 are zero-mean jointly Gaussian vectors and let A = (ajk) be an
N1 ×N2 matrix with real valued entries. Consider the quadratic form

ξ
T
Aη = ΣN1

j=1ΣN2

k=1ajkξjηk.

Introducing a random N1 + N2-vector (ξ; η) = (ξ1, . . . , ξN1 , η1, . . . , ηN2)T
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and a block (N1 +N2)× (N1 +N2)-matrix

Ã =

(
0 A

2
A
2 0

)
we have the equality

ξ
T
Aη = (ξ; η)T Ã(ξ; η).

Corollary 1.1. Let D
(
ξ
T
Aη
)

= E
(
ξ
T
Aη − EξTAη

)2

> 0. Then forТ
|s| < 1 the following inequality holds

E exp

 s√
2

 ξ
T
Aη − EξTAη(
D
(
ξ
T
Aη
))1/2


 6 (1− |s|)−1/2 exp

{
−|s|

2

}
.

Remark 1.4. It is an easy exercise to check that corollary 1.1 also holds for
a linear combination of the form

ζ = Σnl=1ξ
T

l Alηl,

where ξ1, . . . , ξn, η1, . . . , ηn are zero-mean jointly Gaussian random vectors
whose dimensions can be arbitrary and where A1, . . . , An are symmetric
matrices which fit these dimensions. In this case, the only restriction is
the condition that the random variable ζ is nonsingular. However, this
fact is obvious since the random variable ζ can always be represented as
γT Ãγ, where γ is a compound Gaussian vector formed by the vectors
ξ1, . . . , ξn, η1, . . . , ηn, and the matrix Ã is built from the matricesA1, . . . , An.

On a probability space {Ω,B, P}, consider a family of random variables
of the form ξ

T
Aξ − EξTAξ, where ξ is a zero-mean Gaussian vector of an

arbitrary dimension N > 1 defined on {Ω,B, P}, and A is an arbitrary
N ×N -symmetric matrix with real-valued entries.
Definition 1.6. [81] Let T be some parametric set, Ξ = {ξt, t ∈ T} be
the family of jointly Gaussian random variables, Eξt = 0 (for example,
ξt be Gaussian random process). The space SGΞ(Ω) is called the space of
square Gaussian random variables, if random variables ζ from SGΞ(Ω) can
be represented in the form

ζ = ξ
T
Aξ − EξTAξ, (1.3)

where
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• ξ = (ξ1, . . . , ξN )T is Gaussian random vector for N > 1, Eξ = 0,
• random variables ξi, i = 1, . . . , N belong to Ξ,
• A is an arbitrary symmetric matrix,
or random variables from SGΞ(Ω) are mean square limits of a sequence of
random variables ζn = ξ

T

nAnξn − Eξ
T

nAnξn, n > 1.

Remark 1.5. Assume that η and θ are random vectors with components
from Ξ, and C is a symmetric matrix. Then ζ = ηTCθ−EηTCθ belongs to
the space SGΞ(Ω).

Remark 1.6. Let ηi, i = 1, 2, . . . , n be the random vectors with components
from Ξ, Ci be the symmetric matrices, u1, u2, . . . , un be the arbitrary numbers.
Then ζ =

∑n
i=1 ui

(
ηTi Ciηi − EηTi Ciηi

)
belongs to the space SGΞ(Ω).

In [19] was proved, that the space SGΞ(Ω) is a closed subspace of the
space Exp(0)

ϕ (Ω) with ϕ(x) = |x|, x ∈ R and ‖ • ‖Eϕ and L2(Ω)-norm are
equivalent. This means that space SGΞ(Ω) is Banach space relative to the
norm ‖ζ‖ =

√
Eζ2. For the random variables from SGΞ(Ω) the following

lemma holds.
Lemma 1.5. [81] Assume that ζi, i = 1, 2, . . . , n are random variables from
SGΞ(Ω). Then for all |s| < 1 for all λi ∈ R1, i = 1, 2, . . . , n inequality

E exp

{
s√
2

ζ

(Dζ)
1
2

}
≤ R(|s|) (1.4)

holds, where ζ =
∑n
i=1 λiζi,

R(s) = exp
{
−s

2

}
(1− s)−

1
2 (1.5)

Definition 1.7. [81] A random vector ζ ∈ Rd is said to be square Gaussian,
if all its components ζi, i = 1, 2, . . . , d, belong to the space SGΞ(Ω).

Definition 1.8. [81] A random process ζ = {ζ(t), t ∈ T} is called the
square Gaussian random process relative to family Ξ, if for all t ∈ T random
variables ζ(t) belong to the space SGΞ(Ω) and supt∈T Eζ

2(t) <∞.
Let us consider the examples of square Gaussian random processes.

1. Let ξ1(t), ξ2(t), . . . , ξn(t), t ∈ T be a family of zero-mean jointly Gaussi-
an random processes and assume that for each t ∈ T exist symmetric
matrix A(t). Then ζ(t) = ξ

T
(t)A(t)ξ(t)− EξT (t)A(t)ξ(t)

be the square Gaussian random process with ξ
T

(t) = (ξ1(t), ξ2(t), . . . , ξn(t)).

14



2. The mean square limits of a sequence of random processes

ζn(t) = ξ
T

n (t)An(t)ξn(t)− EξTn (t)An(t)ξn(t),

where ξn(t) are zero-mean Gaussian random vector-processes andAn(t)
are symmetric matrices, be the square Gaussian random process.

3. Assume that ξ = {ξ(t), t ∈ T} is zero-mean stationary Gaussian
random process. Correlogram

B̂(τ) =
1

V

Vw

0

ξ(t+ τ)ξ(t)dt− Eξ(t+ τ)ξ(t), V > 0,

of this process ξ = {ξ(t), t ∈ T} is the square Gaussian random
process.

1.5. The estimates for the distribution of quadratic
forms defined on the space of square Gaussian
random variables SGΞ(Ω)

The following lemma improves the corresponding lemma from [81].

Lemma 1.6. Let ζ
T

= (ζ1, . . . , ζd) be the random vector, ζi ∈ SGΞ(Ω),

i = 1, . . . , d, and let A be the d× d symmetric positive-dimensional matrix.
Then for all |t| < 1√

2
the following inequality holds

E ch


√√√√ t2ζ

T
Aζ

E(ζ
T
Aζ)

 ≤ R(
√

2|t|), (1.6)

where R(s) = exp
{
− s2
}

(1− s)− 1
2 .

Proof. Let us prove this lemma for A = I , where I is unit matrix, and for
such vectors ζ, for which ζi are orthogonal, i.e.D(

∑d
i=1 λiζi) =

∑d
i=1 λ

2
iEζ

2
i .

Put σ2
i = Eζ2

i , i = 1, 2, . . . , d. In this case from (1.4) (for |s| < 1) follows,
that for all λi ∈ R, i = 1, 2, . . . , d inequality

E exp

 s
∑d
i=1 λiζi

√
2(
∑d
i=1 λ

2
iσ

2
i )

1/2

 ≤ R(|s|) (1.7)

holds true.
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Let us denote
u =

s√
2
∑d
i=1 λ

2
iσ

2
i

.

From (1.7) follows, that for |u| < (2
∑d
i=1 λ

2
iσ

2
i )
−1/2

we obtain

E exp

{
u

d∑
i=1

λiζi

}
≤ R

|u|
√√√√2

d∑
i=1

λ2
iσ

2
i

 . (1.8)

Let us define si = uλiσi. Then

d∑
i=1

s2
i = u2

d∑
i=1

λ2
iσ

2
i =

s2

2
,

moreover
∑d
i=1 s

2
i <

1
2 . It follows from (1.8), that for all si for which∑d

i=1 s
2
i <

1
2 the next inequality holds

E exp

{
d∑
i=1

si
ζi
σi

}
≤ R


√√√√2

d∑
i=1

s2
i

 . (1.9)

One can apply (1.9), to obtain inequality

E

d∏
i=1

ch

(
siζi
σi

)
= E

d∏
i=1

exp
{
siζi
σi

}
+ exp

{
− siζiσi

}
2

=

=
1

2d
E

d∏
i=1

(
exp

{
siζi
σi

}
+ exp

{
−siζi
σi

})
=

1

2d

∑
E

d∏
i=1

exp

{
siζiδi
σi

}
=

=
1

2d

∑
E exp

{
d∑
i=1

siζiδi
σi

}
≤ 1

2d

∑
R


√√√√2

d∑
i=1

s2
i

 =

= R


√√√√2

d∑
i=1

s2
i

 .

where δi = ±1 and sums
∑

are calculated by all possible δi, that means we
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have total 2d numbers. Thus,

E

d∏
i=1

ch

(
siζi
σi

)
≤ R


√√√√2

d∑
i=1

s2
i

 .

Consider function f(z) = ln ch
√
z, z > 0. f(z) > 0 is convex function.

Really, f(0) = ln ch 0 = 0, f ′(z) = sh
√
z

2
√
z ch
√
z
, f ′′(z) = 1

4

1− sh(2
√
z)

2
√
z

z(ch
√
z)

2 < 0,

because sh(2
√
z) > 2

√
z, z > 0. Therefore, for all zi > 0, i = 1, 2, . . . , d, the

inequality [51]
d∑
i=1

f(zi) ≥ f(

d∑
i=1

zi)

holds. This means

d∏
i=1

ch
√
zi ≥ ch

√√√√ d∑
i=1

zi, zi > 0.

Therefore, for
∑d
i=1 s

2
i <

1
2 we have

E ch

√√√√ d∑
i=1

s2
i ζ

2
i

σ2
i

≤ E
d∏
i=1

ch

√
s2
i ζ

2
i

σ2
i

= E

d∏
i=1

ch

{
|siζi|
σi

}
=

= E

d∏
i=1

ch

{
siζi
σi

}
≤ R


√√√√2

d∑
i=1

s2
i


Let us put s2

i =
σ2
i t

2∑d
i=1 σ

2
i

. Than from previous inequality we obtain

E ch


√√√√ t2

∑d
i=1 ζ

2
i∑d

i=1 σ
2
i

 ≤ R(
√

2t) (1.10)

for all |t| < 1√
2
.

Let us consider the general case. Take a symmetric matrix B such, that
BB = A , R = covζ and let O be the orthogonal matrix reducing BRB to
the diagonal form, that is

OBRBOT = D = diag(d2
k)dk=1.

17



Let θ = OBζ. Then

θ
T
θ = ζ

T
BOTOBζ = ζ

T
Aζ,

covθ = OBcovζBOT = D.

Since θ
T

= (θ1, . . . , θd) is square Gaussian random vector (ζ is square
Gaussian random vector), we can to apply inequality (1.10) to it. Consi-
dering that θ

T
θ =

∑d
i=1 θ

2
i = ζ

T
Aζ , we obtain

ch

√√√√ t2θ
T
θ

Eθ
T
θ

= ch

√√√√ t2ζ
T
Aζ

Eζ
T
Aζ

.

Lemma is proved completely. ♦

Corollary 1.2. Assume that for ζn and An, n > 1 the conditions of the
lemma 1.6 are fulfilled and η = l.i.m.n→∞ζ

T

nAnζn, Eη 6= 0. Then for all
|t| < 1√

2
the following inequality holds

E ch

(√
t2η

Eη

)
≤ R(

√
2|t|).

Proof. Since η = l.i.m.n−→∞ηn, than Eηn −→ Eη, for n −→∞, that means
η

Eη
= l.i.m.n−→∞

ηn
Eηn

,

where ηn = ζ
T

nAnζn. Then exists a subsequence {ηnk} of the sequence {ηn}
such that ηnk −→ η for nk −→ ∞ with probability 1. We will apply the
Fatou lemma to obtain

E ch

(√
t2

η

Eη

)
= E lim inf

nk−→∞
ch

(√
t2

ηnk
Eηnk

)
6

6 lim inf
nk−→∞

E ch

(√
t2

ηnk
Eηnk

)
6 R

(√
2|t|
)
.

The theorem is proved. ♦

Lemma 1.7. Assume that for ζ and A the conditions of the lemma 1.6 are
fulfilled and η = ζ

T
Aζ. Then for x > 1

2 the following inequality holds
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P

{
η

Eη
> x

}
≤ 2

1
4x

1
4

ch
(√

x
2 −

1
2

) . (1.11)

Proof. From the Chebyshev inequality and (1.6) follows, that for x > 0

and |t| < 1√
2
we have

P

{
η

Eη
> x

}
≤
E ch

√
t2η
Eη

ch
√
t2x

≤ R(
√

2|t|)
ch
√
t2x

Let us donote t = 1√
2
− 1

2
√
x
, x > 1

2 . Then

R(
√

2t)

ch
√
t2x

=
(2x)1/4 exp

{
1

2
√

2x
− 1

2

}
ch
(√

x
2 −

1
2

) .

Since exp
{

1
2
√

2x
− 1

2

}
< 1 for x > 1

2 , then

P

{
η

Eη
> x

}
≤ 21/4x1/4

ch
(√

x
2 −

1
2

) .
Lemma is proved. ♦

Corollary 1.3. Assume that for ζn and An, n > 1 the conditions of the
lemma 1.6 are fulfilled. Then the inequality (1.11) holds for
η = l.i.m.n→∞ζ

T

nAnζn, Eη 6= 0.

Proof. Corollary follows from lemma 1.7 and corollary 1.2. ♦

Lemma 1.8. Let ξ1, ξ2, . . . , ξm, m > 1 be independent normal random vari-
ables and Eξk = 0, Eξ2

k = σ2
k, ck = ±1, k = 1, . . . ,m and s > 0. Then the

following inequality holds∣∣∣∣∣E exp

{
i
s
∑m
k=1 ξ

2
kck

2(
∑m
k=1 σ

4
k)

1
2

}∣∣∣∣∣ ≤ 1

(1 + s2)
1/4

.

Proof. It is obviously, that for ξk, ck and for real valued r equality

E exp

{
i

∑m
k=1 ξ

2
kck

r

}
=

m∏
k=1

E exp

{
iξ2
kck
r

}
(1.12)

holds.
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Taking into account that E exp{isξ2
k} = (1− 2isσ2

k)
−1/2, (1.12) can be

rewritten in the form

E exp

{
i

∑m
k=1 ξ

2
kck

r

}
=

m∏
k=1

(
1− 2i

σ2
kck
r

)− 1
2

.

Then∣∣∣∣E exp

{
i

∑m
k=1 ξ

2
kck

r

}∣∣∣∣ =

∣∣∣∣∣
m∏
k=1

(
1− 2i

σ2
kck
r

)− 1
2

∣∣∣∣∣ =

m∏
k=1

∣∣∣∣1− 2i
σ2
kck
r

∣∣∣∣− 1
2

=

=

m∏
k=1

(
1 +

(
2
σ2
kck
r

)2
)− 1

4

=

m∏
k=1

(
1 +

4σ4
k

r2

)− 1
4

.

Let us denote I =
m∏
k=1

(
1 +

4σ4
k

r2

)− 1
4

.

Then

ln I = −1

4

m∑
k=1

ln

(
1 +

4σ4
k

r2

)
(1.13)

Consider the function f(x) = ln(1 + x) , x > 0. f(x) is convex function
(f(0) = 0, f ′′(x) < 0) and therefore

f(

m∑
k=1

xk) ≤
m∑
k=1

f(xk),

that is

−
m∑
k=1

f(xk) ≤ −f(

m∑
k=1

xk)

for xk ≥ 0.

From the last inequality and (1.13) follows, that

ln I ≤ −1

4
ln

(
1 +

4

r2

m∑
k=1

σ4
k

)

I ≤

(
1 +

4

r2

m∑
k=1

σ4
k

)− 1
4

.
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Let r =
2(
∑m
k=1 σ

4
k)

1
2

s . Then

I ≤ (1 + s2)
− 1

4 for the real valued s,

which was to be proved. ♦

Theorem 1.2. Let A be a symmetric real-valued n× n matrix,
ξ
T

= (ξ1, ξ2, . . . , ξn) be the random vector such that ξk are the normal
random variables with Eξk = 0 and Dξ

T
Aξ > 0. Then∣∣∣∣∣∣E exp

is(ξ
T
Aξ − EξTAξ)
√

2

√
Dξ

T
Aξ


∣∣∣∣∣∣ ≤ 1

(1 + s2)
1
4

,

for s > 0.

Proof. Let ξ = (ξ1, ξ2, . . . , ξn)T be an n-dimensional Gaussian column vector,
such that Eξk = 0, k = 1, . . . , n, and let B = covξ = Eξξ

T
be the covari-

ance matrix of the vector ξ. Take a symmetric matrix A = (aij)
n
i,j=1 with

real-valued entries (AT = A) and let U be the ortogonal matrix reducing
(B1/2)TAB1/2 to the diagonal form. ξ = B1/2Uγ, where γ = (γ1, . . . , γn)T

is a standard Gaussian random vector. Then

ξ
T
Aξ = γTUTB1/2AB1/2Uγ = γTΛγ = Σnk=1λkγ

2
k,

where Λ = diag{λ1, . . . , λn} is the diagonal matrix. Since for λk = ±1

we obtain D
(∑n

k=1 λkγ
2
k

)
= 2

∑n
k=1 σ

4
k > 0 and for γ holds lemma 1.8

(Eγk = 0, Eγ2
k = 1, λk = ±1) we will have∣∣∣∣∣∣E exp

is(ξ
T
Aξ − EξTAξ)
√

2

√
Dξ

T
Aξ


∣∣∣∣∣∣ =

=

∣∣∣∣∣E exp

{
i
s
(∑n

k=1 λkγ
2
k − E

(∑n
k=1 λkγ

2
k

))
2
√∑n

k=1 σ
4
k

}∣∣∣∣∣ ≤ 1

(1 + s2)
1
4

.

Corollary 1.4. Let ζi, i = 1, 2, . . . , n be the random variables from SGΞ(Ω).

Then for s > 0 the next inequality holds∣∣∣∣E exp

{
i
s√
2

ζ

(varζ)1/2

}∣∣∣∣ 6 1

(1 + s2)1/4
,
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where ζ =
∑n
i=1 λiζi, λi are real numbers.

Proof. ζi ∈ SGΞ(Ω) therefore ζi can be represented as ζi = ξ
T

i Ciξi −
E
(
ξ
T

i Ciξi

)
, where ξi are Gaussian random vectors, Ci are the symmetric

matrices. Let us consider vector ξ
T

= (ξ1, . . . , ξn) and the matrix

C =


λ1C1 0 . . . 0

0 λ2C2 . . . 0

. . . . . . . . . . . .

0 0 . . . λnCn


In this case ζ =

∑n
i=1 λiζi = ξ

T
Cξ−E

(
ξ
T
Cξ
)
is square Gaussian random

variable, and therefore for ζ the inequality of the theorem holds. ♦

Lemma 1.9. Let ζ
T

= (ζ1, . . . , ζn) be the random vector such, that ζj ∈
SGΞ(Ω) and let A be a symmetric positive-valued matrix. Then the inequali-
ty

E exp

{
−u

2

2

ζ
T
Aζ

Eζ
T
Aζ

}
≤ g(u)

holds true, where g(u) = 1√
2π

r +∞
−∞ exp

{
− s

2

2

}
1

(1+u2s2)
1
4
ds, u > 0.

Proof. Let us consider orthogonal square Gaussian random variables ζj ,
Eζ2

j = σ2
j , σ

2
j > 0 >, λj ∈ R1. Then from the theorem 1.2 and corollary 1.4

for s > 0 we have∣∣∣∣∣∣E exp

i s√2

∑n
j=1 λjζj

(
∑n
j=1 λ

2
jσ

2
j )

1
2


∣∣∣∣∣∣ ≤ 1

(1 + s2)
1
4

(1.14)

Let us rewrite the left part in the form∣∣∣∣∣∣E exp

i s√2

∑n
j=1

ζj
σj

(λjσj)

(
∑n
j=1 λ

2
jσ

2
j )

1
2


∣∣∣∣∣∣ .

Define sj as follows sj = s
λjσj

(
∑n
j=1 λ

2
jσ

2
j )

1
2
. Then s2 =

∑n
j=1 s

2
j , and (1.14) can

be rewritten in the form
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∣∣∣∣∣∣E exp

i 1√
2

n∑
j=1

sjζj
σj


∣∣∣∣∣∣ ≤ 1

(1 +
∑n
j=1 s

2
j )

1
4

(1.15)

For tj > 0 we will have∣∣∣∣∣∣
w

Rn

. . .
w
E exp

i 1√
2

n∑
j=1

sj
ζj
σj


n∏
j=1

1√
2πtj

exp

{
−
s2
j

2t2j

}
ds1 . . . dsn

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣E exp

−
n∑
j=1

ζ2
j t

2
j

2σ2
j


∣∣∣∣∣∣ .

From (1.15) and last equality we obtain∣∣∣∣∣∣E exp

−
n∑
j=1

ζ2
j t

2
j

2σ2
j


∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
w

Rn

. . .
w
E exp

i 1√
2

n∑
j=1

sj
ζj
σj


n∏
j=1

1√
2πtj

exp

{
−
s2
j

2t2j

}
ds1 . . . dsn

∣∣∣∣∣∣ 6

6
w

Rn

. . .
w
∣∣∣∣∣∣E exp

i 1√
2

n∑
j=1

sj
ζj
σj


∣∣∣∣∣∣
n∏
j=1

1√
2πtj

exp

{
−
s2
j

2t2j

}
ds1 . . . dsn 6

6
w

Rn

. . .
w n∏
j=1

(
1√
2πtj

)
exp

{
−
s2
j

2t2j

}
1

(1 +
∑n
j=1 s

2
j )

1
4

ds1 . . . dsn.

Denote sj
tj

= uj . Then

E exp

−
n∑
j=1

ζ2
j t

2
j

2σ2
j

 ≤ w

Rn

. . .
w ( 1√

2π

)n
exp

−1

2

n∑
j=1

u2
j

×
× 1

(1 +
∑n
j=1 t

2
ju

2
j )

1
4

du1 . . . dun. (1.16)

Define t2j as t2j = σ2
j

u2∑n
j=1 σ

2
j
;
∑n
j=1 t

2
j = u2, u > 0.

Since f(x) = 1
4 ln(1 + x) is convex function and f(0) = 0, then
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for αi > 0 such, that
∑n
i=1 αi = 1 and for xi > 0 we have

1

4
ln(1 +

n∑
i=1

αixi) ≥
n∑
i=1

αi(
1

4
ln(1 + xi)).

−1

4
ln(1 +

n∑
i=1

αixi) ≤
n∑
i=1

αi(−
1

4
ln(1 + xi)).

Then
1

(1 +
∑n
i=1 αixi)

1
4

≤
n∏
i=1

1

(1 + xi)
αi
4

.

Whereas
∑n
j=1

t2j
u2 = 1, then

1

(1 +
∑n
i=1 t

2
ju

2
j )

1
4

=
1

(1 +
∑n
i=1

t2j
u2u2

ju
2)

1
4

6

6
n∏
j=1

1

(1 + u2
ju

2)
t2
j

4u2

.

From the last inequality and (1.16) follows that

E exp

−
n∑
j=1

ζ2
j t

2
j

2σ2
j

 ≤
n∏
j=1

E

( 1

(1 + ξ2
ju

2)
1
4

) t2j

u2

 ,

where ξj are independent normally distributed random variables N(0, 1).

Let us use the inequality E|ξ|α ≤ (E|ξ|)α, 0 < α < 1, to obtaine

E exp

−
n∑
j=1

ζ2
j t

2
j

2σ2
j

 ≤
(
E

(
1

(1 + ξ2u2)
1
4

))∑n
j=1

t2j

u2

=
1√
2π

+∞w

−∞
exp

{
−s

2

2

}
1

(1 + s2u2)
1
4

ds = g(u).

Hence,

E exp

{
−u

2

2

∑n
j=1 ζ

2
j∑n

j=1 σ
2
j

}
6 g(u),
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where

g(u) =
1√
2π

+∞w

−∞
exp

{
−s

2

2

}
1

(1 + s2u2)
1
4

ds.

Let us consider a general case. Let B be such a symmetric matrix, that
BB = A,R = covζ. Let O be the ortogonal matrix reducing BRB to the
diagonal form OBRBOT = D = diag(d2

k)nk=1. Denote θ = OBζ. Then

θ
T
θ = ζ

T
BOTOBζ = ζ

T
Aζ,

covθ = OBcovζBOT = D. Since θi ∈ SGΞ(Ω), θ
T

= (θ1, . . . , θn), then the
inequality from lemma holds for θ. Therefore, θ

T
θ =

∑n
i=1 θ

2
i = ζ

T
Aζ and

E exp

{
−u

2

2

ζ
T
Aζ

Eζ
T
Aζ

}
≤ g(u).

Lemma is proved. ♦

Theorem 1.3. Let ζ
T

= (ζ1, . . . , ζn) be square Gaussian random vector,
ζi ∈ SGΞ(Ω), i = 1, . . . , n and let A be some symmetric positive-valued
matrix. Then for random variable η = ζ

T
Aζ, Eη 6= 0, the next inequalities

hold

P

{
η

Eη
> x

}
≥ 1− g(u) exp

{
u2x

2

}
, (1.17)

for any u > 0, and 0 < x < − 2 ln g(u)
u2 ,

where g(u) = 1√
2π

r +∞
−∞ exp

{
− s

2

2

}
1

(1+s2u2)
1
4
ds and

P

{
η

Eη
> y

}
≤ 21/4y1/4

ch(
√

y
2 −

1
2 )
, (1.18)

for y > 1
2 .

Proof. From the lemma 1.9 we have

E exp

{
− u

2η

2Eη

}
≤ g(u)

Denote θ = η
Eη . Let F (v) be distribution function of θ.

P{θ < x} =

xw

0

dF (v) =

xw

0

exp{−u
2v
2 }

exp{−u2v
2 }

dF (v) ≤
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1

exp{−u2x
2 }

E exp

{
−u

2θ

2

}
≤ g(u)

exp
{
−u2x

2

} = g(u) exp

{
u2x

2

}
.

Then P{θ > x} ≥ 1− g(u) exp
{
u2x

2

}
.

Let us return to the old notation. Then

P{ η
Eη

> x} ≥ 1− g(u) exp

{
u2x

2

}
.

The inequality (1.18) for η = ζ
T
Aζ was obtained in lemma 1.7. ♦

Corollary 1.5. Assume, that for a sequence of random variables ζm and
for a sequence of symmetric positive-valued matrices Am, m > 1, the condi-
tions of the theorem 1.3 are fulfilled. Then theorem is true also for η =

l.i.m.m−→∞ζ
T

mAmζm.

Proof. Corollary follows from the theorem 1.3 and Fatou lemma. ♦

From the inequalities (1.17), (1.18) of the theorem 1.3 follows, that for u > 0,

0 < x < − 2 ln g(u)
u2 and y > 1

2

P

{
η

Eη
∈[x, y]

}
6 g(u) exp

{
u2x

2

}
+

2
1
4 y

1
4

ch
(√

y
2 −

1
2

)
or

P

{
η

Eη
∈ [x, y]

}
> 1− g(u) exp

{
u2x

2

}
− 2

1
4 y

1
4

ch
(√

y
2 −

1
2

) .
Let us evaluate g(u) :

g(u) =
1√
2π

+∞w

−∞
exp

{
−s

2

2

}
1

(1 + s2u2)
1
4

ds 6

6
1√
u

1√
2π

+∞w

−∞
exp

{
−s

2

2

}
1√
|s|
ds 6

J√
u
, u > 0,

where

J =
1√
2π

+∞w

−∞
exp

{
−s

2

2

}
1√
|s|
ds <∞.
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1.6. An estimate for norm in Lp(T) of the square
Gaussian stochastic process

In the following theorem we obtain the estimate for the norm of square
Gaussian stochastic processes in the space Lp(T). This result we shall use for
construction a criterion for testing hypotheses about the covariance function
of Gaussian stochastic process.
Theorem 1.4. Let {T,A, µ}be a measurable space, where T is a parametric
set and let Y = {Y (t), t ∈ T} be a square Gaussian stochastic process.
Suppose that Y is a measurable process. Further, let the Lebesgue integralr

T
(EY 2(t))

p
2 dµ(t) be well defined for p > 1. Then the integral

r

T
(Y (t))pdµ(t)

exists with probability 1 and

P

{
w

T

| Y (t) |p dµ(t) > ε

}
6 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 (1.19)

for all ε >
(
p√
2

+
√

(p2 + 1)p
)p
Cp, where Cp =

r

T
(EY 2(t))

p
2 dµ(t).

Proof. Since max
x>0

xαe−x = ααe−α then xαe−x 6 ααe−α.

If ζ is a random variable from the space SGΞ(Ω) and x = s√
2
· |ζ|√

Eζ2
,

where s > 0 then

E

(
s√
2

| ζ |√
Eζ2

)α
6 ααe−α ·E exp

{
s√
2

| ζ |√
Eζ2

}
and

E | ζ |α6

(√
2Eζ2

s

)α
ααe−αE exp

{
s√
2

| ζ |√
Eζ2

}
.

From the inequality (1.4) for 0 < s < 1 we get that

E | ζ |α 6

(√
2Eζ2

s

)α
ααe−α

(
E exp

{
s√
2

ζ√
Eζ2

}
+ E exp

{
− s√

2

ζ√
Eζ2

})

6
2√

1− s

(√
2Eζ2

s

)α
ααe−α exp

{
− s√

2

}
=

= 2L0(s)

(√
2Eζ2

s

)α
ααe−α, (1.20)
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where L0(s) = 1√
1−s

(√
2Eζ2

s

)α
exp

{
− s√

2

}
.

Let Y (t), t ∈ T be a measurable square Gaussian stochastic process.
Using the Chebyshev inequality we derive that for all l > 1

P

{
w

T

| Y (t) |p dµ(t) > ε

}
6

E

(
r

T
| Y (t) |p dµ(t)

)l
εl

.

Then from the generalized Minkowski inequality together with the inequali-
ty (1.20) for l > 1 we obtain that

E

(
w

T

| Y (t) |p dµ(t)

)l 1
l

6
w

T

(
E | Y (t) |pl

) 1
l dµ(t)

6
w

T

(2L0(s)(2EY 2(t))
pl
2 (pl)pls−pl exp{−pl}) 1

l dµ(t)

= (2L0(s))
1
l

w

T

(2EY 2(t))
p
2 s−p(pl)p exp{−p}dµ(t)

= (2L0(s))
1
l 2

p
2 s−p(pl)p exp{−p}

w

T

(EY 2(t))
p
2 dµ(t).

Assuming that Cp =
r

T
(EY 2(t))

p
2 dµ(t) we deduce that

E

(
w

T

| Y (t) |p dµ(t)

)l
6 2L0(s)2

pl
2 (lp)pl exp{−pl}Clps−pl.

Hence,

P

{
w

T

| Y (t) |p dµ(t) > ε

}
6 2 · (2

p
2 )lL0(s)(pp)l(exp{−p})lClp(s−p)l ·

(lp)l

εl

= 2L0(s)al(lp)l,

where a =
2
p
2 ppCp
epspε . That is a

1
p =

2
1
2 pC

1
p
p

esε
1
p

. Let us find the minimum of the

function ψ(l) = al(lp)l regarding l. One can easily check that l∗ = 1

ea
1
p
is a

point in which this function reaches its minimum.
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Then

2L0(s)ψ(l∗) = 2L0(s)a
1

ea
1
p ·
(

1

ea
1
p

)p· 1

ea
1
p

= 2L0(s)a
1

ea
1
p · a

− 1

ea
1
p · e

− p

ea
1
p

= 2L0(s) exp

− pesε
1
p

2
1
2 peC

1
p
p

 = 2L0(s) exp

− sε
1
p

2
1
2C

1
p
p


=

2√
1− s

exp

−s
1

2
+

ε1/p

2
1
2C

1
p
p

 .

In turn, minimizing θ(s) = 2√
1−s exp

{
−s

(
1
2 + ε1/p

2
1
2C

1
p
p

)}
in s, we deduce

s∗ = 1− 1

1+
√

2ε1/p

C
1/p
p

. Thus

θ(s∗) = 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 .

From the fact that l∗ > 1 it follows that inequality (1.19) holds if 1

ea
1
p

=

sε1/p√
2pC

1/p
p

> 1. Substituting in this expression the value of s∗ we obtain the

following inequality ε2/p > pC
1/p
p (C

1/p
p +

√
2ε1/p). Solving this inequali-

ty with respect to ε and taking into account that ε > 0 we deduce that
inequality (1.19) holds when ε >

(
p√
2

+
√

(p2 + 1)p
)p
Cp. The theorem is

proved. ♦

29



Chapter 2
The construction of the model of Gaussian
stochastic processes with a certain accuracy
and reliability.

Stochastic processes are widely used in various fields of science. Wi-
th the help of stochastic processes can be described many phenomena in
the environment. In order to effectively study of all necessary qualitative
and quantitative properties and characteristics of the process in the theory
of stochastic processes was decided to construct their models. During the
twentieth century a number of simulation methods have been developed,
among them the method of minimal transformation, canonical representati-
ons, autoregression, and others like that. However, in 1978 Mikhailov in [96]
proposed a somewhat new approach to the construction of models. This
method took the name of the method of partition and randomization of
the spectrum. In the paper [131], this method was modified and applied for
the construction of models of Gaussian nonstationary stochastic processes
and fields. The advantage of this method is that the constructed models are
sub-Gaussian. In addition, with this method, the covariance functions of the
models and the covariance functions of the processes are almost identical.

The first part of this chapter contains the construction of model of the
Gaussian stochastic process. In addition to constructing models of Gaussian
stochastic processes, in this chapter we also investigated the accuracy and
reliability of these models in the different functional spaces. The accuracy
and reliability of the constructed models are mainly investigated in the
papers by Kozachenko and his students. The results presented in this chapter
were published in the papers [131] and [85].

2.1. Constructing a model of Gaussian stochastic
process

Let {Ω,B,P} be a standart, fixed probability space, T be a parametric
set. Let ξ = {ξ(t), t ∈ T} be a zero-mean real-valued Gaussian stochastic
process. The covariance function of the process is defined as

R(t, s) =

∞w

0

g(t, λ)g(s, λ)dF (λ),

where F (λ) is a distribution function. According to the Karhunen theorem
[40], the process ξ can be represented as follows
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ξ(t) =

∞w

0

g(t, λ)dη(λ), (2.1)

where η(λ) is a Gaussian process with independent increments, such that
E(η(b)− η(c))2 = F (b)− F (c), b > c, and Eη(λ) = 0.

Let L > 0 be a given real number. We consider such partition Λ =
{λ0, ..., λN} of the set [0,∞] that λ0 = 0, λk < λk+1, λN−1 = L, λN = +∞.
For this partition we can write

ξ(t) =

N−1∑
k=0

λk+1w

λk

g(t, λ)dη(λ)

As a model for the process ξ we consider

ξΛ(t) =

N−1∑
k=0

ηkg(t, ζk), (2.2)

where ηk and ζk are independent random variables, ηk are such Gaussian
random variables that Eηk = 0, Eη2

k = F (λk+1) − F (λk) = b2k; ζk, k =
0, ..., N − 2 are random variables taking values on the segments [λk;λk+1],
ζN−1 = L and if b2k > 0, then

Fk(λ) = P{ζk < λ} =
F (λ)− F (λk)

F (λk+1)− F (λk)
.

If b2k = 0, then ζk = 0 with probability one. For the sake of simplicity we
assume that b2k > 0, k = 0, 1, ..., N .

This model is a zero-mean process

EξΛ(t) = E
N−1∑
k=0

ηkg(t, ζk) =

N−1∑
k=0

EηkEg(t, ζk) = 0.

Covariance function of the process ξΛ(t) is almost the same as covariance
function of the process ξ(t), namely at a certain choice of Λ, covariance
function of the process ξΛ(t) can be made arbitrarily close to the covariance
function of ξ(t).

Putting ηk =
λk+1r

λk

dη(λ) we consider the following difference
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ηΛ(t) = ξ(t)− ξΛ(t) =

N−1∑
k=0

λk+1w

λk

g(t, λ)dη(λ)−
N−1∑
k=0

λk+1w

λk

g(t, ζk)dη(λ) =

=

N−1∑
k=0

λk+1w

λk

(g(t, λ)− g(t, ζk)) dη(λ) (2.3)

Let the following condition hold for the function g(t, λ)

| g(t, λ)− g(t, u) |6 S(| u− λ |) · Z(t), (2.4)

where Z(t), t ∈ T is some continuous function and S(λ), λ ∈ R monotone
increases, such that S(λ)→ 0 as λ→ 0.
Lemma 2.1. Let condition (2.4) holds for a function g(t, λ). Then we have

E

λk+1w

λk

(g(t, λ)− g(t, ζk)) dη(λ)

2m+1

= 0,

E

λk+1w

λk

(g(t, λ)− g(t, ζk)) dη(λ)

2m

6

6
(2m)!

2m ·m!
Z2m(t)E

λk+1w

λk

S2(|λ− ζk|)dF (λ)

m

Proof. Since for a zero-mean Gaussian random variable ξ it is

Eξ = 0,Eξ2m+1 = 0,Eξ2k =
(2k)!

2k · k!
σ2k

and the random variables ζk are independent of η(λ), then by the Fubini’s
theorem (Eζk is a conditional expectation with respect to ζk ):

E

λk+1w

λk

(g(t, λ)− g(t, ζk)) dη(λ)

2m

=

= EEζk

λk+1w

λk

(g(t, λ)− g(t, ζk)) dη(λ)

2m

=
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=
(2m)!

2m ·m!
E

λk+1w

λk

|g(t, λ)− g(t, ζk)|2dF (λ)

m

6

6
(2m)!

2m ·m!
E

λk+1w

λk

S2(|λ− ζk|)Z2(t)dF (λ)

m

=

=
(2m)!

2m ·m!
Z2m(t)E

λk+1w

λk

S2(|λ− ζk|)dF (λ)

m

,

which finishes the proof. ♦

Theorem 2.1. The stochastic process ξ(t)− ξΛ(t) is sub-Gaussian and the
following inequality holds

τ(ξ(t)− ξΛ(t)) 6

6 Z(t)

[
N−2∑
k=0

b2k sup
m>1

(
ES2m(|ζk − ζ∗k |)

) 1
m +

∞w

L

S2(|λ− L|)dF (λ)

] 1
2

,

where b2k = F (λk+1) − F (λk) and ζ∗k are random variables independent of
ζk but with the same distribution as ζk.

Proof. Using the Lemma 2.1 for k 6 N − 2 we obtain

τ2

λk+1w

λk

(g(t, λ)− g(t, ζk))dη(λ)

 6 θ2

λk+1w

λk

(g(t, λ)− g(t, ζk))dη(λ)

 6

6 sup
m>1

b2kZ
2(t)

E

λk+1w

λk

S2(|λ− ζk|)dFk(λ)

m
1
m

=

= sup
m>1

b2kZ
2(t)

λk+1w

λk

λk+1w

λk

S2(|λ− u|)dFk(λ)

m

dFk(u)


1
m

.
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In the case when k = N − 1 we have

τ2

(∞w
L

(g(t, λ)− g(t, L))dη(λ)

)
6 θ2

(∞w
L

(g(t, λ)− g(t, L))dη(λ)

)
6

6 sup
m>1

2mm!

(2m)!
E

(∞w
L

(g(t, λ)− g(t, L))dη(λ)

)2m
 1
m

6

6 sup
m>1

[(∞w
L

|g(t, λ)− g(t, L)|2dF (λ)

)m] 1
m

6 Z2(t)

∞w

L

S2(|λ−L|)dF (λ).

Lemma 1.3 implies that
λk+1r

λk

(g(t, λ) − g(t, ζk))dη(λ) are sub-Gaussian

random variables.
Since the terms in the sum (2.3) for different k are independent, so from

the last equality we have

τ2(ξ(t)− ξΛ(t)) 6

6 Z2(t)

N−2∑
k=0

b2k sup
m>1

λk+1w

λk

λk+1w

λk

S2(|λ− u|)dFk(λ)

m

dFk(u)


1
m

+

+Z2(t)

∞w

L

S2(|λ− L|)dF (λ).

Then, from the Fubini’s theorem and the Lyapunov inequality we obtain

τ(ξ(t)− ξΛ(t)) 6

6 Z(t)

N−2∑
k=0

sup
m>1

b2k

λk+1w

λk

λk+1w

λk

S2(|λ− u|)dFk(λ)

m

dFk(u)


1
m

+

+

∞w

L

S2(|λ− L|)dF (λ)

] 1
2

=

= Z(t)

[
N−2∑
k=0

sup
m>1

b2k

(
Eζ∗k

(
EζkS

2(|ζk − ζ∗k |)
)m) 1

m

+
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+

∞w

L

S2(|λ− L|)dF (λ)

] 1
2

6

6 Z(t)

[
N−2∑
k=0

sup
m>1

b2k
(
Eζ∗kEζkS

2m(|ζk − ζ∗k |)
) 1
m +

∞w

L

S2(|λ− L|)dF (λ)

] 1
2

6

6 Z(t)

[
N−2∑
k=0

b2k sup
m>1

(
ES2m(|ζk − ζ∗k |)

) 1
m +

∞w

L

S2(|λ− L|)dF (λ)

] 1
2

,

which is the desired statement. ♦

Corollary 2.1. If for all λ, u ∈ R+ there exists an absolute constant C > 0

so, that

sup
t∈T
|g(t, λ)− g(t, u)| 6 C,

then we have
τ(ξ(t)− ξΛ(t)) 6

6 Z(t)

[
N−2∑
k=0

b2k sup
m>1

(
ES2m(|ζk − ζ∗k |)

) 1
m + C2(F (+∞)− F (L))

] 1
2

,

where b2k and ζ∗k remain the same as in the previous Theorem 2.1.

Example 2.1. Let covariance function of stochastic process ξ have the
following form

R(t, s) =

∞w

0

cos tλ cos sλdF (λ).

i.e. g(t, λ) = cos(tλ). Then ξ(t) =
∞r

0

cos tλdη(λ) is a zero-mean real-valued

Gaussian stochastic process, where η(λ) is a Gaussian process with independent
increments, E(η(b)− η(c))2 = F (b)− F (c), b > c. Eη(λ) = 0.
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Consider the following straightforward estimate:

|cos tλ− cos tu|2 =

∣∣∣∣2 sin
t(λ− u)

2
sin

t(λ+ u)

2

∣∣∣∣2 6

6

∣∣∣∣2 sin
t(u− λ)

2

∣∣∣∣2 6 22(1−α)t2α|u− λ|2α,

where 0 < α 6 1.
By virtue of Theorem 2.1 and Corollary 2.1 and taking into account

that the functions Z(t) = 2(1−α)tα, S(λ) = λα, while C = 2 we obtain the
following inequality

τ2(ξ(t)− ξΛ(t)) 6 22(1−α)t2α
N−2∑
k=0

b2k | λk+1 − λk |2α +4(F (+∞)− F (L)).

Example 2.2. Consider the covariance function of stochastic process ξ
which have the following form

R(t, s) =

∞w

0

Jl(tλ)Jl(sλ)dF (λ),

i.e. g(t, λ) = Jl(tλ), where Jl(tλ) = 1
π

πr

0

cos(lϕ − tλ sinϕ)dϕ is the integral

representation of the Bessel functions of the first kind.

Then ξ(t) =
∞r

0

Jl(tλ)dη(λ) is a zero-mean real-valued Gaussian stochastic

process, where η(λ) is a Gaussian process with independent increments,
E(η(b)− η(c))2 = F (b)− F (c), b > c. Eη(λ) = 0.

Let us find the estimate for the squared difference

∆J(λ, u) = |Jl(tλ)− Jl(tu)|2 .

By direct calculations we get

∆J(λ, u) =
1

π2

∣∣∣∣∣
πw

0

2 sin

(
2lϕ− t(λ+ u) sinϕ

2

)
sin

(
t(u− λ) sinϕ

2

)
dϕ

∣∣∣∣∣
2

6

6
1

π2

πw

0

∣∣∣∣2 sin
t(u− λ) sinϕ

2

∣∣∣∣2 dϕ 6
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6
1

π2

πw

0

t2|u− λ|2 sin2 ϕdϕ =
t2

π
|u− λ|2.

Applying Theorem 2.1 and Corollary 2.1 and having in mind that Z(t) =
t√
π
, S(λ) = λ and C = 1, we arrive at the following inequality

τ2(ξ(t)− ξΛ(t)) 6
1

π
t2
N−2∑
k=0

b2k|λk+1 − λk|2 + (F (+∞)− F (L)).

2.2. Accuracy and reliability the model for Gaussian
stochastic process in space Lp(T), p > 1

Definition 2.1. [72] A stochastic process ξΛ(t) approximates the process
ξ(t) with reliability (1 − δ), 0 < δ < 1 and accuracy ε > 0 in Lp(T), if the
partition Λ is such that the following inequality holds

P


(
Tw

0

| ξ(t)− ξΛ(t) |p dt

) 1
p

> ε

 6 δ.

Theorem 2.2. [53] Suppose that ξ = {ξ(t), t ∈ T} is a sub-Gaussian
stochastic process, Eξ(t) = 0, τ2(t) = τ2(ξ(t)) = E(ξ(t))2. Suppose there
exists an integral

r

T

(
E(ξ(t))2

) p
2 dt <∞, p > 1. Then the integral

r

T
| ξ(t) |p

dt < ∞, exists with probability 1 and for all ε such that ε > c
1
p
p p

1
2 , where

cp =
r

T

(
E(ξ(t))2

) p
2 dt the inequality holds true

P
{
‖ ξ(t) ‖Lp> ε

}
6 2 exp

− ε2

2c
2
p
p

 .

Theorem 2.3. Suppose that the partition Λ in the model ξΛ(t) is such that
w

T

(τ(ξ(t)− ξΛ(t)))
p
dt 6

εp

max
(
p
p
2 ,
(
2 ln 2

δ

) p
2

) .
Then this model approximates the Gaussian process ξ(t) with accuracy ε > 0

and reliability 1− δ, 0 < δ < 1 in the space Lp(T), p > 1.
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Proof. If ε >
(

r

T
(τ(ξ(t)− ξΛ(t)))

p
dt

) 1
p

·p 1
2 , then according to the Theorem

2.2 and Definition 2.1 we have

P
{
‖ ξ(t)− ξΛ(t) ‖Lp> ε

}
6 2 exp

− ε2

2c
2
p
p

 6 δ,

where cp =
r

T
(τ(ξ(t)− ξΛ(t)))

p
dt.

And then the last inequality is true if the following condition holds
w

T

(τ(ξ(t)− ξΛ(t)))
p
dt 6

εp(
2 ln 2

δ

) p
2

,

which finishes the proof. ♦

Example 2.3. Let F (λ) in Example 2.1 be such that F (+∞) = 1, F (L) =

1− 1
1+Lα , 0 6 α 6 1, T = [0, T ].
With the aid of the Corollary 2.1 we get

τ2(ξ(t)− ξΛ(t)) 6 22(1−α)t2α
N−2∑
k=0

b2k|λk+1 − λk|2α + 4(F (+∞)− F (L)).

Letting |λk+1 − λk| = L
N−1 we conclude

τ2(ξ(t)− ξΛ(t)) 6 22(1−α)t2αF (L)

(
L

N − 1

)2α

+ 4(F (+∞)− F (L)) 6

6 4

(
tL

2(N − 1)

)2α

+
4

1 + Lα
,

hence

τ(ξ(t)− ξΛ(t)) 6 2

[(
tL

2(N − 1)

)2α

+
1

1 + Lα

] 1
2

.

Next, minimize y1(L) = 2

[(
tL

2(N−1)

)2α

+ 1
1+Lα

] 1
2

with respect to L; it
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follows that argument minimum is y1(L0),

L0 =
1

2
1
3α

(
2(N − 1)

t

) 2
3

.
Then

τ(ξ(t)− ξΛ(t)) 6 2

[(
t

2(N − 1)

)2α
1
3
√

4

(
2(N − 1)

t

) 4α
3

+

+
3
√

2

(
t

2(N − 1)

) 2α
3

] 1
2

=
2
√

3
3
√

2

(
t

2(N − 1)

)α
3

.

Hence

Tw

0

(τ(ξ(t)− ξΛ(t)))pdt 6

(
2
√

3
3
√

2

)p(
1

2(N − 1)

)αp
3

Tw

0

t
αp
3 dt =

=

(
2
√

3
3
√

2

)p(
1

2(N − 1)

)αp
3 T

αp
3 +1

αp
3 + 1

.

Hence, by Theorem 2.3, the inequality
w

T

(τ(ξ(t)− ξΛ(t)))
p
dt 6

εp

max
(
p
p
2 ,
(
2 ln 2

δ

) p
2

)
follows, when N satisfies

N >
1

2

T αp
3 +1(2

√
3)p ·max

(
p
p
2 ,
(
ln 2

δ

) p
2

)
3
√

2p
(
αp
3 + 1

)
εp


3
αp

+ 1. (2.5)

Thus the model ξΛ(t) approximate process ξ(t) with reliability 1−δ, 0 <
δ < 1 and accuracy ε > 0 in the space Lp(T), if the relationship (2.5) holds.

Example 2.4. Let ξΛ(t) =
N−1∑
k=0

ηk cos(tζk) is the model from the Example

2.1 and let the partition Λ is such that |λk+1−λk| = L
N−1 , when 0 6 α 6 1
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we have

τ2(ξ(t)− ξΛ(t)) 6 22(1−α)t2αF (L)

(
L

N − 1

)2α

+ 4(F (+∞)− F (L)).

Namely

Tw

0

(τ(ξ(t)− ξΛ(t)))pdt 6

6
Tw

0

(
22(1−α)t2αF (L)

(
L

N − 1

)2α

+ 4(F (+∞)− F (L))

) p
2

dt 6

6
Tw

0

(
2p(1−α)Dp(F (L))

p
2

(
L

N − 1

)pα
tpα + 4

p
2Dp(F (+∞)− F (L))

p
2

)
dt =

= 2p(1−α)Dp(F (L))
p
2

(
L

N − 1

)pα
T pα+1

pα+ 1
+ 4

p
2DpT (F (+∞)− F (L))

p
2 ,

where Dp =

{
1, as 0 < p

2 6 1,
2
p
2−1, as p

2 > 1
.

The inequality from Theorem 2.3 holds, when N satisfies

N >
2

1−α
α D

1
pα
p L · T 1+ 1

pα (F (L))
1
2α

(1 + pα)
1
pα

 εp

max

(
p
p
2 ,(2 ln 2

δ )
p
2

) − 4
p
2DpT (F (+∞)− F (L)

p
2

 1
pα

.

Let in the Gaussian stochastic process ξ(t) =
∞r

0

cos tλdη(λ) functionF (λ)

defined as follows F (λ) = 1− 1
1+λ3 , then using for the N previous inequality

when p = 4, α = 1, T = 1, δ = 0, 01 and ε = 0, 06 we get

N >
√

2L

((
1− 1

1+L3

)
ln 200

) 1
2

(
0, 0000324− 320

(
ln 200
1+L3

)2
) 1

4

.

Using the software package Mathematica, we find that the minimum of
this function with respect to L equal to N(29, 746) = 1458, 486, it is easy
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to see in the next graph.

Figure 2.1. Graph of N(L) =
√
2L

((
1− 1

1+L3

)
ln 200

) 1
2(

0,0000324−320
(

ln 200
1+L3

)2) 1
4
.

Namely, selecting the minimal partition N = 1459, we can construct
a model ξΛ(t) that approximate the process ξ(t) with reliability 0, 99 and
accuracy 0, 06 in the space L4([0, 1]).

Figure 2.2. Implementation of Gaussian stochastic process, F (λ) = 1− 1
1+λ3 .

If for this Gaussian stochastic process we choose F (λ) = 1 − 1
1+λ5 , and

p = 2, α = 1, T = 1, δ = 0, 01, ε = 0, 06, than the inequality for N will
have the following form

N >

√
2

3
L


(

1− 1
1+L5

)
ln 200

0, 0036− 8 ln 200
1+L5


1
2

In this case, minimizing the previous function with respect to L, using
the software package Mathematica, we deduce that N(8, 3751) = 310, 405.

Therefore, selecting the minimal partition N = 311, we can construct
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Figure 2.3. Graph of N(L) =
√

2
3
L

((
1− 1

1+L5

)
ln 200

0,0036− 8 ln 200
1+L5

) 1
2

.

a model ξΛ(t) that approximate the process ξ(t) with reliability 0, 99 and
accuracy 0, 06 in the space L2([0, 1]).

Figure 2.4. Implementation of Gaussian stochastic process, F (λ) = 1− 1
1+λ5 .

2.3. Accuracy and reliability of a model of Gaussian
stochastic process in C(T)

Let T = [0, T ] be a parametric set. Let ξ = {ξ(t), t ∈ T} be a zero-
mean real-valued Gaussian stochastic process. Let the image of the process
represented by (2.1), and the model ξΛ(t) defined in (2.2).

We assume that ηΛ(t) = ξ(t)− ξΛ(t) represented similarly as in (2.3).
For any t, s ∈ T we consider the following difference

ηΛ(t)− ηΛ(s) =

N−1∑
k=0

λk+1w

λk

(g(t, λ)− g(t, ζk)− g(s, λ) + g(s, ζk)) dη(λ).

(2.6)
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Assume that for g(t, λ) the following conditions hold

| g(t, λ)− g(t, u) |6 S(| λ− u |) · Z(t), (2.7)

| g(t, λ)− g(t, u)− g(s, λ) + g(s, u) |6 S1(| λ− u |)· | Z1(t)−Z1(s) |, (2.8)
where Z(t) and Z1(t) are some continuous functions, S(λ), λ ∈ R is a
monotonically increasing function, such that S(λ)→ 0 when λ→ 0.
Example 2.5. Let g(t, λ) be continuous, twice differentiable function on t
and on λ and let C(t) = sup

y∈[0,Λ]

∣∣∣∂g(t,y)
∂y

∣∣∣ <∞.

Consider the following difference

|g(t, λ)− g(t, u)| =

∣∣∣∣∣
λw

u

∂g(t, y)

∂y
dy

∣∣∣∣∣ 6
λw

u

∣∣∣∣∂g(t, y)

∂y

∣∣∣∣ dy 6 |λ− u| · C(t).

Therefore, if we choose Z(t) = C(t), then the function g(t, λ) will satisfy
the condition (2.7).

We will show that if there is such C1(T, L), which depends only from T

and L, and such that ∣∣∣∣∂2g(t, λ)

∂t∂λ

∣∣∣∣ 6 C1(T, L), (2.9)

then the function g(t, λ) satisfy the condition (2.8). Consider ∆ = {s 6 l 6
t, u 6 y 6 λ}, where s, t ∈ [0, T ], λ, u ∈ [0, L]. For definiteness we assume
that t > s, u > λ. Then from the properties of multiple integrals and (2.9)
the following condition holds

|g(t, λ)− g(t, u)− g(s, λ) + g(s, u)| =

=

∣∣∣∣∣w
∆

w ∂2g(l, y)

∂l∂y
dldy

∣∣∣∣∣ 6 C1(T, L)|t− s||u− λ|.

Example 2.6. If g(t, λ) = e−(t+v)2 , 0 < t 6 T , 0 < v 6 L, then one
can easy to show (similarly as in the Example 2.5), that in this case the
condition (2.7) holds.
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We will prove the validity of condition (2.8)

|g(t, λ)− g(t, u)− g(s, λ) + g(s, u)| =

∣∣∣∣∣
λw

u

∂g(t, v)

∂v
dv −

λw

u

∂g(s, v)

∂v
dv

∣∣∣∣∣ 6
6

λw

u

∣∣∣∣∂g(t, v)

∂v
− ∂g(s, v)

∂v

∣∣∣∣ dv.
We will estimate the integrand expression∣∣∣∣∂g(t, v)

∂v
− ∂g(s, v)

∂v

∣∣∣∣ = 2
∣∣∣e−(t+v)2(t+ v)− e−(s+v)2(s+ v)

∣∣∣ =

= 2
∣∣∣(e−(t+v)2(t+ v)− e−(s+v)2(t+ v)

)
+

+
(
e−(s+v)2(t+ v)− e−(s+v)2(s+ v)

)∣∣∣ =

= 2
∣∣∣(t+ v)

(
e−(t+v)2 − e−(s+v)2

)
+ e−(s+v)2(t− s)

∣∣∣ 6
6 2

(
(t+ v)e−(t+v)2

∣∣∣1− e−((s+v)2−(t+v)2)
∣∣∣+ e−(s+v)2 |t− s|

)
6

6 2
(

(t+ v)e−(t+v)2
∣∣(s+ v)2 − (t+ v)2

∣∣+ e−(s+v)2 |t− s|
)
6

6 2 ((t+ v)|t− s|(s+ t+ 2v) + |t− s|) 6 2|t− s|
(
2(T + L)2 + 1

)
.

Hence,

| g(t, λ)− g(t, u)− g(s, λ) + g(s, u) |6 C1(T, L)|λ− u| · |t− s|,

where C1(T, L) = 2
(
2(T + L)2 + 1

)
.

In the following Lemma, we will be find estimates of moments, which
will be used later to assess the accuracy of the simulation.
Lemma 2.2. If for the function g(t, λ) the condition (2.8) holds, then for
m = 0, 1, ... the following relationships hold

E

λk+1w

λk

(g(t, λ)− g(t, ζk)− g(s, λ) + g(s, ζk)) dη(λ)

2m+1

= 0,

44



E

λk+1w

λk

(g(t, λ)− g(t, ζk)− g(s, λ) + g(s, ζk)) dη(λ)

2m

6

6
(2m)!

2m ·m!
E

λk+1w

λk

S2
1(| λ− ζk |) | Z1(t)− Z1(s) |2 dF (λ)

m

.

Proof. Since for a zero-mean Gaussian random variable ξ Eξ = 0,Eξ2k+1 =

0,Eξ2k = (2k)!
2k·k!

σ2k and the random variables ζk are independent of η(λ),
then by the Fubini’s theorem and taking into account the condition (2.8)
we obtoine (Eζk is a conditional expectation with respect to ζk):

E

λk+1w

λk

(g(t, λ)− g(t, ζk)− g(s, λ) + g(s, ζk)) dη(λ)

2m

6

6
(2m)!

2m ·m!
E

λk+1w

λk

(g(t, λ)− g(t, ζk)− g(s, λ) + g(s, ζk))
2
dF (λ)

m

6

6
(2m)!

2m ·m!
E

λk+1w

λk

S2
1(| λ− ζk |) | Z1(t)− Z1(s) |2 dF (λ)

m

. ♦

We obtain the estimates for supremum of norm of the stochastic process.
These estimates we will be used for research of the conditions of selecti-
ng partition L such that the constructed model will be approximated the
Gaussian process with a given accuracy and reliability.

Denote σ0 = sup
06t6T

τ(ηΛ(t)) and σ(h) = sup
|t−s|6h

τ (ηΛ(t)− ηΛ(s)).

Theorem 2.4. Let ηΛ(t) be defined as in (2.3) and let

∞w

L

S2(| λ− L |)dF (λ) <∞.

Then stochastic process ηΛ(t) is sub-Gaussian and the following inequality
holds

σ0 6

(
N−2∑
k=0

S2(| λk+1 − λk |) (F (λk+1)− F (λk)) +
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+

∞w

L

S2(| λ− L |)dF (λ)

) 1
2

· sup
06t6T

|Z(t)|.

Proof. From Lemma 2.1 it follows that the conditions of Lemma 1.3 hold for
λk+1r

λk

(g(t, λ)−g(t, ζk))dη(λ), that’s why
λk+1r

λk

(g(t, λ)−g(t, ζk))dη(λ) ∈ Sub(Ω)

for all k = 0, 2, ..., N − 1 and the following inequality takes place

τ

λk+1w

λk

(g(t, λ)− g(t, ζk))dη(λ)

 6 θ

λk+1w

λk

(g(t, λ)− g(t, ζk))dη(λ)

 =

= sup
m>1

2m ·m!

(2m)!
E

λk+1w

λk

(g(t, λ)− g(t, ζk))dη(λ)

2m


1
2m

.

Using the Lemma 2.1 we obtain the following inequality

E

λk+1w

λk

(g(t, λ)− g(t, ζk))dη(λ)

2m

6

6
(2m)!

2m ·m!
|Z(t)|2mE

λk+1w

λk

S2(| λ− ζk |)dF (λ)

m

6

6
(2m)!

2m ·m!
b2mk |Z(t)|2m

λk+1w

λk

λk+1w

λk

S2(| λ− u |)dFk(λ)

m

dFk(u) 6

6
(2m)!

2m ·m!
|Z(t)|2mS2m(| λk+1 − λk |) (F (λk+1)− F (λk))

m
.

Then

τ

λk+1w

λk

(g(t, λ)− g(t, ζk))dη(λ)

 6

6 sup
m>1

[
|Z(t)|2mS2m(| λk+1 − λk |) (F (λk+1)− F (λk))

m] 1
2m =

= |Z(t)|S(| λk+1 − λk |) (F (λk+1)− F (λk))
1
2 .
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Since
λk+1r

λk

(g(t, λ) − g(t, ζk))dη(λ), k = 1, 2, ..., N − 1 are independent,

then by Lemma 1.2 we obtained

τ2

N−1∑
k=0

λk+1w

λk

(g(t, λ)− g(t, ζk))dη(λ)

 6
N−1∑
k=0

τ2

λk+1w

λk

(g(t, λ)− g(t, ζk))dη(λ)

 .

Hence,

τ2(ηΛ(t)) 6
N−2∑
k=0

|Z(t)|2S2(| λk+1 − λk |) (F (λk+1)− F (λk)) +

+

∞w

L

|Z(t)|2S2(| λ− L |)dF (λ).

Namely

τ(ηΛ(t)) 6 |Z(t)|

(
N−2∑
k=0

S2(| λk+1 − λk |) (F (λk+1)− F (λk)) +

+

∞w

L

S2(| λ− L |)dF (λ)

) 1
2

.

Therefore

σ0 6

(
N−2∑
k=0

S2(| λk+1 − λk |) (F (λk+1)− F (λk)) +

+

∞w

L

S2(| λ− L |)dF (λ)

) 1
2

sup
06t6T

|Z(t)|. ♦

Corollary 2.2. Let the conditions of Theorem 2.4 hold and let the split
Λ = {λ0, ..., λN} of the set [0,∞) be such that λ0 = 0, λk < λk+1, λN−1 =

L, λN =∞, λk+1 − λk = L
N−1 , then

σ0 6

(
S2

(
L

N − 1

)
F (L) +

∞w

L

S2(| λ− L |)dF (λ)

) 1
2

· sup
06t6T

|Z(t)|.
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Theorem 2.5. Let ηΛ(t) be a stochastic process defined as in (2.3) and let

∞w

L

S2
1(| λ− L |)dF (λ) <∞.

Then the following inequality holds

σ(h) 6

(
N−2∑
k=0

S2
1(| λk+1 − λk |)(F (λk+1)− F (λk))+

+

∞w

L

S2
1(| λ− L |)dF (λ)

) 1
2

· sup
|t−s|6h

| Z1(t)− Z1(s) | .

Proof. From Lemma 2.2 it follows that the conditions of Lemma 1.3 hold

for
λk+1r

λk

(g(t, λ)− g(t, ζk)− g(s, λ) + g(s, ζk))dη(λ), that’s why

λk+1w

λk

(g(t, λ)− g(t, ζk)− g(s, λ) + g(s, ζk))dη(λ) ∈ Sub(Ω).

Since
λk+1r

λk

(g(t, λ)− g(t, ζk)− g(s, λ) + g(s, ζk))dη(λ), k = 0, 2, ..., N − 1 are

independent, then by Lemma 1.2 and condition (2.6) we obtain

τ2(ηΛ(t)− ηΛ(s)) 6

6
N−1∑
k=0

τ2

λk+1w

λk

(g(t, λ)− g(t, ζk)− g(s, λ) + g(s, ζk))dη(λ)

 6

6
N−1∑
k=0

θ2

λk+1w

λk

(g(t, λ)− g(t, ζk)− g(s, λ) + g(s, ζk))dη(λ)

 .

Hence, from Lemma 2.2

E

λk+1w

λk

(g(t, λ)− g(t, ζk)− g(s, λ) + g(s, ζk))dη(λ)

2m

6
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6
(2m)!

2m ·m!
E

λk+1w

λk

S2
1(|λ− ζk|)|Z1(t)− Z1(s)|2dF (λ)

m

6

6
(2m)!

2m ·m!
b2mk (Z1(t)− Z1(s))2m

λk+1w

λk

λk+1w

λk

S2
1(|λ− u|)dFk(λ)

m

dFk(u) 6

6
(2m)!

2m ·m!
|Z1(t)− Z1(s)|2m · S2m

1 (|λk+1 − λk|)(F (λk+1)− F (λk))m.

Then

τ2

λk+1w

λk

(g(t, λ)− g(t, ζk)− g(s, λ) + g(s, ζk))dη(λ)

 6

6 sup
m>1

[
|Z1(t)− Z1(s)|2mS2m

1 (|λk+1 − λk|)(F (λk+1)− F (λk))m
] 1
m =

= |Z1(t)− Z1(s)|2S2
1(|λk+1 − λk|)(F (λk+1)− F (λk)).

Hence,

τ2 (ηΛ(t)− ηΛ(s)) 6

6 |Z1(t)− Z1(s)|2
(
N−2∑
k=0

S2
1(|λk+1 − λk|)(F (λk+1)− F (λk))+

+

∞w

L

S2
1(|λ− L|)dF (λ)

)
.

Namely,

σ(h) 6

(
N−2∑
k=0

S2
1(|λk+1 − λk|)(F (λk+1)− F (λk))+

+

∞w

L

S2
1(|λ− L|)dF (λ)

) 1
2

sup
|t−s|6h

|Z1(t)− Z1(s)|. ♦

Corollary 2.3. Let the conditions of Theorem 2.5 hold and let the split
Λ = {λ0, ..., λN} of the set [0,∞) be such that λ0 = 0, λk < λk+1, λN−1 =

L, λN =∞, λk+1 − λk = L
N−1 , then
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σ(h) 6

(
S2

1

(
L

N − 1

)
F (L) +

∞w

L

S2
1(|λ− L|)dF (λ)

) 1
2

×

× sup
|t−s|6h

|Z1(t)− Z1(s)|.

It is obvious that for any ε one can find such L and N that(
S2

1

(
L

N − 1

)
F (L) +

∞w

L

S2
1(| λ− L |)dF (λ)

) 1
2

6 ε.

Further, we investigate conditions and estimations convergence of the
model by probability in the space C(T). These conditions make it possible
to construct a model which approximates stochastic Gaussian process with
a given accuracy and reliability.
Definition 2.2. [72] Stochastic process ξΛ(t) approaches Gaussian process
ξ(t) with given reliability 1 − β, 0 < β < 1 and accuracy δ > 0 in C(T), if
there exists split L, such that inequality holds

P

{
sup
t∈T
|ξ(t)− ξΛ(t)| > δ

}
6 β.

From the Theorem 2.4 it follows that ηΛ(t) ∈ Sub(Ω), t ∈ T then
pseudometric ρ generated by the process ηΛ(t) on T is as follows

ρ(t, s) = τ(ηΛ(t)− ηΛ(s)), t, s ∈ T

Definition 2.3. [19] A set Q ⊂ T is called an ε-net in the set T with
respect to the pseudometric ρ if for any point x ∈ T there exists at least
one point y ∈ Q such that ρ(x, y) 6 ε.

Definition 2.4. [19] If there exist a finite ε-covering of a set T, then
Nρ(T, ε) denotes the smallest number of elements an ε-covering of this set.
We put Nρ(T, ε) = +∞ if there exists no finite ε-covering of the set T. The
function Nρ(T, ε), ε > 0, called the metric massiveness of the set T with
respect to the pseudometric ρ.

Note that Nρ(T, ε) coincides with the number of points in a minimum
of ε-covering of the set T.
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Definition 2.5. [19] Suppose that

Hρ(T, ε) =

{
lnNρ(T, ε), if Nρ(T, ε) < +∞,

+∞, if Nρ(T, ε) =∞.

The function Hρ(T, ε), ε > 0, is called the metric entropy of the set T with
respect to the pseudometric ρ.

For simplicity, denote

N(ε) = Nρ(T, ε), H(ε) = Hρ(T, ε),

where Nρ(T, ε) and Hρ(T, ε) are metric massiveness and metric entropy of
the set T with respect to the pseudometric ρ. Further, let r = (r(υ), υ > 1)
be a nonnegative monotone nondecreasing function such that r(exp{υ}), υ >
1 is convex and r(υ)→∞ as υ →∞.

Consider the integral

Îr(u) =

uw

0

r(N(ε))dε, u > 0,

called the entropy integral.
Theorem 2.6. Suppose that X = (X(t), t ∈ T) is sub-Gaussian stochastic
process. Let ε0 = sup

t∈T
τ(X(t)) <∞, (T, ρ) is separable space and the process

X is separable process on (T, ρ) and let Îr(θε0) < ∞, then for all λ > 0

holds

E exp

{
λ sup
t∈T
|X(t)|

}
6 2Q̂(λ),

where

Q̂(λ) = inf
0<θ<1

exp

{
(λε0)2

2(1− θ)2

}
· r(−1)

(
Îr(θε0)

θε0

)
.

Furthermore, for all θ ∈ (0, 1) and u > 0

P

{
sup
t∈T
|X(t)| > u

}
6 2Â(u, θ),
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where

Â(u, θ) = exp

{
− (u(1− θ))2

2ε2
0

}
· r(−1)

(
Îr(θε0)

θε0

)
.

The Theorem 2.6 is a particular case of the Theorem 4.4 from the book [19].
Denote C(h) = sup

|t−s|6h
|Z1(t) − Z1(s)|. Let C(h) be such function to

which there exists an inverse function.
Theorem 2.7. Let in model ξΛ(t) split Λ be such that when δ > 0, θ ∈ (0, 1)

the following relationship takes place

2 exp

{
− (δ(1− θ))2

2ε2
0

}
r(−1)

(
Ĩr(θε0)

θε0

)
6 β,

where ε0 = sup
t∈T

τ(ηΛ(t)) = σ0, ηΛ(t) = ξ(t)− ξΛ(t) and let

Îr(θε0) 6
θε0w

0

r

(
T

2C(−1)(V )
+ 1

)
dε = Ĩr(θε0),

Ĩr(θε0) <∞,

where V = ε

(
S2

1

(
L

N−1

)
F (L) +

∞r

L

S2
1(| λ− L |)dF (λ)

)− 1
2

, C(−1)(x), x > 0

is the function inverse to C(·). Then the model ξΛ(t) approximates ξ(t) with
a given reliability 1− β, 0 < β < 1 and accuracy δ > 0 in the space C(T).

Proof. Since for the metric massiveness it is true that N(ε) 6 T
2σ(−1)(ε)

+ 1,
so using this fact and Theorem 2.6 we obtain that for the sub-Gaussian
process ηΛ(t) the following inequality holds

P

{
sup
t∈T
| ηΛ(t) |> δ

}
6 2 exp

{
− (δ(1− θ))2

2ε2
0

}
· r(−1)

(
Îr(θε0)

θε0

)
,

where

Îr(θε0) =

θε0w

0

r(N(ε))dε 6
θε0w

0

r

(
T

2σ(−1)(ε)
+ 1

)
dε <∞
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From Corollary 2.3 it follows that

σ(h) = sup
|t−s|6h

τ(ηΛ(t)− ηΛ(s)) 6

6 C(h) ·

(
S2

1

(
L

N − 1

)
F (L) +

∞w

L

S2
1(| λ− L |)dF (λ)

) 1
2

.

One can readily show that the function inverse to estimation of σ(h) is

σ(−1)(h) = C(−1)

h(S2
1

(
L

N − 1

)
F (Λ) +

∞w

L

S2
1(|λ− L|)dF (λ)

)− 1
2

 .

Then

Îr(θε0) 6
θε0w

0

r

(
T

2C(−1)(V )
+ 1

)
dε = Ĩr(θε0),

where V = ε

(
S2

1

(
L

N−1

)
F (L) +

∞r

L

S2
1(| λ− L |)dF (λ)

)− 1
2

. Estimate for

Îr(θε0) one can make arbitrarily small by appropriate selection of L and
N .

Namely there exists such split Λ and β ∈ (0, 1) that the following condi-
tion holds

2 exp

{
− (δ(1− θ))2

2ε2
0

}
r(−1)

(
Ĩr(θε0)

θε0

)
6 β.

Then by Definition 2.2 we get that the model ξΛ(t) approximates ξ(t)
with a given reliability 1 − β, 0 < β < 1 and accuracy δ > 0 in the space
C(T). ♦

Example 2.7. Assume that r(u) = uα, α > 0 and let ηΛ(t) = (ηΛ(t), t ∈ T)

be a sub-Gaussian process satisfying
ε0r

0

Nα(ε)dε <∞, where N(ε) is metric

massiveness. Then r(−1)(x) = x
1
α , x > 0.

Hence,

P

{
sup
t∈T
| ηΛ(t) |> u

}
6 2 exp

{
u2(1− θ)2

2ε2
0

}(
1

θε0

θε0w

0

Nα(ε)dε

) 1
α

.
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for all θ ∈ (0, 1) and u > 0.

Fix ε0 <
u√
2
and put θ = 1−

√
1− 2ε20

u2 .
Now one can easily calculate that

exp

{
u2(1− θ)2

2ε2
0

}(
1

θε0

θε0w

0

Nα(ε)dε

) 1
α

6

6 e

(
ε0w

0

Nα(ε)dε

) 1
α (

u

ε0

) 2
α

exp

{
−1

2

(
u

ε0

)2
}
.

Hence when x >
√

2 we have

P

{
sup
t∈T
| ηΛ(t) |> xε0

}
6 2e

(
ε0w

0

Nα(ε)dε

) 1
α

x
2
α exp

{
−x

2

2

}
.

Using the estimates for σ(−1)(h) and N(ε) we obtain

P

{
sup
t∈T
| ηΛ(t) |> xε0

}
6 2e

(
ε0w

0

(
T

2C(−1) (V )
+ 1

)α
dε

) 1
α

x
2
α exp

{
−x

2

2

}
,

where V = ε

(
S2

1

(
L

N−1

)
F (L) +

∞r

L

S2
1(| λ− L |)dF (λ)

)− 1
2

.

Assume that C(h) = Dhρ, D ∈ R, and 0 < ρ 6 1, ρ > α then

σ(h) 6 Dhρ ·

(
S2

1

(
L

N − 1

)
F (L) +

∞w

L

S2
1(| λ− L |)dF (λ)

) 1
2

.

Therefore,

σ(−1)(h) =

(
h

(
D

(
S2

1

(
L

N − 1

)
F (L)+

+

∞w

L

S2
1(| λ− L |)dF (λ)

) 1
2

−1


1
ρ

. (2.10)
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When σ(−1)(h) is defined as in (2.10), then

P

{
sup
t∈T
| ηΛ(t) |> xε0

}
6

6 2ex
2
α exp

{
−x

2

2

}( ε0w

0

(
T

2
ε−

1
ρ

(
D

(
S2

1

(
L

N − 1

)
F (L)+

+

∞w

L

S2
1(| λ− L |)dF (λ)

) 1
2


1
ρ

+ 1


α

dε


1
α

6

6 2ex
2
α exp

{
−x

2

2

}( ε0w

0

((
T

2

)α(
D

(
S2

1

(
L

N − 1

)
F (L)+

+

∞w

L

S2
1(| λ− L |)dF (λ)

) 1
2


α
ρ

ε−
α
ρ + 1

 dε


1
α

=

= 2ex
2
α exp

{
−x

2

2

} Tα

2α
(

1− α
ρ

) (D(S2
1

(
L

N − 1

)
F (L)+

+

∞w

L

S2
1(| λ− u |)dF (λ)dF (u)

) 1
2


α
ρ

· ε1−αρ
0 + ε0


1
α

.

Hence,

P

{
sup
t∈T
| ηΛ(t) |> δ

}
6 2

(
δ

ε0

) 2
α

exp

{
1− δ2

2ε2
0

} Tα

2α
(

1− α
ρ

) · ε1−αρ
0 ×

×

D(S2
1

(
L

N − 1

)
F (L) +

∞w

L

S2
1(| λ− L |)dF (λ)

) 1
2


α
ρ

+ ε0


1
α

.

Put S1(u) = C · uν and

F (λ) =

{
1− 1

λγ , λ > 2,
0, λ < 2,
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where ν > 0, γ > 2ν, then

P

{
sup
t∈T
| ηΛ(t) |> δ

}
6 2

(
δ

ε0

) 2
α

exp

{
1− δ2

2ε2
0

}
×

×

 Tα

2α
(

1− α
ρ

)
D(C2

(
L

N − 1

)2ν

+ 2C2cν
L2ν−γ(γ − ν)

γ − 2ν

) 1
2


α
ρ

×

×ε1−αρ
0 + ε0

) 1
α

,

where cν =

{
1, as 0 < 2ν 6 1,

22ν−1, as 2ν > 1
.

The

(
D

(
C2
(

L
N−1

)2ν

+ 2C2cν
L2ν−γ(γ−ν)

γ−2ν

) 1
2

)α
ρ

is minimized at

L̂ =

(
(N − 1)2νcνγ(ν − γ)

ν(2ν − γ)

) 1
2γ

.

Then from the Theorem 2.7 we obtain that inequality

2 exp

{
− (δ(1− θ))2

2ε2
0

}
r(−1)

(
Îr(θε0)

θε0

)
6 β,

holds when N satisfied condition

N >

 βα

2α
(
δ
ε0

)2

exp
{
α
(

1− δ2

2ε20

)} − ε0


ργ

αν(ν−γ)

·

2
(

1− α
ρ

) 1
α

T


ργ

ν(ν−γ)

×

×

(
DCε

ρ
α−1
0

(
1 +

ν

γ − ν

) 1
2

) γ
ν(γ−ν)

·
(
ν(γ − 2ν)

cνγ(γ − ν)

) 1
2(ν−γ)

+ 1,

where 0 < α 6 1, 0 < ρ 6 1, ρ > α, ν > 0, γ > 2ν, C ∈ R, D ∈ R and

cν =

{
1, as 0 < 2ν 6 1,

22ν−1, as 2ν > 1
.

Hence, model ξΛ(t) approximates process ξ(t) with a given reliability
1− β, 0 < β < 1 and accuracy δ > 0 in the space C([0, T ]), if for N the last
relationship holds.
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Chapter 3
Construction of models of Gaussian stochastic
fields and homogeneous and isotropic
stochastic fields with the required accuracy
and reliability in different functional spaces.

As we noted in the previous chapter, simulation is an effective means
of studying various characteristics of phenomena in the environment. There
are many such phenomena that depend not only on some random factor
and on time. Therefore, by a stochastic process we cannot describe every
phenomenon. For these phenomena can be used a stochastic fields.

One of the most important problems of the theory of stochastic processes
and stochastic fields is the problem of modeling and approximating the
processes and fields. There are known several methods for constructing
models of stochastic processes. The most popular for stationary processes is
the method of splitting and randomization of the spectrum developed by G.
A. Mikhailov and his collaborators (see [97], [98], [99], [100]). M. I. Yadrenko
and his coauthors used different methods (see [139], [140], [141], [142], [143]).
When constructing models of stochastic processes and random fields, it is
important to know how close are approximating models and correspondi-
ng processes and fields in some metrics. A number of papers by Yu. V.
Kozachenko and his collaborators is devoted to constructing models of
stochastic fields with a given reliability and accuracy (see [55], [64], [67],
[71], [85]).

In this chapter, the same method as in the previous chapter is used
to construct a model of stochastic field. We used the representation of a
homogeneous and isotropic stochastic field proposed by Yadrenko in the
book [141]. An important task in the simulation of stochastic fields is to
evaluate the probability of deviating the model of stochastic field from this
field, for example, in the uniform metric (see [67], [85]) or in the space
Lp(T ) (see [67], [133], [132]). In this chapter, these results are submitted in
the section 3.2 and section 3.6. We used the representation of the stochastic
field that contains Bessel functions of the first kind. We did not find the
necessary estimates for the Bessel functions of the first kind in the literature
(although they may have already been obtained somewhere); therefore, these
estimates were obtained by us and are presented in the section 3.3.

Both for the processes and for the fields we investigate the accuracy
and reliability of the constructed models, in particular in the spaces C(T )
and Lp(T ). Kozachenko and his students considered similar tasks in the
papers [1], [58] [64], [66], [71], [72]. The results obtained in this Chapter
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were published in the papers [132], [133] and [134].

3.1. Construction of the model of Gaussian
stochastic field

Consider the space Rd with the metric ρ(t, s), tT = (t1, . . . , td), sT =
(s1, . . . , sd), where ρ(t, s) = max

i=1,d
|ti − si|. Let T be a set in the form T ={

t : −A 6 ti 6 A, i = 1, d
}
, where A > 0 a number. Let ξ = {ξ(t), t ∈ T} be

a zero-mean Gaussian stochastic field, covariance function of which allows
images

R(t, s) = Eg(t,λ)g(s,λ) =

+∞w
· · ·

w

−∞
g(t,λ)g(s,λ)dF (λ).

where F (λ) is continuous distribution function. Let {Rd,A, µ(·)} be a measurable
space, where A is Borel σ-algebra, µ(λ) is a finite measure generated by the
function F (λ).

According to the Karhunen theorem field ξ(t) can be represented as
follows

ξ(t) =

+∞w
· · ·

w

−∞
g(t,λ)dη(λ),

where η(A1) is random measure that subordinated to the measure µ such
that E(η(A1)η(A2)) = µ(A1

⋂
A2), A1, A2 ∈ A. Let Λ be some measurable

set of the space Rd and we consider such partition Λ = {∆1, . . . ,∆N} of the
space, that ∆i

⋂
∆j = ∅, i 6= j.

As a model we consider

ξN (t) =

N∑
k=1

ηkg(t, ζk),

where ηk =
r

∆k

dη(λ) are such Gaussian random variables that Eηk = 0,

Eη2
k = µ(∆k) = b2k and ζk ∈ Rd are independent random variables being

independent of ηk and taking values on ∆k with cumulative distribution
function

P {ζk ∈ A} =
µ(A

⋂
∆k)

µ(∆k)
:= µk(A).
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The model ξN (t) is zero-mean stochastic field:

EξN (t) = E

N∑
k=1

ηkg(t, ζk) =

N∑
k=1

EηkEg(t, ζk) = 0.

The covariance function of the ξN (t) almost coincides with the covariance
function of stochastic feld ξ(t). Namely, by the certain choice of the partition
Λ the covariance function of ξN (t) can be made an arbitrarily close to the
covariance function of ξ(t).

Let the following conditions hold for the function g(t,λ)

g(t,λ) 6 C(t),

|g(t,λ)− g(t,u)| 6 S (|λ− u|) · Z(t),

where Z(t) is limited on the compact, S(x), x ∈ R is continuous, monotoni-
cally nondecreasing function.
Lemma 3.1. Stochastic field ξN (t) is sub-Gaussian stochastic field.

Proof. Consider E (ηkg(t, ζk)). Since for a zero-mean Gaussian random vari-
able η we have Eη2m+1 = 0, Eη2m = (2m)!

2m·m!σ
2m, then

E (ηkg(t, ζk))
2m+1

= 0,

E (ηkg(t, ζk))
2m

= E(ηk)2mE(g(t, ζk))2m 6
(2m)!

2m ·m!
(bk · C(t))

2m
<∞.

In that sup
m>1

[
(2m)!
2m·m!E (ηkg(t, ζk))

2m
] 1

2m

< ∞, then it follows from Lemma

1.3 that ηkg(t, ζk) are sub-Gaussian stochastic fields. That is why ξN (t) =
N∑
k=1

ηkg(t, ζk) is sub-Gaussian stochastic field. ♦

Let

χN (t) = ξ(t)− ξN (t) =

N∑
k=1

w

∆k

(g(t,λ)− g(t, ζk)) dη(λ) (3.1)

Lemma 3.2. The following relationships hold true

E

w

∆k

(g(t,λ)− g(t, ζk)) dη(λ)

2m+1

= 0,
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E

w

∆k

(g(t,λ)− g(t, ζk)) dη(λ)

2m

6

6
(2m)!

2m ·m!
Z2m(t)E

w

∆k

S2 (|λ− ζk|) dµ(λ)

m

.

Proof. Since for a zero-mean Gaussian random variable η it is Eη2m+1 = 0,
Eη2m = (2m)!

2m·m!σ
2m and the random variables ζk are independent of η(λ),

then by the Fubini’s theorem (Eζk - is a conditional expectation with respect
to ζk):

E

w

∆k

(g(t,λ)− g(t, ζk)) dη(λ)

2m

=

= EEζk

w

∆k

(g(t,λ)− g(t, ζk)) dη(λ)

2m

=

=
(2m)!

2m ·m!
E

w

∆k

|g(t,λ)− g(t, ζk)|2 dµ(λ)

m

6

6
(2m)!

2m ·m!
E

w

∆k

S2 (|λ− ζk|)Z2(t)dµ(λ)

m

=

=
(2m)!

2m ·m!
Z2m(t)E

w

∆k

S2 (|λ− ζk|) dµ(λ)

m

,

which finishes the proof. ♦

Theorem 3.1. The following inequality holds

τ (ξ(t)− ξN (t)) 6 Z(t)

(
N∑
k=1

b2k sup
m>1

(
ES2m (|ζk − ζ∗k |)

) 1
m

) 1
2

, (3.2)

where b2k = µ(∆k), ζ∗k , ζk are independent and ζ∗k have the same distributi-
ons as ζk.
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Proof. It follows from Lemma 1.3 that

τ2

w

∆k

(g(t,λ)− g(t, ζk)) dη(λ)

 6 θ2

w

∆k

(g(t,λ)− g(t, ζk)) dη(λ)

 =

= sup
m>1

 (2m)!

2m ·m!
E

w

∆k

(g(t,λ)− g(t, ζk)) dη(λ)

2m


1
m

6

Applying Lemma 3.2, we obtain

6 sup
m>1

b2kZ2(t)

E

w

∆k

S2 (|λ− ζk|) dµk(λ)

m
1
m

 =

= sup
m>1

b2kZ2(t)

w

∆k

w

∆k

S2 (|λ− u|) dµk(λ)

m

dµk(u)


1
m

 ,

Since the terms in the sum (3.3) for different k are independent, so from
the last equality we have

τ2(ξ(t)− ξN (t)) 6

6 Z2(t)

N∑
k=1

b2k sup
m>1

w

∆k

w

∆k

S2 (|λ− u|) dµk(λ)

m

dµk(u)


1
m

.

Then, from the Fubini’s theorem and the Lyapunov inequality we obtain

τ(ξ(t)− ξN (t)) 6

6 Z(t)

 N∑
k=1

sup
m>1

b2k

w

∆k

w

∆k

S2 (|λ− u|) dµk(λ)

m

dµk(u)


1
m


1
2

=

= Z(t)

(
N∑
k=1

sup
m>1

b2k

(
Eζ∗k

(
EζkS

2 (|ζk − ζ∗k |)
)m) 1

m

) 1
2

6
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6 Z(t)

(
N∑
k=1

sup
m>1

b2k
(
Eζ∗kEζkS

2m (|ζk − ζ∗k |)
) 1
m

) 1
2

6

6 Z(t)

(
N∑
k=1

b2k sup
m>1

(
ES2m (|ζk − ζ∗k |)

) 1
m

) 1
2

,

which is the desired statement. ♦
Remark 3.1. It is obviously that 3.1 makes sense only if the function S(·)
such that the right side of the inequality (3.2) is finite.

3.2. The accuracy of modeling of Gaussian fields in
Lp(T), p > 1

Definition 3.1. [67] Let {T,B, µ} be a measurable space. A stochastic
field X̂(t) approximates the field X(t) with reliability (1− δ), 0 < δ < 1 and
accuracy ε > 0 in Lp(T), if there exists a partition, such that the following
inequality holds

P


(

w

T

| X(t)− X̂(t) |p dµ(t)

) 1
p

> ε

 6 δ.

Theorem 3.2. Let X = {X(t), t ∈ T} be sub-Gaussian stochastic field,
EX(t) = 0, τ2(t) = τ2(X(t)). Suppose that there exists an integral

r

T
(τ(t))

p
dµ(t) <

∞, p > 1. Then the integral
r

T
| X(t) |p dµ(t) <∞, exists with probability 1

and for all ε satisfying ε > c
1
p
p p

1
2 , where cp =

r

T
(τ(t))

p
dµ(t) we have

P
{
‖ X(t) ‖Lp> ε

}
6 2 exp

− ε2

2c
2
p
p

 .

The Theorem 3.2 is a particular case of the Theorem 2.1 from the [53].
Theorem 3.3. Suppose that the partition Λ in the model ξN (t) is such,
that

w

T

(τ(ξ(t)− ξN (t)))
p
dt 6

εp

max
(
p
p
2 ,
(
2 ln 2

δ

) p
2

) .
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Then this model approximates the Gaussian stochastic field ξ(t) with reli-
ability 1− δ, 0 < δ < 1 and accuracy ε > 0 in the space Lp(T).

Proof. If ε >
(

r

T
(τ (ξ(t)− ξN (t)))

p
dt

) 1
p

· p 1
2 , then according to Theorem

3.2 and Definition 3.1 we have

P
{
‖ξ(t)− ξN (t)‖Lp > ε

}
6 2 exp

− ε2

2c
2
p
p

 6 δ,

де cp =
r

T
(τ (ξ(t)− ξN (t)))

p
dt.

Accordingly, the last estimate is valid when
w

T

(τ(ξ(t)− ξN (t)))
p
dt 6

εp

max
(
p
p
2 ,
(
2 ln 2

δ

) p
2

) .
The proof is completed. ♦

Remark 3.2. Using Theorem 3.1 and Theorem 3.3 it is clear that the model
ξN (t) will be approximate field ξ(t) with reliability 1 − δ, 0 < δ < 1 and
accuracy ε > 0 in the space Lp(T) if the following relationship holds(

N∑
k=1

b2k sup
m>1

(
ES2m (|ζk − ζ∗k |)

) 1
m

) p
2 w

T

(Z(t))
p
dt 6

εp

max
(
p
p
2 ,
(
2 ln 2

δ

) p
2

) .
Example 3.1. Consider the space R2. Let T be a parametric set in the
following form T = {t : −A 6 ti 6 A, i = 1, 2}, where A > 0 is some
number. Consider the Gaussian stochastic field with the following covariance
function

R(t, s) =

+∞w

−∞

+∞w

−∞
cos〈t,λ〉 cos〈s,λ〉dF (λ),

where F (λ) is continuous distribution function, µ(λ) is finite measure generated
by the function F (λ).

Then ξ(t) =
+∞r

−∞

+∞r

−∞
cos〈t,λ〉dη(λ) is a real-valued Gaussian centered

stochastic field, where η(A1) is randommeasure subordinated to the measure
µ such that E(η(A1)η(A2)) = µ(A1

⋂
A2), A1, A2 ∈ A.
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Let Λ = {∆1, . . . ,∆N2+1} be a partition of the space R2, such that
∆N2+1 = {|λ1| > L or |λ2| > L} , L > 1, and ∆i, i = 1, N2 is a partition
of the square ∆N2+1 on N2 squares with the length of sides in 2L

N and
∆i

⋂
∆j = ∅, i 6= j. Then the model of this field can be represented in the

following form

ξN (t) =

N2+1∑
k=1

ηk cos〈t, ζk〉,

where ηk =
r

∆k

dη(λ) are Gaussian random variables such that Eηk = 0,

Eη2
k = µ(∆k) = b2k, and ζk ∈ R2 are independent random variables being

independent of ηk and and taking values on ∆k with cumulative distribution
function

P {ζk ∈ A} =
µ(A

⋂
∆k)

µ(∆k)
:= µk(A).

It’s easy to check that the model is centered field. Now we estimate the
following expression

|cos〈t,λ〉 − cos〈t,u〉|2 =

∣∣∣∣2 sin
〈t,λ− u〉

2
sin
〈t,λ+ u〉

2

∣∣∣∣2 6

6

∣∣∣∣2 sin
〈t,λ− u〉

2

∣∣∣∣2 = 4 sin2 〈t,λ− u〉
2

6

6 4
‖t‖2α · ‖λ− u‖2α

22α
= 22(1−α)‖t‖2α · ‖λ− u‖2α,

where 0 < α < 1.
Applying Lemma 3.2 for all ∆k, k = 1, N2 and having in mind that

Z(t) = 2(1−α)‖t‖α, S (|λ|) = ‖λ‖α .

we arrive at the following inequalities

E

w

∆k

(cos〈t,λ〉 − cos〈t, ζk〉) dη(λ)

2m+1

= 0,
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E

w

∆k

(cos〈t,λ〉 − cos〈t, ζk〉) dη(λ)

2m

6

6
(2m)!

2m ·m!
22m(1−α) ‖t‖2mα

w

∆k

w

∆k

‖λ− u‖2α dµ(λ)

m

dµk(u),

where 0 < α < 1.
By the Theorem 3.1 for the first N2 terms we get

τ2

w

∆k

(cos〈t,λ〉 − cos〈t, ζk〉) dη(λ)

 6

6 22(1−α) ‖t‖2α b2k sup
m>1

w

∆k

w

∆k

‖λ− u‖2α dµk(λ)

m

dµk(u)


1
m

.

And for k = N2 + 1 we obtain the following condition

b2N2+1

 w

∆N2+1

 w

∆N2+1

(cos〈t,λ〉 − cos〈t, ζk〉) dµN2+1(λ)

m

dµN2+1(u)


1
m

6

6 4

 w

∆N2+1

 w

∆N2+1

dµN2+1(λ)

m

dµ(u)


1
m

6 4µ (∆N2+1) .

Let the measure µ of the space be less than one, then

τ2 (ξ(t)− ξN (t)) 6 22(1−α) ‖t‖2α
N2∑
k=1

b2k

(
2L

N

)4α

+ 4µ (∆N2+1) 6

6 22(1−α) ‖t‖2α µ(∆N2+1)

(
2L

N

)4α

+ 4µ (∆N2+1) 6

(3.3)

6 4

(
‖t‖ · 4L2

2N2

)2α

+ 4µ (∆N2+1) .
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Hence

w

T

(τ (ξ(t)− ξN (t)))
p
dt 6

w

T

(
4

(
‖t‖ · 4L2

2N2

)2α

+ 4µ (∆N2+1)

) p
2

dt 6

6

4

(√
2A · 4L2

2N2

)2α

+ 4µ (∆N2+1)


p
2

·
w

T

dt =

=

4

(
2
√

2A · L2

N2

)2α

+ 4µ (∆N2+1)


p
2

· (2A)2.

We will choose such L that

µ (∆N2+1) 6
ε2

8 · (2A)
4
p max

(
p, 2 ln 2

δ

) ,
where 0 < δ < 1, ε > 0.

Hence, by Theorem 3.3 the inequality
w

T

(τ(ξ(t)− ξN (t)))
p
dt 6

εp

max
(
p
p
2 ,
(
2 ln 2

δ

) p
2

) ,
follows, when N satisfies

N > max(Z1, Z2),

where

Z1 =
2

3pα+4p+4
4pα L ·A

pα+2
2pα

(
ln 2

δ

) 1
4α

ε
1
2α

, Z2 =
2

3pα+3p+4
4pα L ·A

pα+2
2pα p

1
4α

ε
1
2α

.

Thus the model ξN (t) approximate field ξ(t) with reliability 1 − δ, 0 <

δ < 1 and accuracy ε > 0 in the space Lp(T) under previous condition.

Example 3.2. Let the field and its model are the same as in Example 3.1.
Then from the inequality (3.3), we have

τ2 (ξ(t)− ξN (t)) 6 22(1−α) ‖t‖2α µ
(
∆N2+1

)(2L

N

)4α

+ 4µ (∆N2+1) .

From this evaluation and Theorem 3.3 it follows that the model ξN (t)
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approximate field ξ(t) with reliability 1−δ, 0 < δ < 1 and accuracy ε > 0 in
the space Lp(T), if for N the following inequality holds N > max(Z3, Z4),

where

Z3 =

2
4+3p+3pα

2pα A1+ 2
pαL2

(
ln 2

δ

) 1
2α
(
µ
(
∆N2+1

)) 1
2α(

ε2 − 8(2A)
4
pµ (∆N2+1) ln 2

δ

) 1
2α


1
2

,

Z4 =

2
4+2p+3pα

2pα A1+ 2
pαL2p

1
2α

(
µ
(
∆N2+1

)) 1
2α(

ε2 − 4(2A)
4
pµ (∆N2+1) p

) 1
2α


1
2

.

Let µ([−λ1, λ1]× [−λ2, λ2]) = (1− e−λ1)(1− e−λ2), p = 2, α = 1, A = 1,
δ = 0, 01 and ε = 0, 06 then we obtained that N(6, 075) = 161, 4968.

So, if we choose the minimum partitionN = 162, then we can constructed
the model ξN (t) of Gaussian stochastic field ξ(t).

Figure 3.1. Model of Gaussian stochastic field in the space L2(T).
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3.3. Estimates of Bessel functions of the first kind

In this section, we found new estimates for Bessel functions of the first ki-
nd. Also we considered differences Bessel functions with different arguments.
The estimates for the difference between two and four functions were obtai-
ned.

It is known that

Jk(u) =
1

π

πw

0

cos(kϕ− u sinϕ)dϕ, k = 1,∞

is the integral representation of the Bessel functions of the first kind (see [6]).
Lemma 3.3. For all 0 < α 6 1,

| Jk(u) |6 21−α | u |α πα 1

kα
.

Proof. We have

|Jk(u)| = 1

π

∣∣∣∣∣
πw

0

cos(kϕ− u sinϕ)dϕ

∣∣∣∣∣ =
1

π

∣∣∣∣∣
πw

0

cos(kϕ) cos(u sinϕ)dϕ +

+

πw

0

sin(kϕ) sin(u sinϕ)dϕ

∣∣∣∣∣ =
1

π
|I1 + I2| 6

1

π
(| I1 | + | I2 |) .

Since the integrand in the integral I1 is an even and periodic function
with period 2π, we can transform I1 as follows

I1 =

πw

0

cos(kϕ) cos(u sinϕ)dϕ =
1

2

πw

−π
cos(kϕ) cos(u sinϕ)dϕ =

=
1

2

πw

−π
cos
(
k
(
ϕ+

π

k

))
cos
(
u sin

(
ϕ+

π

k

))
dϕ =

1

2

πw

−π
cos(kϕ+ π)×

× cos
(
u sin

(
ϕ+

π

k

))
dϕ = −1

2

πw

−π
cos(kϕ) cos

(
u sin

(
ϕ+

π

k

))
dϕ.
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Then the integral I1 is written as follows

I1 = −1

4

πw

−π
cos(kϕ) cos

(
u sin

(
ϕ+

π

k

))
dϕ+

1

4

πw

−π
cos(kϕ) cos(u sinϕ)dϕ

We are going to obtain a bound for |I1|. Indeed,

|I1| =

∣∣∣∣∣−1

4

πw

−π
cos(kϕ) cos

(
u sin

(
ϕ+

π

k

))
dϕ+

1

4

πw

−π
cos(kϕ) cos(u sinϕ)dϕ

∣∣∣∣∣ 6
6

1

4

πw

−π

∣∣∣cos(kϕ)
(

cos(u sinϕ)− cos
(
u sin

(
ϕ+

π

k

)))∣∣∣ dϕ =
1

4

πw

−π
|cos(kϕ)×

×2 sin

(
u(sin(ϕ+ π

k )− sinϕ)

2

)
· sin

(
u(sin(ϕ+ π

k ) + sinϕ)

2

)∣∣∣∣ dϕ 6

6
1

2

πw

−π

∣∣∣∣sin(u(sin(ϕ+ π
k )− sinϕ)

2

)∣∣∣∣ dϕ 6
1

2

πw

−π

∣∣∣u
2

∣∣∣α ∣∣∣sin(ϕ+
π

k

)
−

− sinϕ|α dϕ =
1

2

πw

−π

∣∣∣u
2

∣∣∣α ∣∣∣∣2 cos

(
2ϕ+ π

k

2

)
· sin π

2k

∣∣∣∣α dϕ 6
1

2

πw

−π
|u|α×

×
∣∣∣sin π

2k

∣∣∣α dϕ = |u|α · π
∣∣∣sin π

2k

∣∣∣α 6 π· | u |α
( π

2k

)α
.

For the integral I2,

I2 =

πw

0

sin(kϕ) sin(u sinϕ)dϕ =
1

2

πw

−π
sin (kϕ) sin (u sinϕ) dϕ =

=
1

2

πw

−π
sin
(
k
(
ϕ+

π

k

))
sin
(
u sin

(
ϕ+

π

k

))
dϕ =

1

2

πw

−π
sin (kϕ− π))×

× sin
(
u sin

(
ϕ+

π

k

))
dϕ = −1

2

πw

−π
sin (kϕ) sin

(
u sin

(
ϕ+

π

k

))
dϕ.

As in the case of I1, the integral I2 is transformed to the following form

I2 = −1

4

πw

−π
sin(kϕ) sin

(
u sin

(
ϕ+

π

k

))
dϕ+

1

4

πw

−π
sin(kϕ) sin(u sinϕ)dϕ.
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Then |I2| admits the following bound

|I2| 6 π · |u|α
( π

2k

)α
,

whence

|Jk(u)| = 1

π
| I1 + I2 |6

1

π

(
π· | u |α

( π
2k

)α
+ π· | u |α

( π
2k

)α)
=

= 21−α· | u |α πα · 1

kα
,

where 0 < α 6 1. ♦

Lemma 3.4. For all 0 < α 6 1

| Jk(tλ)− Jk(tu) |6 41−αtα | λ− u |α πα · 1

kα

(
1 +

tα | λ+ u |α

2α

)
.

Proof. Using the integrals I1 and I2 evaluated in the proof of Lemma 3.3,
we get

|Jk(tλ)− Jk(tu)| = 1

π

∣∣∣∣∣
(
−1

4

πw

−π
cos(kϕ) cos

(
tλ sin

(
ϕ+

π

k

))
dϕ +

+
1

4

πw

−π
cos(kϕ) cos(tλ sinϕ)dϕ+

1

4

πw

−π
cos(kϕ) cos

(
tu sin

(
ϕ+

π

k

))
dϕ−

− 1

4

πw

−π
cos(kϕ) cos(tu sinϕ)dϕ

)
+

(
−1

4

πw

−π
sin(kϕ) sin

(
tλ sin

(
ϕ+

π

k

))
dϕ +

+
1

4

πw

−π
sin(kϕ) sin(tλ sinϕ)dϕ+

1

4

πw

−π
sin(kϕ) sin

(
tu sin

(
ϕ+

π

k

))
dϕ−

− 1

4

πw

−π
sin(kϕ) sin(tu sinϕ)dϕ

)∣∣∣∣∣ =
1

π
| S1 + S2 |6

1

π
(| S1 | + | S2 |) .
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Then we find a bound for |S1|

|S1| =

∣∣∣∣∣−1

4

πw

−π
cos(kϕ) cos

(
tλ sin

(
ϕ+

π

k

))
dϕ+

1

4

πw

−π
cos(kϕ) cos(tλ sinϕ)dϕ +

+
1

4

πw

−π
cos(kϕ) cos

(
tu sin

(
ϕ+

π

k

))
dϕ− 1

4

πw

−π
cos(kϕ) cos(tu sinϕ)dϕ |6

6
1

4

πw

−π
|cos(kϕ)|

∣∣∣(cos(tλ sinϕ)− cos(tu sinϕ))−
(

cos
(
tλ sin

(
ϕ+

π

k

))
−

− cos
(
tu sin

(
ϕ+

π

k

)))∣∣∣ dϕ =
1

2

πw

−π
| cos(kϕ) | ·

∣∣∣∣sin t(u+ λ) sinϕ

2
×

× sin
t(u− λ) sinϕ

2
− sin

t(u+ λ) sin(ϕ+ π
k )

2
sin

t(u− λ) sin(ϕ+ π
k )

2

∣∣∣∣ dϕ =

=
1

2

πw

−π
| cos(kϕ)|

∣∣∣∣sin t(u+ λ) sinϕ

2

(
sin

t(u− λ) sinϕ

2
−

− sin
t(u− λ) sin(ϕ+ π

k )

2

)
+ sin

t(u− λ) sin(ϕ+ π
k )

2

(
sin

t(u+ λ) sinϕ

2
−

− sin
t(u+ λ) sin(ϕ+ π

k )

2

)∣∣∣∣ dϕ =

πw

−π
| cos(kϕ) |

∣∣∣∣sin t(u+ λ) sinϕ

2
×

× cos
t(u− λ)(sinϕ+ sin(ϕ+ π

k ))

4
sin

t(u− λ)(sinϕ− sin(ϕ+ π
k ))

4
+

+ cos
t(u+ λ)(sinϕ+ sin(ϕ+ π

k ))

4
sin

t(u+ λ)(sinϕ− sin(ϕ+ π
k ))

4
×

× sin
t(u− λ) sin(ϕ+ π

k )

2

∣∣∣∣ dϕ 6
πw

−π

(∣∣∣∣sin t(u− λ)(sinϕ− sin(ϕ+ π
k ))

4

∣∣∣∣+
+

∣∣∣∣sin t(u− λ) sin(ϕ+ π
k )

2
sin

t(u+ λ)(sinϕ− sin(ϕ+ π
k ))

4

∣∣∣∣) dϕ 6

6 2π

(
tα | λ− u |α

(
π
2k

)α
2α

+
tα | λ− u |α tα | λ+ u |α

(
π
2k

)α
2α · 2α

)
=

= 2π

(
t

2

)α
| λ− u |α

( π
2k

)α(
1 +

tα | λ+ u |α

2α

)
.

Similarly, we obtain a bound for |S2|
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|S2| =

∣∣∣∣∣−1

4

πw

−π
sin(kϕ) sin

(
tλ sin

(
ϕ+

π

k

))
dϕ+

1

4

πw

−π
sin(kϕ) sin(tλ sinϕ)dϕ +

+
1

4

πw

−π
sin(kϕ) sin

(
tu sin

(
ϕ+

π

k

))
dϕ− 1

4

πw

−π
sin(kϕ) sin(tu sinϕ)dϕ |6

6
1

4

πw

−π
| sin(kϕ)| ·

∣∣∣(sin(tλ sinϕ)− sin(tu sinϕ))−
(

sin
(
tλ sin

(
ϕ+

π

k

))
−

− sin
(
tu sin

(
ϕ+

π

k

)))∣∣∣ dϕ =
1

2

πw

−π
| sin(kϕ)| ·

∣∣∣∣cos
t(λ+ u) sinϕ

2
×

× sin
t(λ− u) sinϕ

2
− cos

t(λ+ u) sin(ϕ+ π
k )

2
sin

t(λ− u) sin(ϕ+ π
k )

2

∣∣∣∣ dϕ =

=
1

2

πw

−π
| sin(kϕ)|

∣∣∣∣cos
t(λ+ u) sinϕ

2

(
sin

t(λ− u) sinϕ

2
−

− sin
t(λ− u) sin(ϕ+ π

k )

2

)
+ sin

t(λ− u) sin(ϕ+ π
k )

2

(
cos

t(λ+ u) sinϕ

2
−

− cos
t(λ+ u) sin(ϕ+ π

k )

2

)∣∣∣∣ dϕ 6
πw

−π
| sin(kϕ)|

(∣∣∣∣cos
t(λ+ u) sinϕ

2
×

× cos
t(λ− u)(sinϕ+ sin(ϕ+ π

k ))

4
sin

t(λ− u)(sinϕ− sin(ϕ+ π
k ))

4

∣∣∣∣+
+

∣∣∣∣sin t(λ+ u)(sin(ϕ+ π
k )− sinϕ)

4
sin

t(λ+ u)(sinϕ+ sin(ϕ+ π
k ))

4
×

× sin
t(λ− u) sin(ϕ+ π

k )

2

∣∣∣∣) dϕ 6
πw

−π

(∣∣∣∣sin t(λ− u)(sinϕ− sin(ϕ+ π
k ))

4

∣∣∣∣+
+

∣∣∣∣sin t(λ− u) sin(ϕ+ π
k )

2
sin

t(λ+ u)(sin(ϕ+ π
k )− sinϕ)

4

∣∣∣∣) dϕ 6

6 2π

(
tα | λ− u |α

(
π
2k

)α
2α

+
tα | λ− u |α tα | λ+ u |α

(
π
2k

)α
2α · 2α

)
=

= 2π

(
t

2

)α
| λ− u |α

( π
2k

)α(
1 +

tα | λ+ u |α

2α

)
.
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Then

|Jk(tλ)− Jk(tu)| 6 2

(
t

2

)α
|λ− u|α

( π
2k

)α(
1 +

tα|λ+ u|α

2α

)
+

+ 2

(
t

2

)α
|λ− u|α

( π
2k

)α(
1 +

tα|λ+ u|α

2α

)
=

= 41−α
(
π · t|λ− u|

k

)α(
1 +

tα|λ+ u|α

2α

)
. ♦

Lemma 3.5. For all 0 < α 6 1 and 0 < β 6 1

|Jk(tλ)− Jk(sλ)| 6 41−απα · 1

kα
(
λα|s− t|α + λα+β |s− t|β |s+ t|α

)
.

Proof. Substituting the expressions for the integrals I1 and I2 from the
proof of the Lemma 3.3, we have

|Jk(tλ)− Jk(sλ)| = 1

π

∣∣∣∣∣
(
−1

4

πw

−π
cos(kϕ) cos

(
tλ sin

(
ϕ+

π

k

))
dϕ+

+
1

4

πw

−π
cos(kϕ) cos(tλ sinϕ)dϕ+

1

4

πw

−π
cos(kϕ) cos

(
sλ sin

(
ϕ+

π

k

))
dϕ−

−1

4

πw

−π
cos(kϕ) cos(sλ sinϕ)dϕ

)
+

(
−1

4

πw

−π
sin(kϕ) sin

(
tλ sin

(
ϕ+

π

k

))
dϕ+

+
1

4

πw

−π
sin(kϕ) sin(tλ sinϕ)dϕ+

1

4

πw

−π
sin(kϕ) sin

(
sλ sin

(
ϕ+

π

k

))
dϕ−

−1

4

πw

−π
sin(kϕ) sin(sλ sinϕ)dϕ

)
|= 1

π
|S1 + S2| 6

1

π
(|S1|+ |S2|) .

Now we estimate |S1|

|S1| =
1

4

∣∣∣∣∣
πw

−π
cos(kϕ)

[
(cos(tλ sinϕ)− cos(sλ sinϕ))−

(
cos
(
tλ sin

(
ϕ+

π

k

))
−

− cos
(
sλ sin

(
ϕ+

π

k

)))]
dϕ
∣∣∣ 6 1

2

πw

−π
| cos(kϕ)| ·

∣∣∣∣sin λ(s+ t) sinϕ

2
×

× sin
λ(s− t) sinϕ

2
− sin

λ(s+ t) sin(ϕ+ π
k )

2
sin

λ(s− t) sin(ϕ+ π
k )

2

∣∣∣∣ dϕ =
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=
1

2

πw

−π
| cos(kϕ)|

∣∣∣∣sin λ(s+ t) sinϕ

2

(
sin

λ(s− t) sinϕ

2
−

− sin
λ(s− t) sin(ϕ+ π

k )

2

)
+ sin

λ(s− t) sin(ϕ+ π
k )

2

(
sin

λ(s+ t) sinϕ

2
−

− sin
λ(s+ t) sin(ϕ+ π

k )

2

)∣∣∣∣ dϕ =

πw

−π
| cos(kϕ)| ·

∣∣∣∣sin λ(s+ t) sinϕ

2
×

× cos
λ(s− t)(sinϕ+ sin(ϕ+ π

k ))

4
sin

λ(s− t)(sinϕ− sin(ϕ+ π
k ))

4
+

+ cos
λ(s+ t)(sinϕ+ sin(ϕ+ π

k ))

4
sin

λ(s+ t)(sinϕ− sin(ϕ+ π
k ))

4
×

× sin
λ(s− t) sin(ϕ+ π

k )

2

∣∣∣∣ dϕ 6
πw

−π

(∣∣∣∣sin λ(s− t)(sinϕ− sin(ϕ+ π
k ))

4

∣∣∣∣+
+

∣∣∣∣sin λ(s− t) sin(ϕ+ π
k )

2
sin

λ(s+ t)(sinϕ− sin(ϕ+ π
k ))

4

∣∣∣∣) dϕ 6

6 2π

(
λα|s− t|α

(
π
2k

)α
2α

+
λβ |s− t|βλα|s+ t|α

(
π
2k

)α
2β · 2α

)
.

A bound for |S2| is obtained similarly.

|S2| =
1

4

∣∣∣∣∣
πw

−π
sin(kϕ)

[
(sin(tλ sinϕ)− sin(sλ sinϕ))−

(
sin
(
tλ sin

(
ϕ+

π

k

))
−

− sin
(
sλ sin

(
ϕ+

π

k

)))]
dϕ
∣∣∣ 6 1

2

πw

−π
| sin(kϕ)| ·

∣∣∣∣cos
λ(t+ s) sinϕ

2
×

× sin
λ(t− s) sinϕ

2
− cos

λ(t+ s) sin(ϕ+ π
k )

2
sin

λ(t− s) sin(ϕ+ π
k )

2

∣∣∣∣ dϕ =

=
1

2

πw

−π
| sin(kϕ)|

∣∣∣∣cos
λ(t+ s) sinϕ

2

(
sin

λ(t− s) sinϕ

2
−

− sin
λ(t− s) sin(ϕ+ π

k )

2

)
+ sin

λ(t− s) sin(ϕ+ π
k )

2

(
cos

λ(t+ s) sinϕ

2
−

− cos
λ(t+ s) sin(ϕ+ π

k )

2

)∣∣∣∣ dϕ 6
πw

−π
| sin(kϕ)| ·

(∣∣∣∣cos
λ(t+ s) sinϕ

2
×
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× cos
λ(t− s)(sinϕ+ sin(ϕ+ π

k ))

4
sin

λ(t− s)(sinϕ− sin(ϕ+ π
k ))

4

∣∣∣∣+
+

∣∣∣∣sin λ(t+ s)(sinϕ+ sin(ϕ+ π
k ))

4
sin

λ(t+ s)(sin(ϕ+ π
k )− sinϕ)

4
×

× sin
λ(t− s) sin(ϕ+ π

k )

2

∣∣∣∣) dϕ 6
πw

−π

(∣∣∣∣sin λ(t− s)(sinϕ− sin(ϕ+ π
k ))

4

∣∣∣∣+
+

∣∣∣∣sin λ(t− s) sin(ϕ+ π
k )

2
sin

λ(t+ s)(sin(ϕ+ π
k )− sinϕ)

4

∣∣∣∣) dϕ 6

6 2π

(
λα|s− t|α

(
π
2k

)α
2α

+
λβ |s− t|βλα|s+ t|α

(
π
2k

)α
2β · 2α

)
.

Then

|Jk(tλ)− Jk(sλ)| 6 1

π

[
2π

(
λα|s− t|α

(
π
2k

)α
2α

+
λβ |s− t|βλα|s+ t|α

(
π
2k

)α
2β · 2α

)
+

+2π

(
λα|s− t|α

(
π
2k

)α
2α

+
λβ |s− t|βλα|s+ t|α

(
π
2k

)α
2β · 2α

)]
=

= 41−απα
1

kα
(
λα|s− t|α + λα+β |s− t|β |s+ t|α

)
. ♦

Lemma 3.6. For all 0 < α 6 1 holds

|Jk(tλ)− Jk(tu)− Jk(sλ) + Jk(su)| 6 2 · 41−α|λ− u|α|s− t|α
( π

2k

)α
×

×
(

1 +
|λ+ u|α|s− t|α

4α
+
|t+ s|α(λα + 2uα)

2α
+
|t+ s|2αuα|λ+ u|α

4α · 2α

)
.

Proof. Since

Jk(tλ) =
1

π

(
−1

4

πw

−π
cos(kϕ) cos

(
tλ sin

(
ϕ+

π

k

))
dϕ+

1

4

πw

−π
cos(kϕ)×

× cos(tλ sinϕ)dϕ− 1

4

πw

−π
sin(kϕ) sin

(
tλ sin

(
ϕ+

π

k

))
dϕ+
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+
1

4

πw

−π
sin(kϕ) sin(tλ sinϕ)dϕ

)
,

we conclude that

|Jk(tλ)− Jk(tu)− Jk(sλ) + Jk(su)| = 1

π

∣∣∣∣∣14
πw

−π
cos(kϕ) (cos(tλ sinϕ) −

− cos
(
tλ sin

(
ϕ+

π

k

))
− cos(tu sinϕ) + cos

(
tu sin

(
ϕ+

π

k

))
−

− cos(sλ sinϕ) + cos
(
sλ sin

(
ϕ+

π

k

))
+ cos(su sinϕ)−

− cos
(
su sin

(
ϕ+

π

k

)))
dϕ+

1

4

πw

−π
sin(kϕ) (sin(tλ sinϕ)−

− sin
(
tλ sin

(
ϕ+

π

k

))
− sin(tu sinϕ) + sin

(
tu sin

(
ϕ+

π

k

))
−

− sin(sλ sinϕ) + sin
(
sλ sin

(
ϕ+

π

k

))
+ sin(su sinϕ)−

− sin
(
su sin

(
ϕ+

π

k

)))
dϕ
∣∣∣ =

1

π
|K1 +K2| 6

1

π
(|K1|+ |K2|) .

Then we find a bound for |K1|

|K1| =
1

4

∣∣∣∣∣
πw

−π
cos(kϕ)

[
(cos(tλ sinϕ)− cos(sλ sinϕ))−

(
cos
(
tλ sin

(
ϕ+

π

k

))
−

− cos
(
sλ sin

(
ϕ+

π

k

)))
− (cos(tu sinϕ)− cos(su sinϕ))+

+
(

cos
(
tu sin

(
ϕ+

π

k

))
− cos

(
su sin

(
ϕ+

π

k

)))]
dϕ
∣∣∣ 6 1

4

πw

−π
| cos(kϕ)|×

×
∣∣∣∣2 sin

λ(t+ s) sinϕ

2
sin

λ(s− t) sinϕ

2
− 2 sin

λ(t+ s) sin(ϕ+ π
k )

2
×

× sin
λ(s− t) sin(ϕ+ π

k )

2
− 2 sin

u(t+ s) sinϕ

2
sin

u(s− t) sinϕ

2
+

+2 sin
u(t+ s) sin(ϕ+ π

k )

2
sin

u(s− t) sin(ϕ+ π
k )

2

∣∣∣∣ dϕ =
1

2

πw

−π
| cos(kϕ)|×

×
∣∣∣∣(sin

λ(t+ s) sinϕ

2
sin

λ(s− t) sinϕ

2
− sin

u(t+ s) sinϕ

2
×
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× sin
u(s− t) sinϕ

2

)
−
(

sin
λ(t+ s) sin(ϕ+ π

k )

2
sin

λ(s− t) sin(ϕ+ π
k )

2
−

− sin
u(t+ s) sin(ϕ+ π

k )

2
sin

u(s− t) sin(ϕ+ π
k )

2

)∣∣∣∣ dϕ =
1

2

πw

−π
| cos(kϕ)|×

×
∣∣∣∣sin λ(t+ s) sinϕ

2

(
sin

λ(s− t) sinϕ

2
− sin

u(s− t) sinϕ

2

)
+

+ sin
u(s− t) sinϕ

2

(
sin

λ(t+ s) sinϕ

2
− sin

u(t+ s) sinϕ

2

)
−

− sin
λ(t+ s) sin(ϕ+ π

k )

2

(
sin

λ(s− t) sin(ϕ+ π
k )

2
−

− sin
u(s− t) sin(ϕ+ π

k )

2

)
− sin

u(s− t) sin(ϕ+ π
k )

2

(
sin

λ(t+ s) sin(ϕ+ π
k )

2
−

sin
u(t+ s) sin(ϕ+ π

k )

2

)∣∣∣∣ dϕ =
1

2

πw

−π
| cos(kϕ)| ·

∣∣∣∣2 sin
λ(t+ s) sinϕ

2
×

× cos
(λ+ u)(s− t) sinϕ

4
sin

(λ− u)(s− t) sinϕ

4
+ 2 sin

u(s− t) sinϕ

2
×

× cos
(λ+ u)(t+ s) sinϕ

4
sin

(λ− u)(t+ s) sinϕ

4
− 2 sin

λ(t+ s) sin(ϕ+ π
k )

2
×

× cos
(λ+ u)(s− t) sin(ϕ+ π

k )

4
sin

(λ− u)(s− t) sin(ϕ+ π
k )

4
−

− 2 sin
u(s− t) sin(ϕ+ π

k )

2
cos

(λ+ u)(t+ s) sin(ϕ+ π
k )

4
×

× sin
(λ− u)(t+ s) sin(ϕ+ π

k )

4

∣∣∣∣ dϕ =

πw

−π
| cos(kϕ)| ·

∣∣∣∣sin λ(t+ s) sinϕ

2
×

× cos
(λ+ u)(s− t) sinϕ

4

(
sin

(λ− u)(s− t) sinϕ

4
−

− sin
(λ− u)(s− t) sin(ϕ+ π

k )

4

)
+ sin

(λ− u)(s− t) sin(ϕ+ π
k )

4
×

×
(

sin
λ(t+ s) sinϕ

2
cos

(λ+ u)(s− t) sinϕ

4
− sin

λ(t+ s) sin(ϕ+ π
k )

2
×

× cos
(λ+ u)(s− t) sin(ϕ+ π

k )

4

)
+ sin

u(s− t) sinϕ

2
cos

(λ+ u)(t+ s) sinϕ

4
×
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×
(

sin
(λ− u)(t+ s) sinϕ

4
− sin

(λ− u)(t+ s) sin(ϕ+ π
k )

4

)
+

+ sin
(λ− u)(t+ s) sin(ϕ+ π

k )

4

(
sin

u(s− t) sinϕ

2
cos

(λ+ u)(t+ s) sinϕ

4
−

− sin
u(s− t) sin(ϕ+ π

k )

2
cos

(λ+ u)(t+ s) sin(ϕ+ π
k )

4

)∣∣∣∣ dϕ =

=

πw

−π
| cos(kϕ)| ·

∣∣∣∣2 sin
λ(t+ s) sinϕ

2
cos

(λ− u)(s− t)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
(λ− u)(s− t)(sinϕ− sin(ϕ+ π

k ))

8
cos

(λ+ u)(s− t) sinϕ

4
+

+ sin
(λ− u)(s− t) sin(ϕ+ π

k )

4

[
sin

λ(t+ s) sinϕ

2

(
cos

(λ+ u)(s− t) sinϕ

4
−

− cos
(λ+ u)(s− t) sin(ϕ+ π

k )

4

)
+ cos

(λ+ u)(s− t) sin(ϕ+ π
k )

4
×

×
(

sin
λ(t+ s) sinϕ

2
− sin

λ(t+ s) sin(ϕ+ π
k )

2

)]
+ 2 sin

u(s− t) sinϕ

2
×

× cos
(λ+ u)(t+ s) sinϕ

4
cos

(λ− u)(t+ s)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
(λ− u)(t+ s)(sinϕ− sin(ϕ+ π

k ))

8
+ sin

(λ− u)(t+ s) sin(ϕ+ π
k )

4
×

×
[
sin

u(s− t) sinϕ

2

(
cos

(λ+ u)(t+ s) sinϕ

4
−

− cos
(λ+ u)(t+ s) sin(ϕ+ π

k )

4

)
+ cos

(λ+ u)(t+ s) sin(ϕ+ π
k )

4
×

×
(

sin
u(s− t) sinϕ

2
− sin

u(s− t) sin(ϕ+ π
k )

2

)]∣∣∣∣ dϕ =

πw

−π
| cos(kϕ)|×

×
∣∣∣∣2 sin

λ(t+ s) sinϕ

2
cos

(λ− u)(s− t)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
(λ− u)(s− t) cos(ϕ+ π

2k ) sin(− π
2k )

4
cos

(λ+ u)(s− t) sinϕ

4
+

+ 2 sin
(λ− u)(s− t) sin(ϕ+ π

k )

4
sin

(λ+ u)(s− t)(sinϕ+ sin(ϕ+ π
k ))

8
×
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× sin
(λ+ u)(s− t)(sin(ϕ+ π

k )− sinϕ)

8
sin

λ(t+ s) sinϕ

2
+

+ 2 sin
(λ− u)(s− t) sin(ϕ+ π

k )

4
cos

(λ+ u)(s− t) sin(ϕ+ π
k )

4
×

× cos
λ(t+ s)(sinϕ+ sin(ϕ+ π

k ))

4
sin

λ(t+ s)(sinϕ− sin(ϕ+ π
k ))

4
+

+ 2 sin
u(s− t) sinϕ

2
cos

(λ− u)(t+ s)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
(λ− u)(t+ s) cos(ϕ+ π

2k ) sin(− π
2k )

4
cos

(λ+ u)(t+ s) sinϕ

4
+

+ 2 sin
(λ− u)(t+ s) sin(ϕ+ π

k )

4
sin

(λ+ u)(t+ s)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
u(s− t) sinϕ

2
sin

(λ+ u)(t+ s)(sin(ϕ+ π
k )− sinϕ)

8
+

+ 2 sin
(λ− u)(t+ s) sin(ϕ+ π

k )

4
cos

(λ+ u)(t+ s) sin(ϕ+ π
k )

4
×

× cos
u(s− t)(sinϕ+ sin(ϕ+ π

k ))

4
sin

u(s− t)(sinϕ− sin(ϕ+ π
k ))

4

∣∣∣∣ dϕ 6

6 2

πw

−π
| cos(kϕ)| ·

[∣∣∣∣sin λ(t+ s) sinϕ

2
cos

(λ− u)(s− t)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
(λ− u)(s− t) cos(ϕ+ π

2k ) sin(− π
2k )

4
cos

(λ+ u)(s− t) sinϕ

4

∣∣∣∣+
+

∣∣∣∣sin (λ− u)(s− t) sin(ϕ+ π
k )

4
sin

(λ+ u)(s− t)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
λ(t+ s) sinϕ

2
sin

(λ+ u)(s− t) cos(ϕ+ π
2k ) sin π

2k

4

∣∣∣∣+
+

∣∣∣∣sin (λ− u)(s− t) sin(ϕ+ π
k )

4
cos

(λ+ u)(s− t) sin(ϕ+ π
k )

4
×

× cos
λ(t+ s)(sinϕ+ sin(ϕ+ π

k ))

4
sin

λ(t+ s) cos(ϕ+ π
2k ) sin(− π

2k )

2

∣∣∣∣+
+

∣∣∣∣sin u(s− t) sinϕ

2
cos

(λ− u)(t+ s)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
(λ− u)(t+ s) cos(ϕ+ π

2k ) sin(− π
2k )

4
cos

(λ+ u)(t+ s) sinϕ

4

∣∣∣∣+
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+

∣∣∣∣sin (λ− u)(t+ s) sin(ϕ+ π
k )

4
sin

u(s− t) sinϕ

2
×

× sin
(λ+ u)(t+ s)(sinϕ+ sin(ϕ+ π

k ))

8
sin

(λ+ u)(t+ s) cos(ϕ+ π
2k ) sin π

2k

4

∣∣∣∣+
+

∣∣∣∣sin (λ− u)(t+ s) sin(ϕ+ π
k )

4
cos

(λ+ u)(t+ s) sin(ϕ+ π
k )

4
×

× cos
u(s− t)(sinϕ+ sin(ϕ+ π

k ))

4
sin

u(s− t) cos(ϕ+ π
2k ) sin(− π

2k )

2

∣∣∣∣] dϕ 6

6 4π

(
|λ− u|α|s− t|α

4α

( π
2k

)α
+
|λ− u|α|s− t|2α|λ+ u|α

42α

( π
2k

)α
+

+
|λ− u|α|s− t|α|t+ s|αλα

4α · 2α
( π

2k

)α
+
|λ− u|α|s− t|α|t+ s|αuα

4α · 2α
( π

2k

)α
+

+
|λ− u|α|s− t|α|t+ s|2αuα|λ+ u|α

42α · 2α
( π

2k

)α
+
|λ− u|α|t+ s|α|s− t|αuα

4α · 2α
×

×
( π

2k

)α)
= 41−απ|λ− u|α|s− t|α

( π
2k

)α(
1 +
|λ+ u|α|s− t|α

4α
+

+
|t+ s|α(λα + 2uα)

2α
+
|t+ s|2αuα|λ+ u|α

4α · 2α

)
.

Similarly, we obtain a bound for |K2|

|K2| =
1

4

∣∣∣∣∣
πw

−π
sin(kϕ)

[
(sin(tλ sinϕ)− sin(sλ sinϕ))−

(
sin
(
tλ sin

(
ϕ+

π

k

))
−

− sin
(
sλ sin

(
ϕ+

π

k

)))
− (sin(tu sinϕ)− sin(su sinϕ)) +

+
(

sin
(
tu sin

(
ϕ+

π

k

))
− sin

(
su sin

(
ϕ+

π

k

)))]
dϕ
∣∣∣ 6 1

4

πw

−π
| sin(kϕ)|×

×
∣∣∣∣2 cos

λ(t+ s) sinϕ

2
sin

λ(t− s) sinϕ

2
− 2 cos

λ(t+ s) sin(ϕ+ π
k )

2
×

× sin
λ(t− s) sin(ϕ+ π

k )

2
− 2 cos

u(t+ s) sinϕ

2
sin

u(t− s) sinϕ

2
+

+2 cos
u(t+ s) sin(ϕ+ π

k )

2
sin

u(t− s) sin(ϕ+ π
k )

2

∣∣∣∣ dϕ =
1

2

πw

−π
| sin(kϕ)|×
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×
∣∣∣∣(cos

λ(t+ s) sinϕ

2
sin

λ(t− s) sinϕ

2
− cos

u(t+ s) sinϕ

2
×

× sin
u(t− s) sinϕ

2

)
−
(

cos
λ(t+ s) sin(ϕ+ π

k )

2
sin

λ(t− s) sin(ϕ+ π
k )

2
−

− cos
u(t+ s) sin(ϕ+ π

k )

2
sin

u(t− s) sin(ϕ+ π
k )

2

)∣∣∣∣ dϕ =
1

2

πw

−π
| sin(kϕ)|×

×
∣∣∣∣cos

λ(t+ s) sinϕ

2

(
sin

λ(t− s) sinϕ

2
− sin

u(t− s) sinϕ

2

)
+

+ sin
u(t− s) sinϕ

2

(
cos

λ(t+ s) sinϕ

2
− cos

u(t+ s) sinϕ

2

)
−

− cos
λ(t+ s) sin(ϕ+ π

k )

2

(
sin

λ(t− s) sin(ϕ+ π
k )

2
−

− sin
u(t− s) sin(ϕ+ π

k )

2

)
− sin

u(t− s) sin(ϕ+ π
k )

2
×

×
(

cos
λ(t+ s) sin(ϕ+ π

k )

2
− cos

u(t+ s) sin(ϕ+ π
k )

2

)∣∣∣∣ dϕ =

=
1

2

πw

−π
| sin(kϕ)|

∣∣∣∣2 cos
λ(t+ s) sinϕ

2
cos

(λ+ u)(t− s) sinϕ

4
×

× sin
(λ− u)(t− s) sinϕ

4
+ 2 sin

u(t− s) sinϕ

2
sin

(λ+ u)(t+ s) sinϕ

4
×

× sin
(u− λ)(t+ s) sinϕ

4
− 2 cos

λ(t+ s) sin(ϕ+ π
k )

2
×

× cos
(λ+ u)(t− s) sin(ϕ+ π

k )

4
sin

(λ− u)(t− s) sin(ϕ+ π
k )

4
−

− 2 sin
u(t− s) sin(ϕ+ π

k )

2
sin

(λ+ u)(t+ s) sin(ϕ+ π
k )

4
×

× sin
(u− λ)(t+ s) sin(ϕ+ π

k )

4

∣∣∣∣ dϕ =

πw

−π
| sin(kϕ)|

∣∣∣∣cos
λ(t+ s) sinϕ

2
×

× cos
(λ+ u)(t− s) sinϕ

4

(
sin

(λ− u)(t− s) sinϕ

4
−

− sin
(λ− u)(t− s) sin(ϕ+ π

k )

4

)
+ sin

(λ− u)(t− s) sin(ϕ+ π
k )

4
×
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×
(

cos
λ(t+ s) sinϕ

2
cos

(λ+ u)(t− s) sinϕ

4
− cos

λ(t+ s) sin(ϕ+ π
k )

2
×

× cos
(λ+ u)(t− s) sin(ϕ+ π

k )

4

)
+ sin

u(t− s) sinϕ

2
×

× sin
(λ+ u)(t+ s) sinϕ

4

(
sin

(u− λ)(t+ s) sinϕ

4
−

− sin
(u− λ)(t+ s) sin(ϕ+ π

k )

4

)
+ sin

(u− λ)(t+ s) sin(ϕ+ π
k )

4
×

×
(

sin
u(t− s) sinϕ

2
sin

(λ+ u)(t+ s) sinϕ

4
− sin

u(t− s) sin(ϕ+ π
k )

2
×

× sin
(λ+ u)(t+ s) sin(ϕ+ π

k )

4

)∣∣∣∣ dϕ =

πw

−π
| sin(kϕ)|

∣∣∣∣2 cos
λ(t+ s) sinϕ

2
×

× cos
(λ+ u)(t− s) sinϕ

4
cos

(λ− u)(t− s)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
(λ− u)(t− s)(sinϕ− sin(ϕ+ π

k ))

8
+ sin

(λ− u)(t− s) sin(ϕ+ π
k )

4
×

×
[(

cos
(λ+ u)(t− s) sinϕ

4
− cos

(λ+ u)(t− s) sin(ϕ+ π
k )

4

)
×

× cos
λ(t+ s) sinϕ

2
+ cos

(λ+ u)(t− s) sin(ϕ+ π
k )

4

(
cos

λ(t+ s) sinϕ

2
−

− cos
λ(t+ s) sin(ϕ+ π

k )

2

)]
+ 2 sin

u(t− s) sinϕ

2
sin

(λ+ u)(t+ s) sinϕ

4
×

× cos
(u− λ)(t+ s)(sinϕ+ sin(ϕ+ π

k ))

8
×

× sin
(u− λ)(t+ s)(sinϕ− sin(ϕ+ π

k ))

8
+ sin

(u− λ)(t+ s) sin(ϕ+ π
k )

4
×

×
[(

sin
(λ+ u)(t+ s) sinϕ

4
− sin

(λ+ u)(t+ s) sin(ϕ+ π
k )

4

)
×

× sin
u(t− s) sinϕ

2
+ sin

(λ+ u)(t+ s) sin(ϕ+ π
k )

4

(
sin

u(t− s) sinϕ

2
−

− sin
u(t− s) sin(ϕ+ π

k )

2

)]∣∣∣∣ dϕ =

πw

−π
| sin(kϕ)| ·

∣∣∣∣2 cos
λ(t+ s) sinϕ

2
×

× cos
(λ+ u)(t− s) sinϕ

4
cos

(λ− u)(t− s)(sinϕ+ sin(ϕ+ π
k ))

8
×
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× sin
(λ− u)(t− s) cos(ϕ+ π

2k ) sin(− π
2k )

4
+ 2 sin

(λ− u)(t− s) sin(ϕ+ π
k )

4
×

× sin
(λ+ u)(t− s)(sinϕ+ sin(ϕ+ π

k ))

8
cos

λ(t+ s) sinϕ

2
×

× sin
(λ+ u)(t− s)(sin(ϕ+ π

k )− sinϕ)

8
+ 2 sin

(λ− u)(t− s) sin(ϕ+ π
k )

4
×

× cos
(λ+ u)(t− s) sin(ϕ+ π

k )

4
sin

λ(t+ s)(sinϕ+ sin(ϕ+ π
k ))

4
×

× sin
λ(t+ s)(sinϕ− sin(ϕ+ π

k ))

4
+ 2 sin

u(t− s) sinϕ

2
×

× sin
(λ+ u)(t+ s) sinϕ

4
cos

(u− λ)(t+ s)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
(u− λ)(t+ s) cos(ϕ+ π

2k ) sin(− π
2k )

4
+ 2 sin

(u− λ)(t+ s) sin(ϕ+ π
k )

4
×

× sin
u(t− s) sinϕ

2
cos

(λ+ u)(t+ s)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
(λ+ u)(t+ s)(sinϕ− sin(ϕ+ π

k ))

8
+ 2 sin

(u− λ)(t+ s) sin(ϕ+ π
k )

4
×

× sin
(λ+ u)(t+ s) sin(ϕ+ π

k )

4
cos

u(t− s)(sinϕ+ sin(ϕ+ π
k ))

4
×

× sin
u(t− s)(sinϕ− sin(ϕ+ π

k ))

4

∣∣∣∣ dϕ 6 2

πw

−π
| sin(kϕ)| ·

[∣∣∣∣cos
λ(t+ s) sinϕ

2
×

× cos
(λ+ u)(t− s) sinϕ

4
cos

(λ− u)(t− s)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
(λ− u)(t− s) cos(ϕ+ π

2k ) sin(− π
2k )

4

∣∣∣∣+

∣∣∣∣sin (λ− u)(t− s) sin(ϕ+ π
k )

4
×

× cos
λ(t+ s) sinϕ

2
sin

(λ+ u)(t− s)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
(λ+ u)(t− s) cos(ϕ+ π

2k ) sin π
2k

4

∣∣∣∣+

∣∣∣∣sin (λ− u)(t− s) sin(ϕ+ π
k )

4
×

× cos
(λ+ u)(t− s) sin(ϕ+ π

k )

4
sin

λ(t+ s)(sinϕ+ sin(ϕ+ π
k ))

4
×

× sin
λ(t+ s) cos(ϕ+ π

2k ) sin π
2k

2

∣∣∣∣+

∣∣∣∣sin u(t− s) sinϕ

2
×

× sin
(λ+ u)(t+ s) sinϕ

4
cos

(u− λ)(t+ s)(sinϕ+ sin(ϕ+ π
k ))

8
×
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× sin
(u− λ)(t+ s) cos(ϕ+ π

2k ) sin(− π
2k )

4

∣∣∣∣+

∣∣∣∣sin (u− λ)(t+ s) sin(ϕ+ π
k )

4
×

× sin
u(t− s) sinϕ

2
cos

(λ+ u)(t+ s)(sinϕ+ sin(ϕ+ π
k ))

8
×

× sin
(λ+ u)(t+ s) cos(ϕ+ π

2k ) sin(− π
2k )

4

∣∣∣∣+

∣∣∣∣sin (u− λ)(t+ s) sin(ϕ+ π
k )

4
×

× sin
(λ+ u)(t+ s) sin(ϕ+ π

k )

4
cos

u(t− s)(sinϕ+ sin(ϕ+ π
k ))

4
×

× sin
u(t− s) cos(ϕ+ π

2k ) sin(− π
2k )

2

∣∣∣∣] dϕ 6 4π

(
|λ− u|α|s− t|α

4α

( π
2k

)α
+

+
|λ− u|α|s− t|2α|λ+ u|α

42α

( π
2k

)α
+
|λ− u|α|s− t|α|t+ s|αλα

4α · 2α
( π

2k

)α
+

+
|λ− u|α|s− t|α|t+ s|αuα

4α · 2α
( π

2k

)α
+
|λ− u|α|s− t|α|t+ s|2αuα|λ+ u|α

42α · 2α
×

×
( π

2k

)α
+
|λ− u|α|t+ s|α|s− t|αuα

4α · 2α
( π

2k

)α)
= 41−απ|λ− u|α|s− t|α×

×
( π

2k

)α(
1 +
|λ+ u|α|s− t|α

4α
+
|t+ s|α(λα + 2uα)

2α
+
|t+ s|2αuα|λ+ u|α

4α · 2α

)
.

Then, we obtain

|Jk(tλ)− Jk(tu)− Jk(sλ) + Jk(su)| 6 2 · 41−α|λ− u|α|s− t|α
( π

2k

)α
×

×
(

1 +
|λ+ u|α|s− t|α

4α
+
|t+ s|α(λα + 2uα)

2α
+
|t+ s|2αuα|λ+ u|α

4α · 2α

)
.♦

3.4. Construction of the model of homogeneous and
isotropic stochastic field

Definition 3.2. [141] A stochastic field X = {X(t), t ∈ R2} is called
homogeneous in the wide sense in R2 if EX(t) = const, t ∈ R2 and

EX(t)X(s) = B(t− s) =
w

R2

ei(λ,t−s)dF (λ), t, s ∈ R2.

Definition 3.3. [141] Let SO(2) be the group of all rotations about the
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origin of the space R2. A homogeneous stochastic field X(t), t ∈ R2 is called
isotropic if

EX(t)X(s) = EX(gt)X(gs),

for all elements g of the group SO(2) and for all t, s ∈ R2.
Let X = {X(t, x), t ∈ R, x ∈ [0, 2π]} be a mean square continuous real

Gaussian homogeneous and isotropic stochastic field on R2. The following
representation is obtained similarly to [141] where complex valued fields are
considered:

X(t, x) =

∞∑
k=1

cos(kx)

∞w

0

Jk(tλ)dη1,k(λ)+

+

∞∑
k=1

sin(kx)

∞w

0

Jk(tλ)dη2,k(λ), (3.4)

where ηi,k(λ), i = 1, 2, k = 1,∞ are independent Gaussian processes wi-
th independent increments, Eηi,k(λ) = 0, E(ηi,k(b) − ηi,k(c))2 = F (b) −

F (c), b > c, F (λ) is the spectral function of the field. Let Jk(u) = 1
π

πr

0

cos(kϕ−

u sinϕ)dϕ be the integral representation of the Bessel functions of the first
kind.

Consider a partition L = {λ0, ..., λN} of the set [0,∞) such that λ0 =

0, λl < λl+1, λN−1 = Λ, λN =∞ and C = max
0<l6N−2

λl+1

λl
<∞.

The process

X̂(t, x) =

M∑
k=1

cos(kx)

N−1∑
l=0

η1,k,lJk(tζl) +

M∑
k=1

sin(kx)

N−1∑
l=0

η2,k,lJk(tζl),

is viewed as a model of the field X(t, x) where ηi,k,l, i = 1, 2 are independent
Gaussian random variables,

ηi,k,l =

λl+1w

λl

dηi,k(λ)

are such that Eηi,k,l = 0, Eη2
i,k,l = F (λl+1)−F (λl) = b2l , ζl, l = 0, ..., N − 2

are independent random variables being independent of ηi,k,l and assuming
values in the intervals [λl, λl+1], ζN−1 = Λ, b2l > 0 are such that

Fl(λ) = P{ζl < λ} =
F (λ)− F (λl)

F (λl+1)− F (λl)
.
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If b2l = 0 then ζl = 0 with probability 1. For the sake of simplicity assume
that b2l > 0, l = 0, 1, ..., N − 1.

Thus X̂(t, x) is written as follows

X̂(t, x) =

M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

Jk(tζl)dη1,k(λ)+

+

M∑
k=1

sin(kx)

N−1∑
l=0

λl+1w

λl

Jk(tζl)dη2,k(λ). (3.5)

Note that X(t, x) admits the following representation

X(t, x) =

∞∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

Jk(tλ)dη1,k(λ)+

+

∞∑
k=1

sin(kx)

N−1∑
l=0

λl+1w

λl

Jk(tλ)dη2,k(λ). (3.6)

Consider the deviation X(t, x)− X̂(t, x) and put

χM (t, x) = X(t, x)− X̂(t, x) =

=

 M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)+

+

∞∑
k=M+1

cos(kx)

∞w

0

Jk(tλ)dη1,k(λ)

)
+

+

 M∑
k=1

sin(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη2,k(λ)+

+

∞∑
k=M+1

sin(kx)

∞w

0

Jk(tλ)dη2,k(λ)

)
=:

=: χM,1(t, x) + χM,2(t, x). (3.7)
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Denote the two terms on the right hand side of (ref313) by χM,1(t, x)
and χM,2(t, x). Then

τ(χM (t, x)) 6 τ(χM,1(t, x)) + τ(χM,2(t, x)). (3.8)

According to the Lemma 1.2 the following inequality holds

τ2(χM,1(t, x)) 6 τ2

 M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)

+

+ τ2

( ∞∑
k=M+1

cos(kx)

∞w

0

Jk(tλ)dη1,k(λ)

)
,

τ2(χM,2(t, x)) 6 τ2

 M∑
k=1

sin(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη2,k(λ)

+

+ τ2

( ∞∑
k=M+1

sin(kx)

∞w

0

Jk(tλ)dη2,k(λ)

)
.

Lemma 3.7. For all 1
2 < α 6 1

τ2

 M∑
k=1

cos(kx)
N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)

 6

6
M

2α− 1

(
2α− 1

M2α−1

)
· 2 · 42(1−α)π2αt2α

N−2∑
l=0

| λl+1 − λl |2α ×

×

b2l +

(
t(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+ 4M2(F (+∞)− F (Λ)),

τ2

 M∑
k=1

sin(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη2,k(λ)

 6
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6
M

2α− 1

(
2α− 1

M2α−1

)
· 2 · 42(1−α)π2αt2α

N−2∑
l=0

| λl+1 − λl |2α ×

×

b2l +

(
t(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+ 4M2(F (+∞)− F (Λ)),

where C = max
0<l6N−2

λl+1

λl
.

Proof. Since

(a1 + a2 + ...+ an)2 6 n(a2
1 + a2

2 + ...+ a2
n),

for all real a1, a2, ..., an, we derive from Lemmas 1.2 and 1.3 that

τ2

 M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)

 6

6M

M∑
k=1

N−1∑
l=0

τ2

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)

 6

6M

M∑
k=1

N−1∑
l=0

θ2

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)

 =

= M

M∑
k=1

N−1∑
l=0

sup
m>1

2m ·m!

(2m)!
E

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)

2m


1
m

.

Since Eξ = 0, Eξ2k+1 = 0, Eξ2k = (2k)!
2k·k!

σ2k for a centered Gaussian
random variable ξ and since the random variables ζl do not depend on
ηi,k(λ), i = 1, 2, by Fubini’s theorem, Cauchy–Bunyakovskiy inequality, and
Lemma 3.4 we obtained

E

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)

2m

=
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= EEζl

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)

2m

6

6
(2m)!

2m ·m!
E

λl+1w

λl

|Jk(tλ)− Jk(tζl)|2dF (λ)

m

6

6
(2m)!

2m ·m!
E

λl+1w

λl

(
41−α|λ− ζl|α ·

(
t · π
k

)α(
1 +

tα|λ+ ζl|α

2α

))2

dF (λ)

m

=

=
(2m)!

2m ·m!
· 42m(1−α)t2mαπ2mα

(
1

k

)2mα

×

× E

λl+1w

λl

|λ− ζl|2α
(

1 +
tα|λ+ ζl|α

2α

)2

dF (λ)

m

=

=
(2m)!

2m ·m!
· 42m(1−α)t2mαπ2mα

(
1

k

)2mα

×

×
λl+1w

λl

λl+1w

λl

|λ− u|2α
(

1 +
tα|λ+ u|α

2α

)2

dF (λ)

m

dFl(u) 6

6
(2m)!

2m ·m!
· 42m(1−α)t2mαπ2mα

(
1

k

)2mα

|λl+1 − λl|2mα×

×
λl+1w

λl

λl+1w

λl

(
1 +

tαλα|1 + u
λ |
α

2α

)2

dF (λ)

m

dFl(u) 6

6
(2m)!

2m ·m!
· 42m(1−α)t2mαπ2mα

(
1

k

)2mα

|λl+1 − λl|2mα×

×

λl+1w

λl

(
1 +

tαλα|1 + λl+1

λl
|α

2α

)2

dF (λ)

m

6

6
(2m)!

2m ·m!
· 42m(1−α)t2mαπ2mα

(
1

k

)2mα

|λl+1 − λl|2mα×

×

λl+1w

λl

(
2 + 2 · t

2αλ2α(1 + C)2α

22α

)
dF (λ)

m

=
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=
(2m)!

2m ·m!
· 42m(1−α)t2mαπ2mα

(
1

k

)2mα

|λl+1 − λl|2mα×

×

2b2l + 2 ·
(
t(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

m

.

Here the symbol Eζl denotes the conditional expectation with respect to ζl.
Note that(∞w

Λ

(∞w
Λ

|Jk(tλ)− Jk(tu)|2dF (λ)

)m
dFl(u)

) 1
m

=

=

(∞w
Λ

(∞w
Λ

∣∣∣∣∣ 1π
(
πw

0

cos(kϕ− tλ sinϕ)dϕ−

−
πw

0

cos(kϕ− tu sinϕ)dϕ

)∣∣∣∣∣
2

dF (λ)

m

dFl(u)


1
m

6

6

(∞w
Λ

(∞w
Λ

(
1

π

πw

0

|cos(kϕ− tλ sinϕ)−

− cos(kϕ− tu sinϕ)| dϕ)
2
dF (λ)

)m
dFl(u)

) 1
m

=

=

(∞w
Λ

(∞w
Λ

(
1

π

πw

0

∣∣∣∣2 sin(kϕ− t(λ+ u) sinϕ

2
)×

× sin(
t(λ− u) sinϕ

2
)

∣∣∣∣ dϕ)2

dF (λ)

)m
dFl(u)

) 1
m

6

6 4

(∞w
Λ

(∞w
Λ

dF (λ)

)m
dFl(u)

) 1
m

= 4(F (+∞)− F (Λ)).

Whence

τ2

 M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)

 6
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6 42(1−α)t2απ2α ·M
M∑
k=1

N−1∑
l=0

1

k2α
×

× sup
m>1

λl+1w

λl

λl+1w

λl

|λ− u|2α
(

1 +
tα|λ+ u|α

2α

)2

dF (λ)

m

dFl(u)


1
m

6

6 2 · 42(1−α)t2απ2α ·M
M∑
k=1

1

k2α
·
N−2∑
l=0

|λl+1 − λl|2α×

×

b2l +

(
t(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+ 4M

M∑
k=1

(F (+∞)− F (Λ)).

The sum
M∑
k=1

1
k2α with 1

2 < α 6 1 can be estimated as follows

M∑
k=1

1

k2α
6 1 +

M∑
k=2

kw

k−1

1

x2α
dx = 1 +

Mw

1

1

x2α
dx = 1 +

x1−2α

1− 2α

∣∣∣∣M
1

=

=
2α

2α− 1
− 1

(2α− 1)M2α−1
.

Then

τ2

 M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)

 6

6
M

2α− 1

(
2α− 1

M2α−1

)
2 · 42(1−α)t2απ2α

N−2∑
l=0

|λl+1 − λl|2α×

×

b2l +

(
t(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+ 4M2(F (+∞)− F (Λ)).

The second inequality is proved similarly. ♦

Lemma 3.8. Let the integral
∞r

0

λ2αdF (λ) < ∞ converge for 1
2 < α 6 1.

Then

τ2

( ∞∑
k=M+1

cos(kx)

∞w

0

Jk(tλ)dη1,k(λ)

)
6
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6 22(1−α)t2απ2α 1

(2α− 1)M2α−1

(∞w
0

λ2αdF (λ)

)
,

τ2

( ∞∑
k=M+1

sin(kx)

∞w

0

Jk(tλ)dη2,k(λ)

)
6

6 22(1−α)t2απ2α 1

(2α− 1)M2α−1

(∞w
0

λ2αdF (λ)

)
.

Proof. Indeed,

τ2

( ∞∑
k=M+1

cos(kx)

∞w

0

Jk(tλ)dη1,k(λ)

)
6

6
∞∑

k=M+1

τ2

(∞w
0

Jk(tλ)dη1,k(λ)

)
6

∞∑
k=M+1

θ2

(∞w
0

Jk(tλ)dη1,k(λ)

)
=

=

∞∑
k=M+1

sup
m>1

2m ·m!

(2m)!
E

(∞w
0

Jk(tλ)dη1,k(λ)

)2m
 1
m

.

Applying Lemma 3.3,

E

(∞w
0

Jk(tλ)dη1,k(λ)

)2m

6
(2m)!

2m ·m!

(∞w
0

| Jk(tλ) |2 dF (λ)

)m
6

6
(2m)!

2m ·m!

(∞w
0

(
21−α | tλ |α πα · 1

kα

)2

dF (λ)

)m
=

=
(2m)!

2m ·m!
· 22m(1−α)t2mαπ2mα

k2mα

(∞w
0

λ2αdF (λ)

)m
,

whence

τ2

( ∞∑
k=M+1

cos(kx)

∞w

0

Jk(tλ)dη1,k(λ)

)
6

6 22(1−α)t2απ2α
∞∑

k=M+1

1

k2α

(∞w
0

λ2αdF (λ)

)
.
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The tail
∞∑

k=M+1

1
k2α with 1

2 < α 6 1 can be estimated as follows

∞∑
k=M+1

1

k2α
6

∞∑
k=M+1

kw

k−1

1

x2α
dx =

∞w

M

1

x2α
dx =

x1−2α

1− 2α

∣∣∣∣∞
M

=
1

(2α− 1)M2α−1
.

Thus

τ2

( ∞∑
k=M+1

cos(kx)

∞w

0

Jk(tλ)dη1,k(λ)

)
6

6 22(1−α)t2απ2α 1

(2α− 1)M2α−1

(∞w
0

λ2αdF (λ)

)
.

The second inequality is proved similarly. ♦

Theorem 3.4. Let X(t, x) and X̂(t, x) be defined by (3.4) and (3.5) respecti-

vely. Assume that the integral
∞r

0

λ2αdF (λ) <∞ with 1
2 < α 6 1 converges.

Then

τ2(X(t, x)− X̂(t, x)) 6
4M

2α− 1

(
2α− 1

M2α−1

)
2 · 42(1−α)t2απ2α×

×
N−2∑
l=0

|λl+1 − λl|2α
b2l +

(
t(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+

+16M2(F (+∞)−F (Λ))+22(1−α)t2απ2α 4

(2α− 1)M2α−1

(∞w
0

λ2αdF (λ)

)
,

where C = max
0<l6N−2

λl+1

λl
.

Proof. The proof of Theorem 3.4 follows from relations (3.7) and (3.8) in
view of Lemmas 3.7 and 3.8. ♦

3.5. Accuracy and reliability of models for stochastic
fields in the space Lp(T), p > 1.

Theorem 3.5. Let 1
2 < α 6 1 and let

∞r

0

λ2αdF (λ) < ∞. Assume that a

partition L used to construct a model X̂(t, x), t ∈ [0, T ], x ∈ [0, 2π], accordi-
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ng to (3.5) is such that

I 6
εp

max
((

2 ln 2
δ

) p
2 , p

p
2

) ,
where

I =
T pα+1

pα+ 1

(
2pD3

pM
p
2

(2α− 1)
p
2

(
2α− 1

M2α−1

) p
2

2
p
2 +1 · 4p(1−α)πpα+1×

×

(
N−2∑
l=0

|λl+1 − λl|2αb2l

) p
2

+Dp2
p(1−α)+1πpα+1

(
4

(2α− 1)M2α−1

) p
2

×

×

(∞w
0

λ2αdF (λ)

) p
2

+
T 2pα+1

2pα+ 1
·

2pD3
pM

p
2

(2α− 1)
p
2

(
2α− 1

M2α−1

) p
2

×

× 2
p
2 +14p(1−α)πpα+1

(
1 + C

2

)pαN−2∑
l=0

|λl+1 − λl|2α
λl+1w

λl

λ2αdF (λ)


p
2

+

+ T · 22p+1πD2
pM

p(F (+∞)− F (Λ))
p
2 ,

and where C = max
0<l6N−2

λl+1

λl
, Dp =

{
1, if 0 < p

2 6 1,
2
p
2−1, if p2 > 1

.

Then the model X̂(t, x) approximates the Gaussian field X(t, x) with
reliability 1− δ, 0 < δ < 1, and accuracy ε > 0 in the space Lp(T), p > 1.

Proof. If

ε >

(
Tw

0

2πw

0

(
τ(X(t, x)− X̂(t, x))

)p
dxdt

) 1
p

· p 1
2 ,

then Theorem 3.2 and Definition 3.1 imply that

P
{
‖ X(t, x)− X̂(t, x) ‖Lp> ε

}
6 2 exp

− ε2

2c
2
p
p

 6 δ,

where cp =
Tr

0

2πr

0

(
τ(X(t, x)− X̂(t, x))

)p
dxdt.
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The latter inequality holds if

Tw

0

2πw

0

(
τ(X(t, x)− X̂(t, x))

)p
dxdt 6

εp(
2 ln 2

δ

) p
2

.

Since
(a+ b)

p
2 6 Dp(a

p
2 + b

p
2 )

with the constant

Dp =

{
1, if p2 6 1,

2
p
2−1, ifp2 > 1

,

Theorem 3.4 implies that(
τ
(
X(t, x)− X̂(t, x)

))p
6

6

[
8M

2α− 1

(
2α− 1

M2α−1

)
42(1−α)t2απ2α

N−2∑
l=0

|λl+1 − λl|2α ×

×

b2l +

(
t(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+ 16M2(F (+∞)− F (Λ))+

+
4 · 22(1−α)t2απ2α

(2α− 1)M2α−1

(∞w
0

λ2αdF (λ)

)] p
2

6

6 Dp

(
8M

2α− 1

(
2α− 1

M2α−1

)
· 42(1−α)t2απ2α

N−2∑
l=0

|λl+1 − λl|2α×

×

b2l +

(
t(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+ 16M2(F (+∞)− F (Λ))


p
2

+

+Dp2
p(1−α)tpαπpα

(
4

(2α− 1)M2α−1

) p
2

(∞w
0

λ2αdF (λ)

) p
2

6

6 D2
p

((
8M

2α− 1

) p
2
(

2α− 1

M2α−1

) p
2

4p(1−α)tpαπpα×

×

(
N−2∑
l=0

| λl+1 − λl |2α
b2l + (

t(1 + C)

2
)2α

λl+1w

λl

λ2αdF (λ)


p
2

+
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+4pMp (F (+∞)− F (Λ))
p
2

)
+Dp2

p(1−α)tpαπpα
(

4

(2α− 1)M2α−1

) p
2

×

×

(∞w
0

λ2αdF (λ)

) p
2

6 D2
p

(
2pDpM

p
2

(2α− 1)
p
2

(
2α− 1

M2α−1

) p
2

×

× 2
p
2 · 4p(1−α)tpαπpα

(N−2∑
l=0

|λl+1 − λl|2αb2l

) p
2

+

(
t(1 + C)

2

)pα
×

×

N−2∑
l=0

|λl+1 − λl|2α
λl+1w

λl

λ2αdF (λ)


p
2

+ 4pMp(F (+∞)− F (Λ))
p
2

+

+Dp2
p(1−α)(tπ)pα

(
4

(2α− 1)M2α−1

) p
2

(∞w
0

λ2αdF (λ)

) p
2

=

=

(
2pD3

pM
p
2

(2α− 1)
p
2

(
2α− 1

M2α−1

) p
2

2
p
2 ·4p(1−α)πpα

(
N−2∑
l=0

|λl+1 − λl|2αb2l

) p
2

+

+Dp2
p(1−α)πpα

(
4

(2α− 1)M2α−1

) p
2

(∞w
0

λ2αdF (λ)

) p
2

 tpα+

+
2pD3

pM
p
2

(2α− 1)
p
2

(
2α− 1

M2α−1

) p
2

2
p
2 · 4p(1−α)πpα

(
1 + C

2

)pα
×

×

N−2∑
l=0

| λl+1 − λl |2α
λl+1w

λl

λ2αdF (λ)


p
2

t2pα+4pD2
pM

p(F (+∞)−F (Λ))
p
2 .

Therefore

Tw

0

2πw

0

(
τ(X(t, x)− X̂(t, x))

)p
dxdt 6

6
T pα+1

pα+ 1

(
2pD3

pM
p
2

(2α− 1)
p
2

(
2α− 1

M2α−1

) p
2

2
p
2 +14p(1−α)πpα+1×

×

(
N−2∑
l=0

| λl+1 − λl |2α b2l

) p
2

+Dp2
p(1−α)+1πpα+1

(
4

(2α− 1)M2α−1

) p
2

×
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×

(∞w
0

λ2αdF (λ)

) p
2

+
T 2pα+1

2pα+ 1

2pD3
pM

p
2

(2α− 1)
p
2

(
2α− 1

M2α−1

) p
2

2
p
2 +1×

4p(1−α)πpα+1

(
1 + C

2

)pαN−2∑
l=0

| λl+1 − λl |2α ·
λl+1w

λl

λ2αdF (λ)


p
2

+

+ T · 22p+1πD2
pM

p(F (+∞)− F (Λ))
p
2 = I. ♦

Corollary 3.1. Let a partition L = {λ0, ..., λN} of the set [0,∞) be such
that λl < λl+1 and λl+1 − λl = Λ

N−1 . Then Theorem 3.5 holds with

I =

(
Λ

N − 1

)pα
·A+

(
1

M2α−1

) p
2

·B + (F (+∞)− F (Λ))
p
2 ·H,

where

A = 2pD3
p

(
2αM

2α− 1

) p
2

2
p
2 +1 · 4p(1−α)πpα+1×

×

 T pα+1

pα+ 1
+

(
3

2

)pα( Λw

0

λ2αdF (λ)

) p
2

T 2pα+1

2pα+ 1

 ,

B =
2pDp

(2α− 1)
p
2

2p(1−α)+1πpα+1

(∞w
0

λ2αdF (λ)

) p
2

· T
pα+1

pα+ 1
,

H = 22p+1 ·D2
p · π ·Mp · T.

3.6. Accuracy and reliability of models for stochastic
fields in the space C(T )

Let X = {X(t, x), t ∈ R, x ∈ [0, 2π]} be a mean square continuous real
Gaussian homogeneous and isotropic stochastic field on R2. Images of the
field and its model X̂(t, x) are provided in Section 5, by (3.4) and (3.5)
respectively.

Also we consider χM (t, x) = X(t, x)− X̂(t, x) that is defined in Section
3 by equality (3.7).
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Consider the difference

χM (t, x)− χM (s, y) = (χM,1(t, x)− χM,1(s, y)) + (χM,2(t, x)− χM,2(s, y)) .

It is clear that

χM,1(t, x)− χM,1(s, y) =

M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)+

+

∞∑
k=M+1

cos(kx)

∞w

0

Jk(tλ)dη1,k(λ)−
M∑
k=1

cos(ky)

N−1∑
l=0

λl+1w

λl

(Jk(sλ)−

− Jk(sζl))dη1,k(λ)−
∞∑

k=M+1

cos(ky)

∞w

0

Jk(sλ)dη1,k(λ) =

=

M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)− cos(ky)×

×
N−1∑
l=0

λl+1w

λl

(Jk(sλ)− Jk(sζl))dη1,k(λ)

+

∞∑
k=M+1

(cos(kx)×

×
∞w

0

Jk(tλ)dη1,k(λ)− cos(ky)

∞w

0

Jk(sλ)dη1,k(λ)

)
=

=

M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl)− Jk(sλ) + Jk(sζl))dη1,k(λ)+

+(cos(kx)− cos(ky))

N−1∑
l=0

λl+1w

λl

(Jk(sλ)− Jk(sζl))dη1,k(λ)

+

+

∞∑
k=M+1

(
cos(kx)

∞w

0

(Jk(tλ)− Jk(sλ))dη1,k(λ)+

+(cos(kx)− cos(ky))

∞w

0

Jk(sλ)dη1,k(λ)

)
.

for all t, s ∈ [0, T ] and x, y ∈ [0, 2π].
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Similarly

χM,2(t, x)− χM,2(s, y) =

M∑
k=1

sin(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη2,k(λ)+

+

∞∑
k=M+1

sin(kx)

∞w

0

Jk(tλ)dη2,k(λ)−
M∑
k=1

sin(ky)

N−1∑
l=0

λl+1w

λl

(Jk(sλ)−

− Jk(sζl))dη2,k(λ)−
∞∑

k=M+1

sin(ky)

∞w

0

Jk(sλ)dη2,k(λ) =

M∑
k=1

(sin(kx)×

×
N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη2,k(λ)− sin(ky)

N−1∑
l=0

λl+1w

λl

(Jk(sλ)−

− Jk(sζl)) dη2,k(λ)) +

∞∑
k=M+1

(
sin(kx)

∞w

0

Jk(tλ)dη2,k(λ)− sin(ky)×

×
∞w

0

Jk(sλ)dη2,k(λ)

)
=

M∑
k=1

sin(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl)− Jk(sλ)+

+ Jk(sζl))dη2,k(λ) +(sin(kx)− sin(ky))

N−1∑
l=0

λl+1w

λl

(Jk(sλ)− Jk(sζl))dη2,k(λ)

+

+

∞∑
k=M+1

(
sin(kx)

∞w

0

(Jk(tλ)− Jk(sλ))dη2,k(λ)+

+(sin(kx)− sin(ky))

∞w

0

Jk(sλ)dη2,k(λ)

)
.

Then

τ(χM (t, x)− χM (s, y)) 6

6 τ(χM,1(t, x)− χM,1(s, y)) + τ(χM,2(t, x)− χM,2(s, y)),

and

τ2(χM,1(t, x)− χM,1(s, y)) 6 4τ2

 M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl)−
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− Jk(sλ) + Jk(sζl)) dη1,k(λ)) + 4τ2

(
M∑
k=1

(cos(kx)− cos(ky))×

×
N−1∑
l=0

λl+1w

λl

(Jk(sλ)− Jk(sζl)) dη1,k(λ)) +

+ 4τ2

( ∞∑
k=M+1

cos(kx)

∞w

0

(Jk(tλ)− Jk(sλ))dη1,k(λ)

)
+

+ 4τ2

( ∞∑
k=M+1

(cos(kx)− cos(ky))

∞w

0

Jk(sλ)dη1,k(λ)

)
,

whence

τ2(χM,2(t, x)−χM,2(s, y)) 6 4τ2

 M∑
k=1

sin(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)−Jk(tζl)−

− Jk(sλ) + Jk(sζl))dη2,k(λ)) + 4τ2

(
M∑
k=1

(sin(kx)− sin(ky))×

×
N−1∑
l=0

λl+1w

λl

(Jk(sλ)− Jk(sζl))dη2,k(λ)

+

+ 4τ2

( ∞∑
k=M+1

sin(kx)

∞w

0

(Jk(tλ)− Jk(sλ))dη2,k(λ)

)
+

+ 4τ2

( ∞∑
k=M+1

(sin(kx)− sin(ky))

∞w

0

Jk(sλ)dη2,k(λ)

)
.

Let σ0 = sup
06t6T

τ(χM (t, x)) and σ(h) = sup
|t−s|6h
|x−y|6h

τ(χM (t, x)− χM (s, y)).

Theorem 3.6. Let X(t, x) and X̂(t, x) be defined by (3.4) and (3.5) respecti-

vely. Assume that 1
2 < α 6 1 and

∞r

0

λ2αdF (λ) <∞. Then
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σ0 6

(
2M

2α− 1

(
2α− 1

M2α−1

)
2 · 42(1−α)T 2απ2α

N−2∑
l=0

|λl+1 − λl|2α×

×

b2l +

(
T (1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+ 8M2(F (+∞)− F (Λ))+

+22(1−α)T 2απ2α 2

(2α− 1)M2α−1

∞w

0

λ2αdF (λ)

) 1
2

,

where C = max
0<l6N−2

λl+1

λl
.

Proof. Since

τ2(χM (t, x)) 6 [τ(χM,1(t, x)) + τ(χM,2(t, x))]
2 6

6 2[τ2(χM,1(t, x)) + τ2(χM,2(t, x))],

Lemmas 3.7 and 3.8 imply that

τ2(χM (t, x)) 6 2

τ2

 M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη1,k(λ)

+

+ τ2

 M∑
k=1

sin(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl))dη2,k(λ)

+

+ τ2

( ∞∑
k=M+1

cos(kx)

∞w

0

Jk(tλ)dη1,k(λ)

)
+

+ τ2

( ∞∑
k=M+1

sin(kx)

∞w

0

Jk(tλ)dη2,k(λ)

)]
6

6 2

[
2 · 42(1−α)t2απ2αM

M∑
k=1

1

k2α

(
cos2(kx) + sin2(kx)

)
×

×
N−2∑
l=0

|λl+1 − λl|2α
b2l +

(
t(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+
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+ 4M

M∑
k=1

(
cos2(kx) + sin2(kx)

)
(F (+∞)− F (Λ)) + 22(1−α)t2απ2α×

×
∞∑

k=M+1

1

k2α

(
cos2(kx) + sin2(kx)

)
×

(∞w
0

λ2αdF (λ)

)]
6

6
2M

2α− 1

(
2α− 1

M2α−1

)
2 · 42(1−α)t2απ2α

N−2∑
l=0

|λl+1 − λl|2α×

×

b2l +

(
t(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+ 8M2(F (+∞)− F (Λ))+

+ 22(1−α)t2απ2α 2

(2α− 1)M2α−1

∞w

0

λ2αdF (λ).

This yields

σ0 = sup
06t6T

τ(χM (t, x)) 6

[
2M

2α− 1

(
2α− 1

M2α−1

)
2 · 42(1−α)T 2απ2α×

×
N−2∑
l=0

|λl+1 − λl|2α
b2l +

(
T (1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+

+8M2(F (+∞)− F (Λ)) + 22(1−α)T 2απ2α 2

(2α− 1)M2α−1

∞w

0

λ2αdF (λ)

] 1
2

. ♦

Corollary 3.2. Let a partition L = {λ0, ..., λN} of the set [0,∞) be such
that λl < λl+1 and λl+1 − λl = Λ

N−1 . If all assumptions of Theorem 3.6
hold, then

σ0 6

[
42(1−α)+1T 2απ2αM

2α− 1

(
2α− 1

M2α−1

)(
Λ

N − 1

)2α

×

×

(
F (Λ) +

(
3T

2

)2α Λw

0

λ2αdF (λ)

)
+ 8M2(F (+∞)− F (Λ))+

+
22(1−α)+1T 2απ2α

(2α− 1)M2α−1

∞w

0

λ2αdF (λ)

] 1
2

.
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Lemma 3.9. Let 1
2 < α 6 1 and

∞r

0

λ2αdF (λ) <∞. Then

τ2

 M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl)− Jk(sλ) + Jk(sζl))dη1,k(λ)

 6

6 42(2−α)|s− t|2α
(π

2

)2α

M

(
M∑
k=1

cos2(kx) · 1

k2α

)
N−2∑
l=0

|λl+1 − λl|2α×

×

(
b2l +

[(
|s− t|(1 + C)

4

)2α

+

(
|t+ s|

2

)2α

(1 + 2Cα)+

+

(
|t+ s|2λl+1(1 + C)

8

)2α
] λl+1w

λl

λ2αdF (λ)

+

+18·43−2α|s−t|2αM
M∑
k=1

cos2(kx)

(∞w
Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)
,

τ2

 M∑
k=1

sin(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl)− Jk(sλ) + Jk(sζl))dη2,k(λ)

 6

6 42(2−α)|s− t|2α
(π

2

)2α

M

(
M∑
k=1

sin2(kx) · 1

k2α

)
N−2∑
l=0

|λl+1 − λl|2α×

×

(
b2l +

[(
|s− t|(1 + C)

4

)2α

+

(
|t+ s|

2

)2α

(1 + 2Cα)+

+

(
|t+ s|2λl+1(1 + C)

8

)2α
] λl+1w

λl

λ2αdF (λ)

+

+18·43−2α|s−t|2αM
M∑
k=1

sin2(kx)

(∞w
Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)
,

where C = max
0<l6N−2

λl+1

λl
.

Proof. Since

(a1 + a2 + ...+ an)2 6 n(a2
1 + a2

2 + ...+ a2
n),
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for all real a1, a2, ..., an we derive from Lemmas 1.2 and 1.3 that

τ2

 M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl)− Jk(sλ) + Jk(sζl))dη1,k(λ)

 6

6M

M∑
k=1

cos2(kx)

N−1∑
l=0

τ2

λl+1w

λl

(Jk(tλ)− Jk(tζl)− Jk(sλ) + Jk(sζl))dη1,k(λ)

 6

6M

M∑
k=1

cos2(kx)

N−1∑
l=0

θ2

λl+1w

λl

(Jk(tλ)− Jk(tζl)− Jk(sλ) + Jk(sζl))dη1,k(λ)

 =

= M

M∑
k=1

cos2(kx)

N−1∑
l=0

sup
m>1

[
2m ·m!

(2m)!
×

×E

λl+1w

λl

(Jk(tλ)− Jk(tζl)− Jk(sλ) + Jk(sζl))dη1,k(λ)

2m


1
m

.

Since Eξ = 0, Eξ2k+1 = 0, Eξ2k = (2k)!
2k·k!

σ2k for a centered Gaussian
random variable ξ and since the random variables ζl do not depend on
ηi,k(λ), i = 1, 2, by Fubini’s theorem, Cauchy–Bunyakovskiy inequality and
Lemma 3.6 with l 6 N − 2 imply that

E

λl+1w

λl

(Jk(tλ)− Jk(tζl)− Jk(sλ) + Jk(sζl))dη1,k(λ)

2m

6

6
(2m)!

2m ·m!
E

λl+1w

λl

|Jk(tλ)− Jk(tζl)− Jk(sλ) + Jk(sζl)|2dF (λ)

m

6

6
(2m)!

2m ·m!
E

λl+1w

λl

(
4 · 42(1−α)|λ− ζl|2α|s− t|2α

( π
2k

)2α

×

×
(

1 +
|λ+ ζl|α|s− t|α

4α
+
|t+ s|α(λα + 2ζαl )

2α
+
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+
|t+ s|2αζαl |λ+ ζl|α

4α · 2α

)2
)
dF (λ))m =

(2m)!

2m ·m!
4m×

× 42m(1−α)
( π

2k

)2mα

|s− t|2mαE

λl+1w

λl

|λ− ζl|2α
(

1 +
|λ+ ζl|α|s− t|α

4α
+

+
|t+ s|α(λα + 2ζαl )

2α
+
|t+ s|2αζαl |λ+ ζl|α

4α · 2α

)2

dF (λ)

)m
=

(2m)!

2m ·m!
4m×

× 42m(1−α)
( π

2k

)2mα

|s− t|2mα
λl+1w

λl

λl+1w

λl

|λ− u|2α
(

1 +
|λ+ u|α|s− t|α

4α
+

+
|t+ s|α(λα + 2uα)

2α
+
|t+ s|2αuα|λ+ u|α

4α · 2α

)2

dF (λ)

)m
dFl(u) 6

6
(2m)!

2m ·m!
4m · 42m(1−α)

( π
2k

)2mα

|s− t|2mα|λl+1 − λl|2mα×

×
λl+1w

λl

λl+1w

λl

(
1 +

λα
(
1 + u

λ

)α |s− t|α
4α

+
|t+ s|αλα(1 + 2

(
u
λ

)α
)

2α
+

+
|t+ s|2αuαλα

(
1 + u

λ

)α
4α · 2α

)2

dF (λ)

m

dFl(u) 6
(2m)!

2m ·m!
4m · 42m(1−α)×

×
( π

2k

)2mα

|s− t|2mα|λl+1 − λl|2mα
λl+1w

λl

1 +
λα
(

1 + λl+1

λl

)α
|s− t|α

4α
+

+
|t+ s|αλα

(
1 + 2

(
λl+1

λl

)α)
2α

+
|t+ s|2αλαl+1λ

α
(

1 + λl+1

λl

)α
4α · 2α

2

dF (λ)


m

6

6
(2m)!

2m ·m!
4m · 42m(1−α)

( π
2k

)2mα

|s− t|2mα|λl+1 − λl|2mα×

×

4

λl+1w

λl

(
1 +

λ2α(1 + C)2α|s− t|2α

42α
+
|t+ s|2αλ2α(1 + 2Cα)2

22α
+

+
|t+ s|4αλ2α

l+1λ
2α(1 + C)2α

42α · 22α

)
dF (λ)

)m
=

(2m)!

2m ·m!
4m·42m(1−α)

( π
2k

)2mα

×
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× |s− t|2mα|λl+1 − λl|2mα4m

b2l +

(
|s− t|(1 + C)

4

)2α λl+1w

λl

λ2αdF (λ)+

+

(
|t+ s|

2

)2α

(1 + 2Cα)2

λl+1w

λl

λ2αdF (λ)+

+

(
|t+ s|2λl+1(1 + C)

8

)2α λl+1w

λl

λ2αdF (λ)

m .
Consider the case of l = N − 1. Applying the inequality |sinx| 6 xα

1
2 < α 6 1 to those terms in |K1| and |K2| that do not contain |λ+ u| and
|t+ s| and bounding the rest ones with sin and cos by 1 we obtain

E

(∞w
Λ

(Jk(tλ)− Jk(tζl)− Jk(sλ) + Jk(sζl))dη1,k(λ)

)2m

6

6
(2m)!

2m ·m!

(∞w
Λ

|Jk(tλ)− Jk(tΛ)− Jk(sλ) + Jk(sΛ)|2dF (λ)

)m
6

6
(2m)!

2m ·m!

(
64

∞w

Λ

(
3
|λ− Λ|α|s− t|α

4α
+ 3

Λα|s− t|α

2α

)2

dF (λ)

)m
=

=
(2m)!

2m ·m!
4(3−2α)m9m|s− t|2mα

(∞w
Λ

(|λ− Λ|α + 2αΛα)
2
dF (λ)

)m
6

6
(2m)!

2m ·m!
4(3−2α)m18m|s− t|2mα

(∞w
Λ

(
|λ− Λ|2α + 22αΛ2α

)
dF (λ)

)m
=

=
(2m)!

2m ·m!
4(3−2α)m18m|s− t|2mα×

×

(∞w
Λ

|λ− Λ|2αdF (λ) +

∞w

Λ

22αΛ2αdF (λ)

)m
=

=
(2m)!

2m ·m!
4(3−2α)m18m|s− t|2mα×

×

(∞w
Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)m
.
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Thus

τ2

 M∑
k=1

cos(kx)

N−1∑
l=0

λl+1w

λl

(Jk(tλ)− Jk(tζl)− Jk(sλ) + Jk(sζl))dη1,k(λ)

 6

6M

M∑
k=1

cos2(kx)

[
42(2−α)|s− t|2α

( π
2k

)2α N−2∑
l=0

|λl+1 − λl|2α×

×

(
b2l +

((
|s− t|(1 + C)

4

)2α

+

(
|t+ s|

2

)2α

(1 + 2Cα)+

+

(
|t+ s|2λl+1(1 + C)

8

)2α
) λl+1w

λl

λ2αdF (λ)

+ 18 · 43−2α|s− t|2α×

×

(∞w
Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)]
= 42(2−α)|s− t|2αM×

×
(π

2

)2α M∑
k=1

(
cos2(kx)

k2α

)N−2∑
l=0

| λl+1−λl |2α
(
b2l +

[(
|s− t|(1 + C)

4

)2α

+

+

(
|t+ s|

2

)2α

(1 + 2Cα) +

(
|t+ s|2λl+1(1 + C)

8

)2α
] λl+1w

λl

λ2αdF (λ)

+

+ 18 · 43−2α|s− t|2αM
M∑
k=1

cos2(kx)×

×

(∞w
Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)
. ♦

The proof of the second inequality is the same.

Lemma 3.10. Let the integral
∞r

0

λ2αdF (λ) converge for all 1
2 < α 6 1.

Then

τ2

 M∑
k=1

(cos(kx)− cos(ky))

N−1∑
l=0

λl+1w

λl

(Jk(sλ)− Jk(sζl))dη1,k(λ)

 6
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6 2 · 42(1−α)s2απ2αM

M∑
k=1

(cos(kx)− cos(ky))2 1

k2α

N−2∑
l=0

|λl+1 − λl|2α×

×

b2l +

(
s(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+

+ 4M

M∑
k=1

(cos(kx)− cos(ky))2(F (+∞)− F (Λ)),

τ2

 M∑
k=1

(sin(kx)− sin(ky))

N−1∑
l=0

λl+1w

λl

(Jk(sλ)− Jk(sζl))dη2,k(λ)

 6

6 2 · 42(1−α)s2απ2αM

M∑
k=1

(sin(kx)− sin(ky))2 1

k2α

N−2∑
l=0

|λl+1 − λl|2α×

×

b2l +

(
s(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+

+ 4M

M∑
k=1

(sin(kx)− sin(ky))2(F (+∞)− F (Λ)).

Proof. Lemmas 1.2 and 1.3 imply

τ2

 M∑
k=1

(cos(kx)− cos(ky))

N−1∑
l=0

λl+1w

λl

(Jk(sλ)− Jk(sζl))dη1,k(λ)

 6

6M

M∑
k=1

(cos(kx)− cos(ky))2
N−1∑
l=0

τ2

λl+1w

λl

(Jk(sλ)− Jk(sζl))dη1,k(λ)

 6

6M

M∑
k=1

(cos(kx)− cos(ky))2
N−1∑
l=0

θ2

λl+1w

λl

(Jk(sλ)− Jk(sζl))dη1,k(λ)

 =

= M

M∑
k=1

(cos(kx)− cos(ky))2×
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×
N−1∑
l=0

sup
m>1

2m ·m!

(2m)!
E

λl+1w

λl

(Jk(sλ)− Jk(sζl))dη1,k(λ)

2m


1
m

.

We use Lemma 3.4 and a reasoning similar to that in the proof of Lemma
3.7 we estimate the expression2m ·m!

(2m)!
E

λl+1w

λl

(Jk(sλ)− Jk(sζl))dη1,k(λ)

2m


1
m

.

With this estimate, we obtain

τ2

 M∑
k=1

(cos(kx)− cos(ky))

N−1∑
l=0

λl+1w

λl

(Jk(sλ)− Jk(sζl))dη1,k(λ)

 6

6 2 · 42(1−α)s2απ2αM

M∑
k=1

(cos(kx)− cos(ky))2 1

k2α

N−2∑
l=0

|λl+1 − λl|2α×

×

b2l +

(
s(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+

+4M
M∑
k=1

(cos(kx)− cos(ky))2(F (+∞)− F (Λ)).

The second inequality is proved similarly. ♦

Lemma 3.11. Let the integral
∞r

0

λ2νdF (λ) converge for ν > 1
2 . Then

τ2

( ∞∑
k=M+1

cos(kx)

∞w

0

(Jk(tλ)− Jk(sλ))dη1,k(λ)

)
6

6
2 · 42(1−α)π2α(

ln
(

1 + 1
|s−t|

))2δ

∞∑
k=M+1

(
cos2(kx) · 1

k2α

)
×

×

((
δ

α

)2δ ∞w

0

λ2αdF (λ) +

(
δ

β

)2δ

|s+ t|2α
∞w

0

λ2νdF (λ)

)
,
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τ2

( ∞∑
k=M+1

sin(kx)

∞w

0

(Jk(tλ)− Jk(sλ))dη2,k(λ)

)
6

6
2 · 42(1−α)π2α(

ln
(

1 + 1
|s−t|

))2δ

∞∑
k=M+1

(
sin2(kx) · 1

k2α

)
×

×

((
δ

α

)2δ ∞w

0

λ2αdF (λ) +

(
δ

β

)2δ

|s+ t|2α
∞w

0

λ2νdF (λ)

)
,

where α
δ 6 1, 1

2 < α 6 1, δ > 0 and 0 < β 6 1.

Proof. Lemmas 1.2 and 1.3 imply that

τ2

( ∞∑
k=M+1

cos(kx)

∞w

0

(Jk(tλ)− Jk(sλ))dη1,k(λ)

)
6

6
∞∑

k=M+1

cos2(kx)τ2

(∞w
0

(Jk(tλ)− Jk(sλ))dη1,k(λ)

)
6

6
∞∑

k=M+1

cos2(kx)θ2

(∞w
0

(Jk(tλ)− Jk(sλ))dη1,k(λ)

)
=

=

∞∑
k=M+1

cos2(kx) sup
m>1

2m ·m!

(2m)!
E

(∞w
0

(Jk(tλ)− Jk(sλ))dη1,k(λ)

)2m
 1
m

.

Given h > 0 and 0 < γ 6 1 we obtain

ln

(
1 +

1

h

)
=

1

γ
ln

(
1 +

1

h

)γ
6

1

γ
ln

(
1 +

(
1

h

)γ)
6

1

hγ · γ
,

whence hγ 6 1

γ ln(1+ 1
h )

. Thus hγδ 6 1

γδ(ln(1+ 1
h ))

δ , δ > 0. If γ · δ = α, then

hα 6
1(

α
δ

)δ (
ln
(
1 + 1

h

))δ . (3.9)

We conclude from Lemma 3.5 and inequality (3.9) that
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E

(∞w
0

(Jk(tλ)− Jk(sλ))dη1,k(λ)

)2m

6

6
(2m)!

2m ·m!

(∞w
0

(Jk(tλ)− Jk(sλ))dF (λ)

)m
6

6
(2m)!

2m ·m!

(∞w
0

(
41−απα

1

kα
(λα|s− t|α + λα+β |s− t|β · |s+ t|α)

)2

dF (λ)

)m
6

6
(2m)!

2m ·m!

2 · 42m(1−α)π2mα

k2mα
×

×

(
|s− t|2α

∞w

0

λ2αdF (λ) + |s− t|2β · |s+ t|2α
∞w

0

λ2(α+β)dF (λ)

)m
6

6
(2m)!

2m ·m!

2 · 42m(1−α)π2mα

k2mα

1(
ln
(

1 + 1
|s−t|

))2mδ
×

((
δ

α

)2δ ∞w

0

λ2αdF (λ) +

(
δ

β

)2δ

· |s+ t|2α
∞w

0

λ2(α+β)dF (λ)

)m
.

We introduce the numbers α and β as follows α = 1
2 + β, β =

ν− 1
2

2 ,

where 1
2 < α 6 1, 0 < β 6 1 and ν > 1

2 . Then

τ2

( ∞∑
k=M+1

cos(kx)

∞w

0

(Jk(tλ)− Jk(sλ))dη1,k(λ)

)
6

6
2 · 42(1−α)π2α(

ln
(

1 + 1
|s−t|

))2δ

∞∑
k=M+1

(
cos2(kx) · 1

k2α

)
×

×

((
δ

α

)2δ ∞w

0

λ2αdF (λ) +

(
δ

β

)2δ

|s+ t|2α
∞w

0

λ2νdF (λ)

)
.

The proof of the second inequality is the same. ♦

Lemma 3.12. Let the integral
∞r

0

λ2αdF (λ) < ∞ converge for 1
2 < α 6 1.

Then
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τ2

( ∞∑
k=M+1

(cos(kx)− cos(ky))

∞w

0

Jk(sλ)dη1,k(λ)

)
6

6 22(1−α)s2απ2α
∞∑

k=M+1

(cos(kx)− cos(ky))2 · 1

k2α

∞w

0

λ2αdF (λ),

τ2

( ∞∑
k=M+1

(sin(kx)− sin(ky))

∞w

0

Jk(sλ)dη2,k(λ)

)
6

6 22(1−α)s2απ2α
∞∑

k=M+1

(sin(kx)− sin(ky))2 · 1

k2α

∞w

0

λ2αdF (λ).

Proof. Lemma 3.12 follows from Lemma 3.8. ♦

Theorem 3.7. Let X(t, x) and X̂(t, x) be defined by (3.4) and (3.5), respecti-
vely, and

σ(h) = sup
|t−s|6h
|x−y|6h

τ(χM (t, x)− χM (s, y)),

where χM (t, x) is defined by (3.7). Assume that
∞r

0

λ2νdF (λ) <∞ for ν > 1
2 .

Then

σ(h) 6
1(

ln
(

1
h + 1

))δ
[

2 · 42(2−α)

(
δ

α

)2δ (π
2

)2α M

2α− 1

(
2α− 1

M2α−1

)
×

×
N−2∑
l=0

|λl+1 − λl|2α
(
b2l +

((
T (1 + C)

4

)2α

+ T 2α(1 + 2Cα)+

+

(
T 2Λ(1 + C)

2

)2α
) λl+1w

λl

λ2αdF (λ)

+ 9 · 44−2α ·M2

(
δ

α

)2δ

×
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×

(∞w
Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)
+ 44−2αT 2απ2αM×

×
M∑
k=1

(
ln
(
k2 + eδ

))2δ
k2α

N−2∑
l=0

|λl+1−λl|2α
b2l +

(
T (1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+

+ 16M(F (+∞)− F (Λ))

M∑
k=1

(
ln
(
k2 + eδ

))2δ
+

43−2απ2α

(2α− 1)M2α−1
×

×

((
δ

α

)2δ ∞w

0

λ2αdF (λ) + (2T )2α

(
δ

β

)2δ ∞w

0

λ2νdF (λ)

)
+

+ 22(2−α)T 2απ2α
∞w

0

λ2αdF (λ)

∞∑
k=M+1

(
ln
(
k2 + eδ

))2δ
k2α

] 1
2

,

where C = max
0<l6N−2

λl+1

λl
, 1

2 < α 6 1, αδ 6 1, δ > 0 and 0 < β 6 1.

Proof. Lemmas 3.9 - 3.12 imply

τ2(χM (t, x)− χM (s, y)) 6 [τ(χM,1(t, x)− χM,1(s, y))+

+τ(χM,2(t, x)− χM,2(s, y))]
2 6 2τ2(χM,1(t, x)− χM,1(s, y))+

+ 2τ2(χM,2(t, x)− χM,2(s, y)) 6 2 · 42(2−α)|s− t|2α
(π

2

)2α

M×

×
M∑
k=1

1

k2α

N−2∑
l=0

|λl+1 − λl|2α
(
b2l +

[(
|s− t|(1 + C)

4

)2α

+

+

(
|t+ s|

2

)2α

(1 + 2Cα) +

(
|t+ s|2λl+1(1 + C)

8

)2α
] λl+1w

λl

λ2αdF (λ)

+

+ 9 · 44−2α|s− t|2αM2

(∞w
Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)
+

+ 43−2αs2απ2αM

(
M∑
k=1

(
(cos(kx)− cos(ky))2+

+ (sin(kx)− sin(ky))2
) 1

k2α

)N−2∑
l=0

|λl+1 − λl|2α×
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×

b2l +

(
s(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+ 8M(F (+∞)− F (Λ))×

×
M∑
k=1

(
(cos(kx)− cos(ky))2 + (sin(kx)− sin(ky))2

)
+

+
43−2απ2α(

ln
(

1 + 1
|s−t|

))2δ

∞∑
k=M+1

(
1

k2α

)
×

×

((
δ

α

)2δ ∞w

0

λ2αdF (λ) +

(
δ

β

)2δ

|s+ t|2α
∞w

0

λ2νdF (λ)

)
+

+ 23−2αs2απ2α
∞w

0

λ2αdF (λ)

∞∑
k=M+1

1

k2α

(
(cos(kx)− cos(ky))2+

+(sin(kx)− sin(ky))2
)
.

Now we apply the inequality

| cos(kx)− cos(ky)| 6
(
ln
(
k2 + eδ

))δ(
ln
(

1
|x−y| + eδ

))δ ,
for some δ > 0 (this is inequality (10) in [79]). Since

M∑
k=1

1

k2α
6 1 +

M∑
k=2

kw

k−1

1

x2α
dx = 1 +

Mw

1

1

x2α
dx =

= 1 +
x1−2α

1− 2α

∣∣∣∣M
1

=
2α

2α− 1
− 1

(2α− 1)M2α−1
,

for all 1
2 < α 6 1 and

∞∑
k=M+1

1

k2α
6

∞∑
k=M+1

kw

k−1

1

x2α
dx =

∞w

M

1

x2α
dx =

x1−2α

1− 2α

∣∣∣∣∞
M

=
1

(2α− 1)M2α−1
,

we have
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τ2(χM (t, x)−χM (s, y)) 6 2·42(2−α)|s−t|2α
(π

2

)2α M

2α− 1

(
2α− 1

M2α−1

)
×

×
N−2∑
l=0

|λl+1−λl|2α
(
b2l +

[(
|s− t|(1 + C)

4

)2α

+

(
|t+ s|

2

)2α

(1 + 2Cα)+

+

(
|t+ s|2λl+1(1 + C)

8

)2α
] λl+1w

λl

λ2αdF (λ)

+ 9 · 44−2α|s− t|2α ·M2×

×

(∞w
Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)
+

44−2αs2απ2αM(
ln
(

1
|x−y| + eδ

))2δ
×

×
M∑
k=1

(
ln
(
k2 + eδ

))2δ
k2α

N−2∑
l=0

|λl+1−λl|2α
b2l +

(
s(1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+

+
16M(F (+∞)− F (Λ))(

ln
(

1
|x−y| + eδ

))2δ

M∑
k=1

(
ln
(
k2 + eδ

))2δ
+

43−2απ2α

(2α− 1)M2α−1
×

× 1(
ln
(

1 + 1
|s−t|

))2δ

((
δ

α

)2δ ∞w

0

λ2αdF (λ) +

(
δ

β

)2δ

|s+ t|2α
∞w

0

λ2ædF (λ)

)
+

+
22(2−α)s2απ2α(

ln
(

1
|x−y| + eδ

))2δ

∞w

0

λ2αdF (λ)

∞∑
k=M+1

(
ln
(
k2 + eδ

))2δ
k2α

.

Therefore

sup
|t−s|6h
|x−y|6h

τ(χM (t, x)−χM (s, y)) 6

[
2 · 42(2−α)h2α

(π
2

)2α M

2α− 1

(
2α− 1

M2α−1

)
×

×
N−2∑
l=0

| λl+1 − λl |2α
(
b2l +

[(
T (1 + C)

4

)2α

+ T 2α(1 + 2Cα)+

+

(
T 2Λ(1 + C)

2

)2α
] λl+1w

λl

λ2αdF (λ)

+ 9 · 44−2αh2α ·M2×
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×

(∞w
Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)
+

44−2αT 2απ2αM(
ln
(

1
h + 1

))2δ ×
×

(
M∑
k=1

(
ln
(
k2 + eδ

))2δ
k2α

)
N−2∑
l=0

| λl+1−λl |2α
b2l +

(
T (1 + C)

2

)2α λl+1w

λl

λ2αdF (λ)

+

+
16M(F (+∞)− F (Λ))(

ln
(

1
h + 1

))2δ M∑
k=1

(
ln
(
k2 + eδ

))2δ
+

43−2απ2α

(2α− 1)M2α−1
×

× 1(
ln
(

1
h + 1

))2δ
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δ

α

)2δ ∞w

0

λ2αdF (λ) + (2T )2α

(
δ

β

)2δ ∞w

0

λ2νdF (λ)

)
+

+
22(2−α)T 2απ2α(

ln
(

1
h + 1

))2δ ∞w
0

λ2αdF (λ)

∞∑
k=M+1

(
ln
(
k2 + eδ

))2δ
k2α

] 1
2

.

Now inequality (3.9) implies

sup
|t−s|6h
|x−y|6h

τ(χM (t, x)−χM (s, y)) 6

[
2 · 42(2−α) 1(

α
δ

)2δ (
ln
(

1
h + 1

))2δ (π2)2α

×

× M

2α− 1

(
2α− 1

M2α−1

)N−2∑
l=0

|λl+1 − λl|2α
(
b2l +

[(
T (1 + C)

4

)2α

+

+T 2α(1 + 2Cα) +

(
T 2Λ(1 + C)

2

)2α
] λl+1w

λl

λ2αdF (λ)

+
9 · 44−2α ·M2(

α
δ

)2δ (
ln
(

1
h + 1

))2δ×
×

(∞w
Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)
+

44−2αT 2απ2αM(
ln
(

1
h + 1

))2δ ×
×

(
M∑
k=1

(
ln
(
k2 + eδ

))2δ
k2α

)
N−2∑
l=0

|λl+1 − λl|2α
(
b2l +

(
T (1 + C)

2

)2α

×

×
λl+1w

λl

λ2αdF (λ)

+
16M(F (+∞)− F (Λ))(

ln
(

1
h + 1

))2δ M∑
k=1

(
ln
(
k2 + eδ

))2δ
+

+
43−2απ2α

(2α− 1)M2α−1
· 1(

ln
(

1
h + 1

))2δ
((

δ

α

)2δ ∞w

0

λ2αdF (λ)+
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+(2T )2α

(
δ

β

)2δ ∞w

0

λ2νdF (λ)

)
+

22(2−α)T 2απ2α(
ln
(

1
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))2δ ∞w
0

λ2αdF (λ)×

×
∞∑

k=M+1

(
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(
k2 + eδ

))2δ
k2α

] 1
2

,

whence

σ(h) 6
1(

ln
(

1
h + 1

))δ
[

2 · 42(2−α)

(
δ

α

)2δ (π
2

)2α M

2α− 1

(
2α− 1

M2α−1

)
×

×
N−2∑
l=0

|λl+1 − λl|2α
(
b2l +

[(
T (1 + C)

4

)2α

+ T 2α(1 + 2Cα)+

+

(
T 2Λ(1 + C)

2

)2α
] λl+1w

λl

λ2αdF (λ)

+ 9 · 44−2α ·M2

(
δ

α

)2δ

×

×

(∞w
Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)
+ 44−2αT 2απ2αM×

×
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M∑
k=1

(
ln
(
k2 + eδ

))2δ
k2α

)
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l=0

|λl+1−λl|2α
b2l +

(
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2

)2α λl+1w
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λ2αdF (λ)

+
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(
ln
(
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))2δ
+

43−2α)π2α

(2α− 1)M2α−1
×

×
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δ

α

)2δ ∞w

0

λ2αdF (λ) + (2T )2α

(
δ

β

)2δ ∞w

0

λ2νdF (λ)

)
+

+22(2−α)T 2απ2α
∞w

0
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(
ln
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k2 + eδ

))2δ
k2α

] 1
2

. ♦

Corollary 3.3. Let a partition L = {λ0, ..., λN} of the set [0,∞) be such
that λl < λl+1 and λl+1 − λl = Λ

N−1 . Let all the assumptions of Theorem
3.7 hold. Then

σ(h) 6
C1(

ln
(

1
h + 1

))δ ,
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where

C1 =

[
2 · 42(2−α)

(
δ

α

)2δ (π
2

)2α M

2α− 1

(
2α− 1

M2α−1

)(
Λ

N − 1

)2α

×

×

(
F (Λ) +
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3T

4

)2α

+ (1 + 2α+1)T 2α +

(
3T 2Λ

2

)2α
]

Λw

0

λ2αdF (λ)

)
+9·44−2α×

×M2

(
δ

α

)2δ
(∞w

Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)
+44−2αT 2απ2αM×

×

(
M∑
k=1

(
ln
(
k2 + eδ

))2δ
k2α

)(
Λ

N − 1

)2α
(
F (Λ) +

(
3T

2

)2α Λw

0

λ2αdF (λ)

)
+

+ 16M(F (+∞)− F (Λ))

M∑
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(
ln
(
k2 + eδ

))2δ
+

43−2απ2α

(2α− 1)M2α−1
×

×

((
δ

α

)2δ ∞w

0

λ2αdF (λ) + (2T )2α

(
δ

β

)2δ ∞w

0

λ2νdF (λ)

)
+ 24−αT 2απ2α×

×
∞w

0

λ2αdF (λ)

∞∑
k=M+1

(
ln
(
k2 + eδ

))2δ
k2α

] 1
2

, (3.10)

1
2 < α 6 1, αδ 6 1, δ > 0 and 0 < β 6 1.

Definition 3.4. A stochastic field X̂(t, x) approximated Gaussian fieldX(t, x)

with the reliability of 1 − γ, 0 < γ < 1 and accuracy q > 0 in the space
C(T), if there exists such partition of L, that inequality

P

{
sup
t∈T
| X(t, x)− X̂(t, x) |> q

}
6 γ

holds.

Theorem 3.8. Consider R2, d(t, s) = max
16i62

| ti−si |, T = {0 6 ti 6 T, i =

1, 2}, T > 0 and let X = {X(t), t ∈ T} be sub-Gaussian stochastic field.
If sup

d(t,s)6h
τ(X(t)−X(s)) 6 σ(h), where σ(h) is continuous, monotonically

decreasing function, such that σ(h)→ 0 as h→ 0 and
r

0+

ψ
(

ln 1
σ(−1)(ε)

)
dε <
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∞ where ψ(u) =
(
u
2

) 1
2 and σ(−1)(ε) is an inverse function to σ(ε) .

Then P

{
sup
t∈T
| X(t) |> u

}
6 2Ã(u, θ) for all 0 < θ < 1 and u > 2Ĩ(θε0)

θ(1−θ) ,

where

Ã(u, θ) = exp

{
− 1

2ε2
0

(
u(1− θ)− 2

θ
Ĩ(θε0)

)2
}
,

ε0 = sup
t∈T

(
E | X(t) |2

) 1
2 ,

Ĩ(v) =

vw

0

(
ln

(
T

2σ(−1)(ε)
+ 1

)) 1
2

dε.

The Theorem 3.8 is a particular case of the Theorem 1.8 from the [29].
Theorem 3.9. Let in model X̂(t, x) the split L be such that when q >
2Ĩ(θε0)
θ(1−θ) , 0 < θ < 1 the following relationship takes place

2 exp

{
− 1

2ε2
0

(
q(1− θ)− 2

θ
Ĩ(θε0)

)2
}

6 γ,

where ε0 = sup
06t6T

τ(χM (t, x)) = σ0, χM (t, x) is defined in (3.7) and let

Ĩ(θε0) 6 Î(θε0), where

Î(θε0) =

θε0w

0

√√√√ln

(
T

2

(
exp

{(
C1

ε

) 1
δ

}
− 1

)
+ 1

)
dε,

C1 represented by the formula (3.10), 1
2 < α 6 1, α

δ 6 1, δ > 0, 0 < β 6 1

and ν > 1
2 .

Then the model X̂(t, x) approximates Gaussian stochastic field X(t, x)

with a given reliability 1 − γ, 0 < γ < 1 and accuracy q > 0 in the space
C(T).

Proof. According to the Theorem 3.8 if q > 2Ĩ(θε0)
θ(1−θ) , 0 < θ < 1 then for
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χM (t, x) the following inequality holds

P

{
sup
t∈T
| χM (t, x) |> q

}
6 2 exp

{
− 1

2ε2
0

(
q(1− θ)− 2

θ
Ĩ(θε0)

)2
}
,

де Ĩ(θε0) =
θε0r

0

(
ln
(

T
2σ(−1)(ε)

+ 1
)) 1

2

dε, σ(h) = sup
|t−s|6h
|x−y|6h

τ(χM (t, x)−χM (s, y)).

From Theorem 3.7 for σ(h) we have

σ(−1)(h) =
1

exp
{(

C1

h

) 1
δ

}
− 1

,

where 1
2 < α 6 1, αδ 6 1, δ > 0, 0 < β 6 1, ν > 1

2 and C1 is defined as in
(3.10), then

Ĩ(θε0) 6
θε0w

0

√√√√ln

(
T

2

(
exp

{(
C1

ε

) 1
δ

}
− 1

)
+ 1

)
dε = Î(θε0),

that can be made an arbitrarily small at a certain selection M , Λ and N .
Specifically, for a given accuracy and reliability we choose M so that the
fifth and sixth terms in the (3.10) were arbitrarily small. Further, considering
the resulting value of M , we choose Λ so that the second and the fourth
terms were small in the ratio (3.10). And finally, considering the value of
the M and Λ, we choose N so that one and three terms in the (3.10) were
arbitrarily small. It should be noted that with this choice of M , Λ and N
is an arbitrarily small not only the C1, but also ε0, which is defined in the
Theorem 3.6. That there exists a partition L, for which holds

2 exp

{
− 1

2ε2
0

(
q(1− θ)− 2

θ
Ĩ(θε0)

)2
}

6 γ.

This, together with the Definition 3.4 means that the constructed model
X̂(t, x) approximates X(t, x) with a given reliability 1 − γ, 0 < γ < 1 and
accuracy q > 0 in the space C(T). ♦

Example 3.3. Consider the model X̂(t, x) of Gaussian homogeneous and
isotropic stochastic field, representation of which is given in (3.5). For this
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model we put

F (λ) =

{
1− 1

λ4 , if λ > 1,
0, if λ < 1

.

We estimate the value C1 and ε0. For this, we presents them in the
following forms

C1 = (CI + CII + CIII)
1
2 ,

where

CI =
43−2απ2α

(2α− 1)M2α−1

((
δ

α

)2δ ∞w

0

λ2αdF (λ) + (2T )2α

(
δ

β

)2δ ∞w

0

λ2νdF (λ)

)
+

+ 24−αT 2απ2α
∞w

0

λ2αdF (λ)

∞∑
k=M+1

(
ln
(
k2 + eδ

))2δ
k2α

,

CII = 9·44−2αM2

(
δ

α

)2δ
(∞w

Λ

|λ− Λ|2αdF (λ) + 22αΛ2α(F (+∞)− F (Λ))

)
+

+ 16M(F (+∞)− F (Λ))

M∑
k=1

(
ln
(
k2 + eδ

))2δ
,

CIII = 2 · 42(2−α)

(
δ

α

)2δ (π
2

)2α M

2α− 1

(
2α− 1

M2α−1

)(
Λ

N − 1

)2α

×

×

(
F (Λ) +

[(
3T

4

)2α

+ (1 + 2α+1)T 2α +

(
3T 2Λ

2

)2α
]

Λw

0

λ2αdF (λ)

)
+44−2αT 2α×

π2αM

(
M∑
k=1

(
ln
(
k2 + eδ

))2δ
k2α

)(
Λ

N − 1

)2α
(
F (Λ) +

(
3T

2

)2α Λw

0

λ2αdF (λ)

)
.

and
ε0 = (εI + εII + εIII)

1
2 ,

where

εI =
22(1−α)+1T 2απ2α

(2α− 1)M2α−1

∞w

0

λ2αdF (λ),
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εII = 8M2(F (+∞)− F (Λ)),

εIII =
42(1−α)+1T 2απ2αM

2α− 1

(
2α− 1

M2α−1

)(
Λ

N − 1

)2α

×

×

(
F (Λ) +

(
3T

2

)2α Λw

0

λ2αdF (λ)

)
.

We choose α = 1, β = 1
2 , δ = 1, ν = 3

2 , T = 1, after transformations we
obtain

CI =
784π2

3M
+ 16π2

∞∑
k=M+1

(
ln(k2 + e)

)2
k2

,

CII =
336M2

Λ2
+

16M

Λ4

M∑
k=1

(
ln
(
k2 + e

))2
,

CIII = 8π2(2M − 1)

(
Λ

N − 1

)2(
9

2
Λ2 − 89

8Λ2
− 1

Λ4
+

61

8

)
+

+ 16π2M

(
Λ

N − 1

)(
11

2
− 9

2Λ2
− 1

Λ4

) M∑
k=1

(
ln
(
k2 + e

))2
k2

.

Then we choose accuracy and reliability with which our model approxi-
mates the stochastic field, namely q = 0, 06, 1 − γ = 0, 99. In addition, let
θ = 1

2 . Then by the Theorem 3.9 we obtain

2 exp

{
− 1

2ε2
0

(
0, 06 · 1

2
− 4Î

(ε0

2

))2
}

6 0, 01,

where

Î
(ε0

2

)
=

ε0
2w

0

√
ln

(
1

2

(
exp

{(
C1

ε

)}
− 1

)
+ 1

)
dε =

=

ε0
2w

0

√
ln

(
1

2
exp

{
C1

ε

}
+

1

2

)
dε,
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therefore

2 exp

− 1

2ε2
0

0, 03− 4

ε0
2w

0

√
ln

(
1

2
exp

{
C1

ε

}
+

1

2

)
dε

2
 6 0, 01.

By the help of approximate numerical methods, we can obtain, that for
Ĉ1 = 1, 99 and ε̂0 = 3, 91 this inequality holds, so we obtained

(CI + CII + CIII)
1
2 6 Ĉ1

and
(εI + εII + εIII)

1
2 6 ε̂0.

Without decreasing of the generality, we put CI 6 Ĉ1
2

3 , CII 6 Ĉ1
2

3 ,

CIII 6
Ĉ1

2

3 and εI 6 ε̂0
2

3 , εII 6 ε̂0
2

3 , εIII 6 ε̂0
2

3 .
Solving the inequality for CI and εI by M , we obtain two values for M ,

from these values we select the maximum. Taking into account the found
value of M we solve the inequalities for CII and εII by Λ and we select
the maximum of them. Substituting the found values for M and Λ to the
inequalities for CIII and εIII , similarly we find value of N .

By using the software package Mathematica, we found that M = 32,
Λ = 65, N = 69442. Using these values we can construct a model X̂(t, x)

that that approximates Gaussian homogeneous and isotropic field X(t, x)

with reliability 0,99 and accuracy 0,06 in the space C(T).

Figure 3.2. The sample path of the model of Gaussian homogeneous and
isotropic stochastic field with reliability 0,99 and accuracy 0,06 in C(T).
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Chapter 4
The estimation of the correlation function of
stationary Gaussian process in L2 metric.

The estimation of correlation functions of stochastic processes and constructi-
on of the criteria for identification of these functions stay an important
task in the theory of stochastic processes and fields. Intensive study of
these problems is associated with the active use of obtained results in
the theory of stochastic processes and in areas where it is used. Criteria
for testing of hypothesis about correlation function are based on the esti-
mations for distribution of correlogram deviation from correlation function.
Many books are devoted to correlogram-type estimates of the correlati-
on function of a stationary Gaussian process( [7], [28], [90], [144], [141].)
Among them the book [19] should be specially mentioned. In this book
correlograms of stationary stochastic processes and their main properti-
es are investigated. Correlogram-type estimates are considered also in the
works [80], [57], [61], [78].

In this chapter a separable real-valued stationary Gaussian process ξ(t)
is considered. The estimates for distribution of correlogram deviation from
correlation function of this process in L2-metric are obtained. The esti-
mation is carried out by observing one sample path of the process. Sample
correlation function or correlogram is used as an estimate.

4.1. The estimation of the correlation function of
stationary Gaussian process by using correlograms

Assume that ξ = (ξ(t), t ∈ [0, T +B], 0 < B <∞) is a separable real-
valued stationary Gaussian process defined on a probability space {Ω,B, P},
with mean zero and a continuous correlation function

ρ(τ) = Eξ(t+ τ)ξ(t), 0 6 τ 6 B.

(this means that process is continuous in mean square)
By the well-known Belyaev alternative, sample paths of separable stati-

onary continuous in mean square Gaussian process are continuous with
probability one on bounded interval or are such that with probability one
on any interval I

sup
t∈I

X(t) = +∞, inf
t∈I

X(t) = −∞.

So, we can estimate correlation function only in the case, when sample paths
of stationary Gaussian process are sample continuous with probability one.

Assume, that sample paths of process ξ(t) are continuous with
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probability one on any interval [0,T],T > 0. Necessary and sufficient
conditions of this fact are Dudley-Fernique’s conditions:

for some ε > 0
εw

0

(HT (u))
1/2

du <∞,

HT (ε) - metrical entropy of the space ([0, T ], ρ), where ρ - pseudometric,
ρ(t, s) =

(
E(ξ(t)− ξ(s))2

)1/2
, а HT (ε) = lnNT (ε), where NT (ε) the mini-

mum number of closed balls of radius ε, which cover ([0, T ], ρ) .
Thus, will assume, that for process ξ(t) Dudley-Fernique’s condition

holds. We note, that Dudley-Fernique’s condition holds if for some ε > 0 at
sufficiently small τ one of following condition holds:

E|ξ(t+ τ)− ξ(t)|2 6
1

| ln |τ ||1+ε

or
∞w

0

ln1+ε(1 + λ)dF (λ) <∞, ε > 0,

where F (λ) - spectral function of stochastic process ξ . Latest two inequali-
ties are close to necessary conditions.

Let ξ(t) be a single sample path of the stationary process. Consider
sample correlation function or correlogram

ρ̂T (τ) =
1

T

Tw

0

ξ(t+ τ)ξ(t)dt, T > 0 (4.1)

as an estimate of correlation function ρ(τ). Since ρ(τ) is an even functi-
on, then only positive τ (τ > 0) will be considered. Under our conditions
integral in (4.1) becomes a usual Riemann integral constructed after a si-
ngle sample path of the process ξ(t), and, as a matter of fact, this integral
represents an almost surely continuous process with respect to τ . Therefore
the correlogram can be viewed as a continuous in probability stochastic
process. This argument enables us to assume that the process ρ̂T (τ) is
separable.

It is easy to calculate mean for ρ̂T (τ):

Eρ̂T (τ) = E

(
1

T

Tw

0

ξ(t+ τ)ξ(t)dt

)
=

1

T

Tw

0

Eξ(t+ τ)ξ(t)dt = ρ(τ)

for each T > 0 та τ > 0.
Hence, ρ̂T (τ) is an unbiased estimate of ρ(τ). The accuracy of estimation
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is given by the difference ρ̂T (τ)− ρ(τ). Using the Isserlis formula for jointly
Gaussian random variables ξi, i = 1, . . . , 4, Eξi = 0:

Eξ1ξ2ξ3ξ4 = Eξ1ξ2Eξ3ξ4 + Eξ1ξ3Eξ2ξ4 + Eξ1ξ4Eξ2ξ3 (4.2)

we can calculate Dρ̂T (τ):

Dρ̂T (τ) = E (ρ̂T (τ)− ρ(τ))
2

= E (ρ̂T (τ))
2 − ρ2(τ) =

= E

(
1

T 2

Tw

0

Tw

0

ξ(t+ τ)ξ(t)ξ(s+ τ)ξ(s)dtds

)
− ρ2(τ) =

=
1

T 2

Tw

0

Tw

0

[Eξ(t+ τ)ξ(t)Eξ(s+ τ)ξ(s) + Eξ(t+ τ)ξ(s+ τ)Eξ(t)ξ(s)+

+ Eξ(t+ τ)ξ(s)Eξ(t)ξ(s+ τ)] dtds− ρ2(τ) =

=
1

T 2

Tw

0

Tw

0

[
ρ2(τ) + ρ2(t− s) + ρ(t− s+ τ)ρ(t− s− τ)

]
dtds− ρ2(τ) =

=
1

T 2

Tw

0

Tw

0

[
ρ2(t− s) + ρ(t− s+ τ)ρ(t− s− τ)

]
dtds.

Consider the difference ζ(τ) = ρ̂T (τ)− ρ(τ).

Lemma 4.1. For any τ > 0 ζ(τ) is square Gaussian random variable.

Proof. Since ρ̂T (τ) is a mean square limit of integral sums of the type
1
T

∑
k

ξ(tk + τ)ξ(tk)∆tk, and each integral sum is quadratic form of Gaussi-

an random vectors, then ζ(τ) is square Gaussian random variable for any
τ > 0. Therefore, ζ(τ) is square Gaussian stochastic process. ♦

Consider random variable η =
r B
0

(ρ̂T (τ)− ρ(τ))
2
dτ,

0 < B <∞. We can calculate Eη:

Eη = E

Bw

0

(ρ̂T (τ)− ρ(τ))
2
dτ =

=
1

T 2

Bw

0

Tw

0

Tw

0

[
ρ2(t− s) + ρ(t− s+ τ)ρ(t− s− τ)

]
dtdsdτ =

=
2

T 2

Bw

0

Tw

0

(T − u)
[
ρ2(u) + ρ(u+ τ)ρ(u− τ)

]
dudτ.
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Since η is a mean square limit of integral sums
∑
k

ζ2(τk)∆τk, where ζ(τk)

is square Gaussian random variable, then the next theorem holds.
Theorem 4.1. For the estimate ρ̂T (τ) of correlation function ρ(τ) stati-
onary Gaussian process ξ = {ξ(t), t ∈ [0, B + T ]} the following inequalities
hold

P

{
Bw

0

(ρ̂T (τ)− ρ(τ))
2
dτ > x

Bw

0

Dρ̂T (τ)dτ

}
> 1− g(u) exp

{
u2x

2

}
(4.3)

for u > 0, 0 < x < − 2 ln g(u)
u2 ,

where g(u) = 1√
2π

r +∞
−∞ exp

{
− s

2

2

}
ds

(1+s2u2)
1
4
and

P

{
Bw

0

(ρ̂T (τ)− ρ(τ))
2
dτ > y

Bw

0

Dρ̂T (τ)dτ

}
6

2
1
4 y

1
4

ch
(√

y
2 −

1
2

) (4.4)

for y > 1
2 .

Proof. The proof is immediate by theorem 1.3, corollary 1.5 and previous
lemma. ♦
Remark 4.1. Theorem 4.1 enable us to construct confidence sets for correlati-
on function of stationary Gaussian process ξ(t).
Let H be the hypothesis that for 0 6 τ 6 B the correlation function of
separable real-valued stationary Gaussian process ξ equals ρ(τ). As an esti-
mator for ρ(τ) we choose ρ̂T (τ). To test the hypothesis H one can use the
following criterion.
Criterion 4.1. For given level of confidence α, 0 < α < 1, we can find such
positive xα and yα, that

s(xα, u) + f(yα) = α,

where
s(x, u) = g(u) exp

{
u2x

2

}
, u > 0, f(x) = 2

1
4 x

1
4

ch(
√

x
2−

1
2 )
.

The hypothesis H is accepted if

xα <

r B
0

(ρ̂T (τ)− ρ(τ))
2
dτ

E
r B
0

(ρ̂T (τ)− ρ(τ))
2
dτ

< yα

and hypothesis is rejected otherwise.
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Remark 4.2. The probability of the first type’s error does not exceed α when
we use this criterion.

Remark 4.3. For given α, we can choose xα and yα in the following way.
Since

P

{
xα 6

η

Eη
6 yα

}
> 1− α,

then
P

{
η

Eη
∈[xα, yα]

}
6 α.

The latter inequality holds if

P

{
η

Eη
6 txα

}
6 αγ and P

{
η

Eη
> yα

}
6 α(1− γ),

where 0 < γ < 1. This means that xα and yα we can find from equations

g(u) exp

{
u2xα

2

}
= αγ,

2
1
4 y

1
4
α

ch
(√

yα
2 −

1
2

) = α(1− γ).

It should be noted, that in this case xα(γ) and yα(γ) depend on γ. So, choice
of γ (0 < γ < 1) will enable minimize the difference yα(γ)− xα(γ).

Remark 4.4. Consider the equation

g(u) exp

{
u2xα

2

}
= α.

For existence the positive solution

xα =
2 ln α

g(u)

u2

the condition ln α
g(u) > 0 should holds, namely g(u) < α, then

u < g(−1)(α). Such u exist, because g(u) −→ 0 for u −→∞. If we denote

uα = g(−1)(α),

then

xα = sup
u>uα

2 ln α
g(u)

u2
.
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Example 4.1. Let the hipotesis consists in the fact that

ρ(τ) = Ae−a|τ |
2

, A, a > 0

is the correlation function of stationary Gaussian stochastic process with
mean zero. To test the hipotesis we can use criterion 4.1, where estimate
ρ̂T (τ) is defined in (4.1).

We would like to calculate E
r B
0

(ρ̂T (τ)− ρ(τ))
2
dτ, where 0 < B < ∞

for this case.

E

Bw

0

(ρ̂T (τ)− ρ(τ))
2
dτ =

2B

T 2

Tw

0

(T − u)ρ2(u)du+

2

T 2

Bw

0

Tw

0

(T − u)ρ(u+ τ)ρ(u− τ)dudτ = I1 + I2.

Taking into account that

Tw

0

e−2au2

du =
1

2
√
a

2T
√
aw

0

e−
t2

2 dt =

√
π

2a
Φ(2T

√
a),

Tw

0

ue−2au2

du = − 1

4a

−2aT 2w

0

etdt =
1

4a

(
1− e−2aT 2

)
,

where Φ(x) = 1√
2π

r x
0
e−

t2

2 dt, we obtain

I1 =
2BA2

T 2

[
T

√
π

2a
Φ(2T

√
a) +

1

4a

(
e−2aT 2

− 1
)]
,

I2 =
2A2

T 2

√
π

2a
Φ(2B

√
a)

[
T

√
π

2a
Φ(2T

√
a) +

1

4a

(
e−2aT 2

− 1
)]

Thus,

I1+I2 =
2A2

T 2

(
B +

√
π

2a
Φ(2B

√
a)

)(
T

√
π

2a
Φ(2T

√
a) +

1

4a

(
e−2T 2

− 1
))

.

Example 4.2. Let the hipotesis consists in the fact that

ρ(τ) = Ae−a|τ |, A, a > 0.
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is the correlation function of stationary Gaussian stochastic process with
mean zero. To test the hipotesis we can use criterion 4.1, where estimate
ρ̂T (τ) is defined in (4.1).

Let us calculate
E

r B
0

(ρ̂T (τ)− ρ(τ))
2
dτ, where 0 < B <∞.

E

Bw

0

(ρ̂T (τ)− ρ(τ))
2
dτ =

2B

T 2

Tw

0

(T − u)ρ2(u)du+

2

T 2

Bw

0

Tw

0

(T − u)ρ(u+ τ)ρ(u− τ)dudτ = I1 + I2.

Since
Tw

0

e−2audu =
1

2a

(
1− e−2aT

)
,

Tw

0

ue−2audu = − T
2a
e−2aT +

1

4a2

(
1− e−2aT

)
,

Bw

0

Tw

0

A2e−a|u+τ |e−a|u−τ |dudτ = A2
Bw

0

(
τw

0

e−2aτdu+

Tw

τ

e−2audu

)
dτ,

we will have

I1 =
2BA2

T 2

[
T

2a

(
1− e−2aT

)
− 1

4a2

(
1− e−2aT

)
− T

2a
e−2aT

]
,

I2 =
2A2

T 2

[(
1− e−2aB

)( T

2a2
− 3

8a3

)
+

+e−2aB

(
BT

2a
+
B2

4a
+

B

4a2

)
+

B

4a2
e−2aT

]
.

So

I1 + I2 =
2A2

T 2

[
B

a

(
1

2a
− T

)
e−2aT +

B2

4a
e−2aB − 1

4a3

(
1− e−2aB

)
×

(32− 2Ta+ 2a2BT +Ba)
]
.
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4.2. The estimation of the correlation function of
stationary Gaussian process when its value is
known only in a finite set of points

During statistical processing of the results the estimate ρ̂T (τ) can be
obtained only approximately.

Assume that ξ = (ξ(t), t ∈ [0, T +B], 0 < B <∞) is a separable real-
valued stationary Gaussian process defined on a probability space {Ω,B, P},
with mean zero and correlation function

ρ(τ) = Eξ(t+ τ)ξ(t), 0 6 τ 6 B.

Assume also that we know the value of this process in points ti = iT
n ,

i = 0, 1, . . . , n, n ∈ N, ∆ti = T
n .

Consider

ρ̂T,n(τ) =
1

T

n−1∑
i=0

ξ(ti + τ)ξ(ti)∆ti =
1

n

n−1∑
i=0

ξ

(
iT

n
+ τ

)
ξ

(
iT

n

)
, (4.5)

as an estimate of correlation function ρ(τ). where ξ(ti) and ξ(ti + τ) are
known values of this process, ti = iT

n , i = 0, 1, . . . , n, n ∈ N, ∆ti = T
n .

It is easy to calculate that ρ̂T,n(τ) is unbiased estimate of ρ(τ):

Eρ̂T,n(τ) = E

(
1

n

n−1∑
i=0

Eξ

(
iT

n
+ τ

)
ξ

(
iT

n

))
=

1

n

n−1∑
i=0

ρ(τ) = ρ(τ).

Using the Isserlis formula (4.2), we obtain

Dρ̂T,n(τ) = E (ρ̂T,n(τ)− ρ(τ))
2

= Eρ̂2
T,n(τ)− ρ2(τ) =

= E

 1

n2

n−1∑
i=0

n−1∑
j=0

ξ

(
iT

n
+ τ

)
ξ

(
iT

n

)
ξ

(
jT

n
+ τ

)
ξ

(
jT

n

)− ρ2(τ) =

=
1

n2

n−1∑
i=0

n−1∑
j=0

[
Eξ

(
iT

n
+ τ

)
ξ

(
iT

n

)
Eξ

(
jT

n
+ τ

)
ξ

(
jT

n

)
+

+ Eξ

(
iT

n
+ τ

)
ξ

(
jT

n
+ τ

)
Eξ

(
iT

n

)
ξ

(
jT

n

)
+

+ Eξ

(
iT

n
+ τ

)
ξ

(
jT

n

)
Eξ

(
iT

n

)
ξ

(
jT

n
+ τ

)]
− ρ2(τ) =
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=
1

n2

n−1∑
i=0

n−1∑
j=0

[
ρ2(τ) + ρ2

(
(i− j)T

n

)
+ ρ

(
(i− j)T

n
+ τ

)
ρ

(
(i− j)T

n
− τ
)]
−

−ρ2(τ) =
1

n2

n−1∑
i=0

n−1∑
j=0

[
ρ2

(
(i− j)T

n

)
+ ρ

(
(i− j)T

n
+ τ

)
ρ

(
(i− j)T

n
− τ
)]

.

It is easy to see, that ρ̂T,n(τ) is is quadratic form of Gaussian random
vectors, therefore ζ(τ) = ρ̂T,n(τ)−ρ(τ), τ > 0 is square Gaussian stochastic
process.

Consider η =
r B
0

(ρ̂T,n(τ)− ρ(τ))
2
dτ, B > 0. Eη can be calculated on

the following way:

Eη = E

Bw

0

(ρ̂T,n(τ)− ρ(τ))
2
dτ =

=
1

n2

Bw

0

n−1∑
i=0

n−1∑
j=0

[
ρ2

(
(i− j)T

n

)
+ ρ

(
(i− j)T

n
+ τ

)
ρ

(
(i− j)T

n
− τ
)]

dτ =

=
B

n2

n−1∑
i=0

n−1∑
j=0

ρ2

(
(i− j)T

n

)
+

1

n2

Bw

0

n−1∑
i=0

n−1∑
j=0

ρ

(
(i− j)T

n
+ τ

)
×

×ρ
(

(i− j)T
n

− τ
)]

dτ.

Theorem 4.2. For the estimate ρ̂T,n(τ) of correlation function ρ(τ) stati-
onary Gaussian process ξ the following inequalities hold

P

{
Bw

0

(ρ̂T,n(τ)− ρ(τ))
2
dτ > x

Bw

0

Dρ̂T,n(τ)dτ

}
> 1− g(u) exp

{
u2x

2

}
(4.6)

for u > 0, 0 < x < − 2 ln g(u)
u2 ,

where g(u) = 1√
2π

r +∞
−∞ exp

{
− s

2

2

}
ds

(1+s2u2)
1
4
and

P

{
Bw

0

(ρ̂T,n(τ)− ρ(τ))
2
dτ > y

Bw

0

Dρ̂T,n(τ)dτ

}
6

2
1
4 y

1
4

ch
(√

y
2 −

1
2

) (4.7)

for y > 1
2 .

Proof. The proof is immediate by theorem 1.3, corollary 1.5 and previous
calculations. ♦
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Remark 4.5. Theorem 4.2 enable us to construct confidence sets for correlati-
on function of stationary Gaussian process ξ(t).
Let H be the hypothesis that for 0 6 τ 6 B the correlation function of
separable real-valued stationary Gaussian process ξ equals ρ(τ). As an esti-
mator for ρ(τ) we choose ρ̂T,n(τ). To test the hypothesis H one can use the
following criterion.
Criterion 4.2. For given level of confidence α, 0 < α < 1, we can find such
positive xα and yα, that

s(xα, u) + f(yα) = α,

where
s(x, u) = g(u) exp

{
u2x

2

}
, u > 0, f(x) = 2

1
4 x

1
4

ch(
√

x
2−

1
2 )
.

The hypothesis H is accepted if

xα <

r B
0

(ρ̂T,n(τ)− ρ(τ))
2
dτ

E
r B
0

(ρ̂T,n(τ)− ρ(τ))
2
dτ

< yα

and hypothesis is rejected otherwise.

4.3. The estimation of the correlation function of
stationary noncentered Gaussian process by using
correlograms

Assume that ξ = (ξ(t), t ∈ [0, T +B], 0 < B <∞) is a separable real-
valued stationary Gaussian process defined on a probability space {Ω,B, P},
with Eξ(t) = m and correlation function

r(τ) = E(ξ(t+ τ)−m)(ξ(t)−m), τ > 0.

Suppose, that we know observation of one sample path of the process.
As an estimate of correlation function ρ(τ) we consider

r̂T (τ) =
1

T

Tw

0

(ξ(t+ τ)− m̂τ )(ξ(t)− m̂)dt, 0 6 τ 6 B, (4.8)

where m̂ and m̂τ are the estimates for process’s mean that are defined as
following

m̂ =
1

T

Tw

0

ξ(t)dt,
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m̂τ =
1

T

Tw

0

ξ(t+ τ)dt.

Since r(τ) = E(ξ(t + τ) − m)(ξ(t) − m) = Eξ(t + τ)ξ(t) − m2, then
Eξ(t+ τ)ξ(t) = r(τ) +m2 and the following equalities are correct:

Em̂τξ(t) =
1

T

Tw

0

Eξ(s+ τ)ξ(t)ds =
1

T

Tw

0

r(s− t+ τ)ds+m2,

Em̂ξ(t) =
1

T

Tw

0

Eξ(s)ξ(t)ds =
1

T

Tw

0

r(s− t)ds+m2,

Em̂τξ(t+ τ) =
1

T

Tw

0

Eξ(s+ τ)ξ(t+ τ)ds =
1

T

Tw

0

r(s− t)ds+m2,

Em̂ξ(t+ τ) =
1

T

Tw

0

Eξ(s)ξ(t+ τ)ds =
1

T

Tw

0

r(s− t− τ)ds+m2,

Em̂τm̂ =
1

T 2

Tw

0

Tw

0

Eξ(s+ τ)ξ(y)dsdy =
1

T 2

Tw

0

Tw

0

r(s− y + τ)dsdy +m2,

Em̂2
τ =

1

T 2

Tw

0

Tw

0

Eξ(s+ τ)ξ(y + τ)dsdy =
1

T 2

Tw

0

Tw

0

r(s− y)dsdy +m2,

Em̂2 =
1

T 2

Tw

0

Tw

0

Eξ(s)ξ(y)dsdy =
1

T 2

Tw

0

Tw

0

r(s− y)dsdy +m2.

We will use these results further. Let us calculate Er̂T (τ).

Er̂T (τ) =
1

T

Tw

0

E (ξ(t+ τ)ξ(t)− m̂ξ(t+ τ)− m̂τξ(t) + m̂τm̂) dt =

=
1

T

Tw

0

[Eξ(t+ τ)ξ(t)− Em̂ξ(t+ τ)− Em̂τξ(t) + Em̂τm̂] dt =

= r(τ)+m2− 1

T 2

Tw

0

Tw

0

r(s− t−τ)dsdt−m2− 1

T 2

Tw

0

Tw

0

r(s− t+τ)dsdt−m2+

+
1

T 2

Tw

0

Tw

0

r(s− y + τ)dsdy +m2 = r(τ)− 1

T 2

Tw

0

Tw

0

r(s− t− τ)dsdt.
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Hence, r̂T (τ) is biased estimate for function r(τ).
Consider

r̃T (τ) = r̂T (τ) +
1

T 2

Tw

0

Tw

0

r(s− t− τ)dsdt.

r̃T (τ) is unbiased estimate for r(τ), because Er̃T (τ) = r(τ).

Dr̃T (τ) = Dr̂T (τ) = Er̂2
T (τ)−

(
r(τ)− 1

T 2

Tw

0

Tw

0

r(s− t− τ)dsdt

)2

.

We denote a(τ) = 1
T 2

r T
0

r T
0
r(t− s+ τ)dtds. Since r(τ) is an even function,

then r(τ) = r(−τ). Therefore

Dr̂T (τ) = Er̂2
T (τ)− (r(τ)− a(τ))2.

Let us calculate Er̂2
T (τ).

Er̂2
T (τ) =

= E

(
1

T 2

Tw

0

Tw

0

(ξ(t+ τ)− m̂τ )(ξ(t)− m̂)(ξ(u+ τ)− m̂τ )(ξ(u)− m̂)dtdu

)
=

=
1

T 2

Tw

0

Tw

0

[E(ξ(t+ τ)− m̂τ )(ξ(t)− m̂)E(ξ(u+ τ)− m̂τ )(ξ(u)− m̂)+

+E(ξ(t+ τ)− m̂τ )(ξ(u+ τ)− m̂τ )E(ξ(t)− m̂)(ξ(u)− m̂)+

+ E(ξ(t+ τ)− m̂τ )(ξ(u)− m̂)E(ξ(t)− m̂)(ξ(u+ τ)− m̂τ )] dtdu =

=
1

T 2

Tw

0

Tw

0

[I1 + I2 + I3] dtdu,

where

I1 = E(ξ(t+ τ)− m̂τ )(ξ(t)− m̂)E(ξ(u+ τ)− m̂τ )(ξ(u)− m̂) =

=

[
(r(τ) + a(τ))−

(
1

T

Tw

0

r(s− t− τ)ds+
1

T

Tw

0

r(s− t+ τ)ds

)]
×

×

[
(r(τ) + a(τ))−

(
1

T

Tw

0

r(s− u− τ)ds+
1

T

Tw

0

r(s− u+ τ)ds

)]
=

= (r(τ) + a(τ))
2 − (r(τ) + a(τ))

(
1

T

Tw

0

r(s− t− τ)ds+
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+
1

T

Tw

0

r(s− t+ τ)ds+
1

T

Tw

0

r(s− u− τ)ds+
1

T

Tw

0

r(s− u+ τ)ds

)
+

+

(
1

T

Tw

0

r(s− t− τ)ds
1

T

Tw

0

r(s− u− τ)ds+

+
1

T

Tw

0

r(s− t− τ)ds
1

T

Tw

0

r(s− u+ τ)ds+

+
1

T

Tw

0

r(s− t+ τ)ds
1

T

Tw

0

r(s− u− τ)ds+

+
1

T

Tw

0

r(s− t+ τ)ds
1

T

Tw

0

r(s− u+ τ)ds

)
;

I2 = E(ξ(t+ τ)− m̂τ )(ξ(u+ τ)− m̂τ )E(ξ(t)− m̂)(ξ(u)− m̂) =

=

[
(r(t− u) + a(0))−

(
1

T

Tw

0

r(s− t)ds+
1

T

Tw

0

r(s− u)ds

)]
×

×

[
(r(t− u) + a(0))−

(
1

T

Tw

0

r(s− t)ds+
1

T

Tw

0

r(s− u)ds

)]
=

= (r(t− u) + a(0))
2 − 2r(t− u)

(
1

T

Tw

0

r(s− t)ds+
1

T

Tw

0

r(s− u)ds

)
−

−2a(0)

(
1

T

Tw

0

r(s− t)ds+
1

T

Tw

0

r(s− u)ds

)
+

+

( 1

T

Tw

0

r(s− t)ds

)2

+ 2
1

T

Tw

0

r(s− t)ds 1

T

Tw

0

r(s− u)ds+

+

(
1

T

Tw

0

r(s− u)ds

)2
 ;

I3 = E(ξ(t+ τ)− m̂τ )(ξ(u)− m̂)E(ξ(t)− m̂)(ξ(u+ τ)− m̂τ ) =

=

[
r(t− u+ τ)− 1

T

Tw

0

r(s− t− τ)ds− 1

T

Tw

0

r(s− u+ τ)ds+ a(τ)

]
×
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×

[
r(t− u− τ)− 1

T

Tw

0

r(s− t+ τ)ds− 1

T

Tw

0

r(s− u− τ)ds+ a(τ)

]
=

= r(t− u+ τ)r(t− u− τ)− r(t− u+ τ)
1

T

Tw

0

r(s− t+ τ)ds−

−r(t− u+ τ)
1

T

Tw

0

r(s− u− τ)ds+ r(t− u+ τ)a(τ)−

−r(t− u− τ)
1

T

Tw

0

r(s− t− τ)ds+
1

T

Tw

0

r(s− t− τ)ds
1

T

Tw

0

r(s− t+ τ)ds+

+
1

T

Tw

0

r(s− t− τ)ds
1

T

Tw

0

r(s− u− τ)ds− a(τ)
1

T

Tw

0

r(s− t− τ)ds−

−r(t− u− τ)
1

T

Tw

0

r(s− u+ τ)ds+
1

T

Tw

0

r(s− u+ τ)ds
1

T

Tw

0

r(s− t+ τ)ds+

+
1

T

Tw

0

r(s− u+ τ)ds
1

T

Tw

0

r(s− u− τ)ds− a(τ)
1

T

Tw

0

r(s− u+ τ)ds+

+a(τ)r(t−u− τ)−a(τ)
1

T

Tw

0

r(s− t+ τ)ds−a(τ)
1

T

Tw

0

r(s−u− τ)ds+a2(τ).

Then
1

T 2

Tw

0

Tw

0

[I1 + I2 + I3] dtdu = (r(τ)− a(τ))
2

+

+a2(0) + a2(τ) +
1

T 2

Tw

0

Tw

0

[
r2(t− u)dtdu+ r(t− u+ τ)r(t− u− τ)dtdu

]
−

− 1

T 3

Tw

0

Tw

0

Tw

0

[2r(s− t)r(t− u) + r(t− s− τ)r(t− s+ τ)+

+r(t−s+ τ)r(t−u− τ)− r(t−s+ τ)r(t−u+ τ) + r(t−u+ τ)r(s−u− τ)+

+ r(t− u− τ)r(s− u+ τ)− r(t− u− τ)r(s− u+ τ)] dsdtdu =

=
1

T 4

[
Tw

0

Tw

0

r(t− s)dtds

]2

+
1

T 4

[
Tw

0

Tw

0

r(t− s+ τ)dtds

]2

+

+
2

T 2

Tw

0

(T − s)[r2(s) + r(s+ τ)r(s− τ)]ds−
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− 1

T 3

Tw

0

Tw

0

Tw

0

[r(t− s+ τ)r(s− u+ τ) + 2r(t− s)r(s− u)+

+ r(t− s− τ)r(s− u− τ)] dtdsdu+

+ (r(τ)− a(τ))
2
.

Hence,

Dr̂T (τ) =
1

T 4

[
Tw

0

Tw

0

r(t− s)dtds

]2

+
1

T 4

[
Tw

0

Tw

0

r(t− s+ τ)dtds

]2

+

+
2

T 2

Tw

0

(T − s)[r2(s) + r(s+ τ)r(s− τ)]ds−

− 1

T 3

Tw

0

Tw

0

Tw

0

[r(t− s+ τ)r(s− u+ τ) + 2r(t− s)r(s− u)+

+ r(t− s− τ)r(s− u− τ)] dtdsdu.

Let us show, that r̂T (τ) is square Gaussian stochastic process.
Consider a partition λ =

{
t0 = 0, t1 = T

n , . . . , tk = kT
n , . . . , tn = T

}
of

the segment [0, T ] and replace integrals in r̂T (τ) by corresponding integral
sums

r̂T,n(τ) =
1

n

n−1∑
i=0

(ξ(ti + τ)− m̂τ ) (ξ(ti)− m̂) ,

and m̂τ with m̂ by integral sums

m̂τ,n =
1

n

n−1∑
i=0

ξ

(
iT

n
+ τ

)
and

m̂n =
1

n

n−1∑
i=0

ξ

(
iT

n

)
.

Then

r̂T,n(τ) =
1

n3

n−1∑
k=0

n−1∑
i=0

n−1∑
j=0

[
ξ

(
kT

n
+ τ

)
− ξ

(
iT

n
+ τ

)]
×

×
[
ξ

(
kT

n

)
− ξ

(
jT

n

)]
=
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=

n−1∑
k=0

(
1

n
√
n

n−1∑
i=0

[
ξ

(
kT

n
+ τ

)
− ξ

(
iT

n
+ τ

)])
×

×

 1

n
√
n

n−1∑
j=0

[
ξ

(
kT

n

)
− ξ

(
jT

n

)] =

n−1∑
k=0

αk(τ)αk(0),

where

αk(τ) =
1

n
√
n

n−1∑
i=0

[
ξ

(
kT

n
+ τ

)
− ξ

(
iT

n
+ τ

)]
, k = 0, n− 1

Hence,
r̂T,n(τ) = αT (τ)α(0),

where α(τ) is the centered random vector with components αk(τ), k =
0, n− 1.

Obviously, that r̂T (τ) = l.i.m.n−→∞r̂T,n(τ). Therefore ζ(τ) = r̂T (τ) −
Er̂T (τ) is square Gaussian stochastic process.

Consider η =
r B
0

(r̂T (τ)− Er̂T (τ))
2
dτ, 0 < B <∞.

Eη =

Bw

0

E (r̂T (τ)− Er̂T (τ))
2
dτ =

=

Bw

0

 1

T 4

[
Tw

0

Tw

0

r(t− s)dtds

]2

+
1

T 4

[
Tw

0

Tw

0

r(t− s+ τ)dtds

]2

+

+
2

T 2

Tw

0

(T − s)[r2(s) + r(s+ τ)r(s− τ)]ds−

− 1

T 3

Tw

0

Tw

0

Tw

0

[r(t− s+ τ)r(s− u+ τ) + 2r(t− s)r(s− u)+

+ r(t− s− τ)r(s− u− τ)] dtdsdu) dτ

Theorem 4.3. For the estimate r̂T (τ) of correlation function r(τ) stati-
onary Gaussian process the following inequalities hold

P

{
Bw

0

(r̂T (τ)− r(τ))
2
dτ > x

Bw

0

Dr̂T (τ)dτ

}
> 1− g(u) exp

{
u2x

2

}
(4.9)
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for u > 0, 0 < x < − 2 ln g(u)
u2 ,

where g(u) = 1√
2π

r +∞
−∞ exp

{
− s

2

2

}
ds

(1+s2u2)
1
4
and

P

{
Bw

0

(r̂T (τ)− r(τ))
2
dτ > y

Bw

0

Dr̂T (τ)dτ

}
6

2
1
4 y

1
4

ch
(√

y
2 −

1
2

) (4.10)

for y > 1
2 .

Proof. The proof is immediate by theorem 1.3, corollary 1.5 and previous
calculations. ♦
Remark 4.6. Theorem 4.3 enable us to construct confidence sets in the space
L2(0, B) for correlation function of stationary Gaussian process ξ(t).
Let H be the hypothesis that for 0 6 τ 6 B the correlation function of
separable real-valued stationary Gaussian process ξ with Eξ(t) = m equals
r(τ). As an estimator r(τ) we choose r̂T (τ). To test the hypothesis H one
can use the following criterion.
Criterion 4.3. For given level of confidence α, 0 < α < 1, we can find such
positive xα and yα, that

s(xα, u) + f(yα) = α,

where
s(x, u) = g(u) exp

{
u2x

2

}
, u > 0, f(x) = 2

1
4 x

1
4

ch(
√

x
2−

1
2 )
.

The hypothesis H is accepted if

xα <

r B
0

(r̂T (τ)− r(τ))
2
dτ

E
r B
0

(r̂T (τ)− r(τ))
2
dτ

< yα

and hypothesis is rejected otherwise.

Remark 4.7. Since r̂T,n(τ) - is the quadratic form of Gaussian centered
random vectors, then ζ(τ) = r̂T,n(τ)−Er̂T,n(τ) is square Gaussian stochastic
process for τ > 0. Therefore, in the case when values of process ξ(t) are
known in the points ti and ti + τ, where ti = iT

n , i = 0, n− 1, the criterion
4.3 can be used for testing the hypothesis about the correlation function. As
an estimate of correlation function in this case r̂T,n(τ) must be considered.
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Chapter 5
Estimation of the covariation function of
Gaussian stochastic process in the space
Lp(T ), p > 1.

Estimation of spectral and covariance functions of stochastic processes
and criteria construction to identify these characteristics are the matter of
active research and topical direction in the theory of stochastic processes.
The interest to study of these problems is caused by wide application of the
obtained results, in particular for solving different problems in geology and
meteorology.

There are several methods to obtain these estimates and to construct
criteria for testing hypotheses about the covariance functions. One of these
methods is based on Bartlett’s asymptotic limit formula (see [9], Brockwell
and Davis,1991, Chap. 7). In the papers by Coates and Diggle (1986) [24],
Shumway (2006) [122], Choi, Ombao, Ray, (2008) [23], Taheriyoun (2012)
[123] the criteria for comparison covariance functions of two stochastic
sets were constructed. The criteria in the case of the separable, symmetric
or stationary covariance function are obtained in the papers by Scaccia
and Martin (2005) [120], Park and Fuentes (2008) [108], Fuentes (2005,
2006) [37], [38] and Lund, Bassily, and Vidakovic (2009) [95]. In the papers
by Fan, Zhang, Zhang (2001) [33] and Fan, Zhang (2004) [32] generalised
likelihood ratio test for a stationary time series was constructed. Li, Genton
and Sherman in the paper [92] proposed a methodology to evaluate the
appropriateness of several types of common assumptions on multivariate
covariance functions in the spatio-temporal context.

In this chapter another approach is used to construct criteria for testing
hypotheses about the covariance function of Gaussian stationary stochastic
process. Namely, this criterion is based on the fact, that we can evaluate the
deviation of covariance function from its estimators with a given accuracy
and reliability in Lp metric. In the above-mentioned papers the limit distri-
bution of the estimates was found. Instead, we find such T for which with a
given accuracy and reliability the norm of deviation the covariance function
and its estimator will be the smallest. Therefore, it is difficult to say which
approach is the best. Probabily, we can say that the simultaneous use of the
different approaches will be the best.

Similar approaches have been used, for examples, in the papers [11],
[20], [47], [61], [80] and in the book [90], where some estimates of covari-
ance functions with given accuracy in uniform metrics were obtained. In
the papers [86] and [34] Yu. Kozachenko and T. Fedoryanych constructed
criteria for testing hypotheses about covariance function of a stationary

141



Gaussian process with given reliability and accuracy in the space L2[0, A].
To construct the criteria in this paper the estimates are used for the norm
of square Gaussian stochastic processes in the space Lp[0, A], p > 1, which
were obtained in the paper [83] by Yu. Kozachenko and V. Troshki. More
detailed information on the theory of square Gaussian random variables
can be found in the book [19] and in the paper [81]. In particular, in these
manuscripts the properties of the space of square Gaussian random vari-
ables were studied and its connection with other spaces of random variables
was identified.

In this chapter we have obtained estimates of probability of deviati-
ons ρ̂(τ) from ρ(τ) in the norm of the space Lp[0, A], p > 1. In addi-
tion, this chapter deals with the construction of a criterion for testing
hypothesis about covariance function of a stationary Gaussian process in
the case of unknown mean of the process (see [84]), criteria for testing
hypotheses about the covariance functions of Gaussian stationary random
process when the values of this process are known only in a finite set of
points, criterion for testing hypotheses about the covariance functions of
Gaussian random process when available alternative hypothesis and cri-
terion for testing hypotheses about the covariance functions of Gaussian
non-stationary stochastic process. In fact, we continue studies initiated in
the paper [83].

5.1. Estimation of the norm of deviation the
covariation function from correlogram.

Consider a measurable stationary Gaussian stochastic process X which
is define for any t ∈ R. Without any loss of generality, we can assume that
X = {X(t), t ∈ T = [0, T + A], 0 < T < ∞, 0 < A < ∞} and EX(t) = 0.
The covariance function of this process ρ(τ) = EX(t + τ)X(t) is defined
for any τ ∈ R, ρ(τ) is an even function. Let ρ(τ) be a function that is
continuous on T.
Theorem 5.1. Let correlogram

ρ̂(τ) =
1

T

Tw

0

X(t+ τ)X(t)dt, 0 6 τ 6 A (5.1)

be an estimator of the covariance function ρ(τ). Then the following inequali-
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ty holds for all ε >
(
p√
2

+
√

(p2 + 1)p
)p
Cp

P

{
Aw

0

(ρ̂(τ)− ρ(τ))pdτ > ε

}
6 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 ,

where Cp =
Ar

0

(
2
T 2

Tr

0

(T − u)(ρ2(u) + ρ(u+ τ)ρ(u− τ))du

) p
2

dτ and 0 <

A < ∞.

Remark 5.1. Since the sample paths of the processX(t) are continuous with
probability one on the set T, ρ̂(τ) is a Riemann integral.

Proof. Consider

E(ρ̂(τ)− ρ(τ))2 = E(ρ̂(τ))2 − ρ2(τ).

From the Isserlis equality for jointly Gaussian random variables it follows
that

E(ρ̂(τ))2 − ρ2(τ) = E

(
1

T 2

Tw

0

Tw

0

X(t+ τ)X(t)X(s+ τ)X(s)dtds

)
− ρ2(τ)

=
1

T 2

Tw

0

Tw

0

(EX(t+ τ)X(t)EX(s+ τ)X(s) + EX(t+ τ)X(s+ τ)

×EX(t)X(s) + EX(t+ τ)X(s)EX(s+ τ)X(t))dtds− ρ2(τ)

=
1

T 2

Tw

0

Tw

0

(ρ2(τ) + ρ2(t− s) + ρ(t− s+ τ)ρ(t− s− τ))dtds− ρ2(τ)

=
1

T 2

Tw

0

Tw

0

(ρ2(t− s) + ρ(t− s+ τ)ρ(t− s− τ))dtds

=
2

T 2

Tw

0

(T − u)(ρ2(u) + ρ(u+ τ)ρ(u− τ))du.

We obtained that

E(ρ̂(τ)− ρ(τ))2 =
2

T 2

Tw

0

(T − u)(ρ2(u) + ρ(u+ τ)ρ(u− τ))du. (5.2)
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Since ρ̂(τ) − ρ(τ) is a square Gaussian stochastic process (see Lemma 3.1,
Chapter 6 in book [19]), then it follows from the Theorem 3.4 that

P

{
Aw

0

(ρ̂(τ)− ρ(τ))pdτ > ε

}
6 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 ,

where Cp = E(ρ̂(τ))2 − ρ2(τ). Applying equality (5.2) we get

Cp =

Aw

0

(
2

T 2

Tw

0

(T − u)(ρ2(u) + ρ(u+ τ)ρ(u− τ))du

) p
2

dτ.

The theorem is proved. ♦
Denote

g(ε) = 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 .

From the Theorem 5.1 it follows that if ε > zp = Cp

(
p√
2

+
√

(p2 + 1)p
)p

then

P

{
Aw

0

(ρ̂(τ)− ρ(τ))pdτ > ε

}
6 g(ε).

Let εδ be a solution of the equation g(ε) = δ, 0 < δ < 1. Put Sδ =
max{εδ, zp}. It is obviously that g(Sδ) 6 δ and

P

{
Aw

0

(ρ̂(τ)− ρ(τ))pdτ > Sδ

}
6 δ. (5.3)

Let H be the hypothesis that the covariance function of a measurable
real-valued stationary Gaussian stochastic process X(t) equals ρ(τ) for 0 6
τ 6 A. From the Theorem 5.1 and (5.3) it follows that to test the hypothesis
H one can use the following criterion.
Criterion 5.1. For a given level of confidence δ the hypothesisH is accepted
if

Aw

0

(ρ̂(τ)− ρ(τ))pdµ(τ) < Sδ

otherwise hypothesis is rejected.

Remark 5.2. The equation g(ε) = δ has a solution for any δ > 0, since g(ε)

is a monotonically decreasing function. We can find the solution of equation
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using numerical methods.

Remark 5.3. One can easily see that Criterion 5.1 can be used if Cp → 0 as
T →∞.

Next theorem contain assumptions under which Cp tend to zero as T →
0.
Theorem 5.2. Let ρ(τ) be covariance function of centered stationary stochastic
process. Let ρ(τ) be continuous function. If ρ(T ) → 0 as T → ∞ then

Cp → 0 as T → ∞, where Cp =
Ar

0

(ψ(T, τ))p/2dt and ψ(T, τ) = 2
T 2

Tr

0

(T −

u)(ρ2(u) + ρ(u+ τ)ρ(u− τ))du, A > 0, T > 0.

Proof. ψ(T, τ) 6 2
T

Tr

0

(ρ2(u) + ρ(u + τ)ρ(u − τ))du 6 4ρ2(0). Now it is

sufficiently to prove that ψ(T, τ)→ 0 as T →∞. From the L’Hopital’s rule
it follows that

lim
T→∞

ψ(T, τ) = lim
T→∞

2

T

Tw

0

(ρ2(u) + ρ(u+ τ)ρ(u− τ))du =

= lim
T→∞

(ρ2(T ) + ρ(T + τ)ρ(T − τ)) = 0.

The application of Lebesgue’s dominated convergence theorem completes
the proof. ♦

Here are examples in which we find the estimates for Cp.
Example 5.1. Let H be the hypothesis that the covariance function of a
centered measurable stationary Gaussian stochastic process equals ρ(τ) =

B exp{−a | τ |}, where B > 0 and a > 0.
To test the hypothesis H one can use the Criterion 5.1 by selecting

ρ̂T (τ) which is defined in (5.1) as the estimator of the function ρ(τ). Let
0 < A <∞. We shall find the value of the following expression

I =

Tw

0

(T − u)
(
e−2au + e−a|u+τ |e−a|u−τ |

)
du =

Tw

0

Te−2audu

+ T

Tw

0

e−a|u+τ |e−a|u−τ |du−
Tw

0

ue−2audu−
Tw

0

ue−a|u+τ |e−a|u−τ |du

= I1 + I2 + I3 + I4.
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For the similar calculations as in the example, we obtain that

Cp 6

(
2B

T 2

) p
2
Aw

0

((
Tτ +

T

2a

)
e−2aτ +

T

2a
+

1

2a2
e−2aT

)p/2
dτ =

= (2B)
p
2
T p/2

T p
I5 = (2B)

p
2

1

T p/2
I5,

where I5 =
Ar

0

((
τ + 1

2a

)
e−2aτ + 1

2a + 1
2a2 e

−2aT
)p/2

dτ .

Example 5.2. Let H be the hypothesis that the covariance function of a a
centered measurable stationary Gaussian stochastic process equals ρ(τ) =

B exp{−a | τ |2}, where B > 0 and a > 0.
Similarly as in the previous example to test the hypothesis H one can

use the Criterion 5.1 by selecting ρ̂T (τ), which is defined in (5.1) as the
estimator of the function ρ(τ). Let 0 < A < ∞. We shall find the value of
the following expression

I =

Tw

0

(T − u)
(
e−2au2

+ e−a|u+τ |2e−a|u−τ |
2
)
du =

Tw

0

Te−2au2

du

+ T

Tw

0

e−a|u+τ |2e−a|u−τ |
2

du−
Tw

0

ue−2au2

du−
Tw

0

ue−a|u+τ |2e−a|u−τ |
2

du

= I1 + I2 + I3 + I4.

For the similar calculations as in the example, we get that

Cp 6

(
2B

T 2

) p
2
Aw

0

(
T

( √
π

2
√

2a
+

√
π

2
√

2a
e−2aτ2

))p/2
dτ = (2B)

p
2

1

T p/2
I6,

where I6 =
Ar

0

( √
π

2
√

2a
+
√
π

2
√

2a
e−2aτ2

)p/2
dτ .

Lemma 5.1. Let X be a stationary Gaussian stochastic process with the
spectral density f(λ) and covariance function

ρ(τ) =

∞w

−∞
cosλτf(λ)dλ.
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Let f(λ) be a differentiated function and

λf(λ)→ 0, asλ→∞,
∞w

0

|f ′(λ)| dλ <∞,

∞w

0

|λf ′(λ)| dλ <∞.

Then, to test the hypothesis about the covariance function can be used the
Criterion 5.1 and

Cp 6

(
4

T

)p/2
dp

(
1

p

(
2(A+ 2)p/2+1 − 2p/2+2

)
I
p/2
1 +A

((
2− 1

T

)
I2

)p/2)
,

where

I1 =

∞w

0

∞w

0

|λγf
′
(λ)f

′
(γ)|dλdγ;

I2 =

∞w

0

∞w

0

|f
′
(λ)f

′
(γ)|dλdγ;

dp =

{
1, as 0 < p 6 1,
2p, as p > 1.

Proof. Since the function ρ(τ) is an even function, then

ρ(τ) =

∞w

−∞
cosλτf(λ)dλ = 2

∞w

0

cosλτf(λ)dλ.

Using Theorem 5.1 we obtain

Cp 6
Aw

0

(
1

T

Tw

0

(ρ2(u) + ρ(u+ τ)ρ(u− τ))du

) p
2

dτ =

=

Aw

0

(
4

T

Tw

0

(∞w
0

cosλuf(λ)dλ

∞w

0

cos γuf(γ)dγ+

+

∞w

0

cosλ(u+ τ)f(λ)dλ

∞w

0

cos γ(u− τ)f(γ)dγ

)
du

) p
2

dτ.
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Consider the next integral

θw

0

cosλuf(λ)dλ = f(λ)
sinλu

u

∣∣∣∣θ
0

−
θw

0

sinλu

u
f
′
(λ)dλ =

= f(θ)
sinθu

u
−

θw

0

sinλu

u
f
′
(λ)dλ (5.4)

From the properties of definite integral it follows that

Tw

0

ρ2(u)du =

1w

0

ρ2(u)du+

Tw

0

ρ2(u)du.

Consider
∣∣∣∣ 1r

0

ρ2(u)du

∣∣∣∣. It is known that for any θ > 0 and u > 0

∣∣∣∣ sin θuu
∣∣∣∣ 6 θ.

From (5.4) and from properties of definite integral, we obtain the following
inequalities∣∣∣∣∣

1w

0

ρ2(u)du

∣∣∣∣∣ =

∣∣∣∣∣
1w

0

(
f(θ)

sinθu

u
−

θw

0

sinλu

u
f
′
(λ)dλ

)
×

×

(
f(θ)

sinθu

u
−

θw

0

sin γu

u
f
′
(γ)dγ

)
du

∣∣∣∣∣ 6
6

1w

0

∣∣∣∣∣f(θ)
sinθu

u
−

θw

0

sinλu

u
f
′
(λ)dλ

∣∣∣∣∣
∣∣∣∣∣f(θ)

sinθu

u
−

θw

0

sin γu

u
f
′
(γ)dγ

∣∣∣∣∣ du 6

6
1w

0

(
|f(θ)|

∣∣∣∣sinθuu
∣∣∣∣+

∣∣∣∣∣
θw

0

sinλu

u
f
′
(λ)dλ

∣∣∣∣∣
)
×

×

(
|f(θ)|

∣∣∣∣sinθuu
∣∣∣∣+

∣∣∣∣∣
θw

0

sin γu

u
f
′
(γ)dγ

∣∣∣∣∣
)
du 6
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6
1w

0

(
|f(θ)θ|+

θw

0

|λf
′
(λ)|dλ

)(
|f(θ)θ|+

θw

0

|γf
′
(γ)|dγ

)
du =

=

(
|f(θ)θ|+

θw

0

|λf
′
(λ)|dλ

)(
|f(θ)θ|+

θw

0

|γf
′
(γ)|dγ

)
.

Now if θ →∞, then∣∣∣∣∣
1w

0

ρ2(u)du

∣∣∣∣∣ −→
∞w

0

|λf
′
(λ)|dλ

∞w

0

|γf
′
(γ)|dγ.

From the similar considerations as in the previous case, we find that∣∣∣∣∣
Tw

1

ρ2(u)du

∣∣∣∣∣ =

∣∣∣∣∣
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1
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f(θ)

sinθu

u
−

θw

0

sinλu
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(λ)dλ

)
×

×
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sinθu
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−
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du
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1
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|f(θ)|+
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|f
′
(λ)|dλ
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|f(θ)|+

θw

0

|f
′
(γ)|dγ

)
du.

If θ →∞, then∣∣∣∣∣
Tw

1

ρ2(u)du

∣∣∣∣∣ −→
Tw

1

du

u2

∞w

0

|f
′
(λ)|dλ

∞w

0

|f
′
(γ)|dγ =

=

(
1− 1

T

) ∞w
0

|f
′
(λ)|dλ

∞w

0

|f
′
(γ)|dγ.

Namely,

Tw

0

ρ2(u)du 6
∞w

0

∞w

0

|λγf
′
(λ)f

′
(γ)|dλdγ+

(
1− 1

T

) ∞w
0

∞w

0

|f
′
(λ)f

′
(γ)|dλdγ.
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We estimate
Tr

0

ρ(u+ τ)ρ(u− τ)du. To do this, write it in the following form

Tw

0

ρ(u+ τ)ρ(u− τ)du =

τ+1w

0

ρ(u+ τ)ρ(u− τ)du+

Tw

τ+1

ρ(u+ τ)ρ(u− τ)du.

Consider∣∣∣∣∣
τ+1w

0

ρ(u+ τ)ρ(u− τ)du

∣∣∣∣∣ =

=

∣∣∣∣∣
τ+1w

0

(
f(θ)

sinθ(u+ τ)

u+ τ
−

θw

0

sinλ(u+ τ)

u+ τ
f
′
(λ)dλ

)
×

×

(
f(θ)

sinθ(u− τ)

u− τ
−

θw

0

sin γ(u− τ)

u− τ
f
′
(γ)dγ

)
du
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6
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(
|f(θ)θ|+

θw

0

|λf
′
(λ)|dλ

)(
|f(θ)θ|+

θw

0

|γf
′
(γ)|dγ

)
du

Hence, if θ →∞∣∣∣∣∣
τ+1w

0

ρ(u+ τ)ρ(u− τ)du

∣∣∣∣∣ −→ (τ + 1)

∞w

0

|λf
′
(λ)|dλ

∞w

0

|γf
′
(γ)|dγ.

Consider the second term∣∣∣∣∣
Tw

τ+1

ρ(u+ τ)ρ(u− τ)du

∣∣∣∣∣ =

=

∣∣∣∣∣
Tw

τ+1

(
f(θ)

sinθ(u+ τ)

u+ τ
−

θw

0

sinλ(u+ τ)

u+ τ
f
′
(λ)dλ

)
×

×

(
f(θ)
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−

θw

0

sin γ(u− τ)

u− τ
f
′
(γ)dγ

)
du

∣∣∣∣∣ 6
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6
Tw

τ+1

1

|u+ τ ||u− τ |

(
|f(θ)|+

θw

0

|f
′
(λ)|dλ

)(
|f(θ)|+

θw

0

|f
′
(γ)|dγ

)
du→

→
Tw

τ+1

du

u2 − τ2

∞w

0

|f
′
(λ)|dλ

∞w

0

|f
′
(γ)|dγ, θ →∞.

Since τ 6 T , then

Tw

τ+1

du

u2 − τ2
=

1

2τ
ln

∣∣∣∣u− τu+ τ

∣∣∣∣∣∣∣∣T
τ+1

=
1

2τ

(
ln

∣∣∣∣T − τT + τ

∣∣∣∣− ln

∣∣∣∣τ + 1− τ
τ + 1 + τ

∣∣∣∣) =

=
1

2τ
ln

∣∣∣∣ (T − τ)(2τ + 1)

(T + τ)

∣∣∣∣ 6 1.

This means that

Tw

0

ρ(u+ τ)ρ(u− τ)du 6 (τ + 1)

∞w

0

∞w

0

|λγf
′
(λ)f

′
(γ)|dλdγ+

+

∞w

0

∞w

0

|f
′
(λ)f

′
(γ)|dλdγ.

Denote

I1 =

∞w

0

∞w

0

|λγf
′
(λ)f

′
(γ)|dλdγ;

I2 =

∞w

0

∞w

0

|f
′
(λ)f

′
(γ)|dλdγ.

Then

Cp 6

(
4

T

)p/2 Aw

0

(
I1 +

(
1− 1

T

)
I2 + (τ + 1)I1 + I2

)p/2
dτ =

=

(
4

T

)p/2 Aw

0

(
(τ + 2)I1 +

(
2− 1

T

)
I2

)p/2
dτ.

For any non-negative a, b and p > 0 the following inequality holds

(a+ b)p 6 dp(a
p + bp),
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where

dp =

{
1, при 0 < p 6 1,
2p, при p > 1.

From the last inequality we have that

Cp 6

(
4

T

)p/2
dp

Aw

0

(
((τ + 2)I1)

p/2
+

((
2− 1

T

)
I2

)p/2)
dτ =

=

(
4

T

)p/2
dp

(
1

p

(
2(A+ 2)p/2+1 − 2p/2+2

)
I
p/2
1 +A

((
2− 1

T

)
I2

)p/2)
.

It is easy to see that Cp → 0 if T → ∞. Then, from the Remark 5.3 it
follows that for test the hypothesis about the covariance function can be
used the Criterion 5.1. ♦

5.2. Estimates of covariance functions of Gaussian
stationary stochastic process in Lp(T ) when its
value is known only in a finite set of points

Usually in practice the value of the process are observed at the certain
times. And based on this data, you need to make conclusions about the
behavior of the process that was considered. Therefore, we estimate the
covariance function of Gaussian stationary stochastic process when we know
the value of this process at the certain times, whose number is finite.

Let X = {X(t), t ∈ T = [0, T +A], 0 < T <∞, 0 < A <∞}, EX(t) = 0
be a measurable real-valued Gaussian stationary stochastic process with the
covariance function

ρ(τ) = EX(t+ τ)X(t), 0 6 τ 6 A,

and defined on the probability space {Ω,B, P}.
As an estimator of the covariance function ρ(τ) we choose

ρ̂T,n(τ) =
1

T

n−1∑
i=0

X(ti + τ)X(ti)∆ti =
1

n

n−1∑
i=0

X

(
iT

n
+ τ

)
X

(
iT

n

)
, (5.5)

where X(ti) and X(ti + τ) are independent, known values of the random
process, ti = iT

n , i = 0, 1, . . . , n, n ∈ N, ∆ti = T
n .
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Remark 5.4. Since,

Eρ̂T,n(τ) = E

(
1

n

n−1∑
i=0

X

(
iT

n
+ τ

)
X

(
iT

n

))
=

1

n

n−1∑
i=0

ρ(τ) = ρ(τ),

then ρ̂T,n(τ) is unbiased estimate for ρ(τ).

Theorem 5.3. Let X be measurable real-valued Gaussian stationary stochastic
process with known values at the certain times ti = iT

n , i = 0, 1, . . . , n,

n ∈ N. Let EX(t) = 0 and ρ(τ) be the covariance function of this process
and let

Cp =
1

np

Aw

0

n−1∑
i=0

n−1∑
j=0

[
ρ2

(
(i− j)T

n

)
+

+ ρ

(
(i− j)T

n
+ τ

)
ρ

(
(i− j)T

n
− τ
)])p/2

dτ.

if 0 < A <∞. If condition

ε >

(
p√
2

+

√
(
p

2
+ 1)p

)p
Cp

holds, then

P

{
Aw

0

(ρ̂T,n|τ)− ρ(τ)|pdµ(τ) > ε

}
6 2

√√√√1 +
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√
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Proof. Consider

E(ρ̂T,n(τ)− ρ(τ))2 = E(ρ̂T,n(τ))2 − ρ2(τ).

From the Isserlis equality (see book [19]) for jointly Gaussian random vari-
ables it follows that

Eρ̂2
T,n(τ) =

= E

 1

n2

n−1∑
i=0

n−1∑
j=0

X

(
iT

n
+ τ

)
X

(
iT

n

)
X

(
jT

n
+ τ

)
X

(
jT

n

) =
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=
1

n2

n−1∑
i=0

n−1∑
j=0

[
EX

(
iT

n
+ τ

)
X

(
iT

n

)
EX

(
jT

n
+ τ

)
X

(
jT

n

)
+

+ EX

(
iT

n
+ τ

)
X

(
jT

n
+ τ

)
EX

(
iT

n

)
X

(
jT

n

)
+

+ EX

(
iT

n
+ τ

)
X

(
jT

n

)
EX

(
iT

n

)
X

(
jT

n
+ τ

)]
=

=
1

n2

n−1∑
i=0

n−1∑
j=0

[
ρ2(τ) + ρ2

(
(i− j)T

n

)
+ ρ

(
(i− j)T

n
+ τ

)
ρ

(
(i− j)T

n
− τ
)]

=

= ρ2(τ)+
1

n2

n−1∑
i=0

n−1∑
j=0

[
ρ2

(
(i− j)T

n

)
+ ρ

(
(i− j)T

n
+ τ

)
ρ

(
(i− j)T

n
− τ
)]

.

Namely,

E(ρ̂T,n(τ)− ρ(τ))2 =
1

n2

n−1∑
i=0

n−1∑
j=0

[
ρ2

(
(i− j)T

n

)
+

ρ

(
(i− j)T

n
+ τ

)
ρ

(
(i− j)T

n
− τ
)]

. (5.6)

Since ρ̂T,n(τ) is a quadratic form of Gaussian vectors, then by Lemma 3.1,
Chapter 6 in book [19] we have that ρ̂T,n(τ) − ρ(τ), τ > 0 is a square
Gaussian stochastic process. From Theorem 3.4 follows that

P

{
Aw

0

|ρ̂T,n(τ)− ρ(τ)|pdµ(τ) > ε

}
6 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 .

Applying equality (5.6) we obtain

Cp =
1

np

Aw

0

n−1∑
i=0

n−1∑
j=0

[
ρ2

(
(i− j)T

n

)
+

+ ρ

(
(i− j)T

n
+ τ

)
ρ

(
(i− j)T

n
− τ
)])p/2

dτ.

The theorem is proved. ♦
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Denote

g(ε) = 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 .

From the Theorem 5.3 it follows that if ε > zp = Cp

(
p√
2

+
√

(p2 + 1)p
)p
,

then

P

{
Aw

0

|ρ̂T,n(τ)− ρ(τ)|pdτ > ε

}
6 g(ε).

Let εδ be a solution of the equation g(ε) = δ, where 0 < δ < 1. Put
Sδ = max{εδ, zp}. Then it is obvious that g(Sδ) 6 δ and

P

{
Aw

0

|ρ̂T,n(τ)− ρ(τ)|pdτ > Sδ

}
6 δ. (5.7)

Let H be the hypothesis that the covariance function of a measurable
real-valued stationary Gaussian stochastic process X equals to ρ(τ) if 0 6
τ 6 A. As a estimation of the ρ(τ) we choose ρ̂T,n(τ). From the Theorem 5.3
it follows that to test the hypothesis H one can use the following criterion.
Criterion 5.2. For a given level of confidence δ the hypothesisH is accepted
if

Aw

0

|ρ̂T,n(τ)− ρ(τ)|pdµ(τ) < Sδ

otherwise hypothesis is rejected.

Remark 5.5. By using this criteria the error of the first kind does not exceed
δ.

5.3. Estimates for covariance function of a stationary
Gaussian process in the norm of the space Lp[0, A]

with unknown mean

Let us consider a continuous real stationary Gaussian stochastic process
X defined on a probability space {Ω,B, P},

X = {X(t), t ∈ T = [0, T +A], 0 < A < T <∞}

and EX(t) = m. We denote the covariance function of this process by

ρ(τ) = E(X(t+ τ)−m)(X(t)−m), τ ∈ R. (5.8)
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Also we use the following denotation:

r(τ) =
1

T 2

Tw

0

Tw

0

ρ(s− t− τ)dsdt. (5.9)

We choose as an estimate of the covariance function ρ(τ) the statistics ρ̂(τ)
defined in (5.1).
Remark 5.6. Since the process X is a continuous one, then the right part
in (5.9) contains Riemann integral.

Remark 5.7. Since

Eρ̂(τ) =
1

T

Tw

0

E (X(t+ τ)X(t)− m̂X(t+ τ)− m̂τX(t) + m̂m̂τ ) dt =

=
1

T

Tw

0

(EX(t+ τ)X(t)−Em̂X(t+ τ)−Em̂τX(t) + Em̂m̂τ ) dt =

= ρ(τ) +m2 − 1

T 2

Tw

0

Tw

0

EX(s)X(t+ τ)dtds−

− 1

T 2

Tw

0

Tw

0

EX(s+ τ)X(t)dtds+
1

T 2

Tw

0

Tw

0

EX(s+ τ)X(t)dsdt =

= ρ(τ)+m2− 1

T 2

Tw

0

Tw

0

ρ(s−t−τ)dsdt−m2− 1

T 2

Tw

0

Tw

0

ρ(s−t+τ)dsdt−m2+

+
1

T 2

Tw

0

Tw

0

ρ(s−t+τ)dsdt+m2 = ρ(τ)− 1

T 2

Tw

0

Tw

0

ρ(s−t−τ)dsdt = ρ(τ)−r(τ),

then ρ̂(τ) is a biased estimate for ρ(τ) and the bias is equal to r(τ). However,
the statistics ρ̃(τ) = ρ̂(τ)+r(τ) is an unbiased estimate. Moreover, variances
of the estimates ρ̂(τ) and ρ̃(τ) are equal.

Theorem 5.4. Let X(t) be a measurable stationary Gaussian process with
EX(t) = m and the covariance function ρ(τ). Suppose that for 0 < A < T
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and p > 1 the condition C(p, T ) <∞ holds, where

C(p, T ) =

Aw

0

 1

T 4

[
Tw

0

Tw

0

ρ(t− s)dtds

]2

+
1

T 4

[
Tw

0

Tw

0

ρ(t− s+ τ)dtds

]2

+

+
2

T 2

Tw

0

(T − s)[ρ2(s) + ρ(s+ τ)ρ(s− τ)]ds−

− 1

T 3

Tw

0

Tw

0

Tw

0

[ρ(t− s+ τ)ρ(s− u+ τ) + 2ρ(t− s)ρ(s− u)+

+ ρ(t− s− τ)ρ(s− u− τ)] dtdsdu

) p
2

dτ. (5.10)

Then for

ε >

(
p√
2

+

√(p
2

+ 1
)
p

)p
C(p, T )

the following inequality holds true:

P

{
Aw

0

|ρ̂(τ)−Eρ̂(τ)|pdτ > ε

}
6 2

√
1 +

ε1/p
√

2

C
1
p (p, T )

exp

{
− ε

1
p

√
2C

1
p (p, T )

}
.

Proof. At first, we shall calculate

Dρ̂(τ) = Eρ̂2(τ)− (ρ(τ)− r(τ))2. (5.11)

In order to do that we consider Eρ̂2(τ):

Eρ̂2(τ) = E

(
1

T 2

Tw

0

Tw

0

(X(t+ τ)− m̂τ )(X(t)− m̂)×

×(X(u+ τ)− m̂τ )(X(u)− m̂)dtdu) =

=
1

T 2

Tw

0

Tw

0

[E(X(t+ τ)− m̂τ )(X(t)− m̂)E(X(u+ τ)− m̂τ )(X(u)− m̂)+

+ E(X(t+ τ)− m̂τ )(X(u+ τ)− m̂τ )E(X(t)− m̂)(X(u)− m̂)+
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+ E(X(t+ τ)− m̂τ )(X(u)− m̂)E(X(t)− m̂)(X(u+ τ)− m̂τ )] dtdu =

=
1

T 2

Tw

0

Tw

0

[I1 + I2 + I3] dtdu.

Let’s calculate each of the integrals above separately:

I1 = E(X(t+ τ)− m̂τ )(X(t)− m̂)E(X(u+ τ)− m̂τ )(X(u)− m̂) =

= (EX(t+ τ)X(t)−Em̂X(t+ τ)−Em̂τX(t) + Em̂m̂τ )×
× (EX(u+ τ)X(u)−Em̂X(u+ τ)−Em̂τX(u) + Em̂m̂τ ) =

=

[
(ρ(τ) + r(τ))−

(
1

T

Tw

0

ρ(s− t− τ)ds+
1

T

Tw

0

ρ(s− t+ τ)ds

)]
×

×

[
(ρ(τ) + r(τ))−

(
1

T

Tw

0

ρ(s− u− τ)ds+
1

T

Tw

0

ρ(s− u+ τ)ds

)]
=

= (ρ(τ) + r(τ))
2 − (ρ(τ) + r(τ))

(
1

T

Tw

0

ρ(s− t− τ)ds+

+
1

T

Tw

0

ρ(s− t+ τ)ds+
1

T

Tw

0

ρ(s− u− τ)ds+
1

T

Tw

0

ρ(s− u+ τ)ds

)
+

+

(
1

T

Tw

0

ρ(s− t− τ)ds
1

T

Tw

0

ρ(s− u− τ)ds+

+
1

T

Tw

0

ρ(s− t− τ)ds
1

T

Tw

0

ρ(s− u+ τ)ds+

+
1

T

Tw

0

ρ(s− t+ τ)ds
1

T

Tw

0

ρ(s− u− τ)ds+

+
1

T

Tw

0

ρ(s− t+ τ)ds
1

T

Tw

0

ρ(s− u+ τ)ds

)
.

Now let’s calculate I2:

I2 = E(X(t+ τ)− m̂τ )(X(u+ τ)− m̂τ )E(X(t)− m̂)(X(u)− m̂) =

=
(
EX(t+ τ)X(u+ τ)−Em̂τX(t+ τ)−Em̂τX(u+ τ) + Em̂2

)
×
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×
(
EX(t)X(u)−Em̂X(t)−Em̂X(u) + Em̂2

)
=

=

[
(ρ(t− u) + r(0))−

(
1

T

Tw

0

ρ(s− t)ds+
1

T

Tw

0

ρ(s− u)ds

)]
×

×

[
(ρ(t− u) + r(0))−

(
1

T

Tw

0

ρ(s− t)ds+
1

T

Tw

0

ρ(s− u)ds

)]
=

= (ρ(t− u) + r(0))
2 − 2ρ(t− u)

(
1

T

Tw

0

ρ(s− t)ds+
1

T

Tw

0

ρ(s− u)ds

)
−

− 2r(0)

(
1

T

Tw

0

ρ(s− t)ds+
1

T

Tw

0

ρ(s− u)ds

)
+

+

( 1

T

Tw

0

ρ(s− t)ds

)2

+ 2
1

T

Tw

0

ρ(s− t)ds 1

T

Tw

0

ρ(s− u)ds+

+

(
1

T

Tw

0

ρ(s− u)ds

)2
 .

For I3 we have the following:

I3 = E(X(t+ τ)− m̂τ )(X(u)− m̂)E(X(t)− m̂)(X(u+ τ)− m̂τ ) =

= (EX(t+ τ)X(u)−Em̂X(t+ τ)−Em̂τX(u) + Em̂m̂τ )×
× (EX(t)X(u+ τ)−Em̂τX(t)−Em̂X(u+ τ) + Em̂m̂τ ) =

=

[
ρ(t− u+ τ)− 1

T

Tw

0

ρ(s− t− τ)ds− 1

T

Tw

0

ρ(s− u+ τ)ds+ r(τ)

]
×

×

[
ρ(t− u− τ)− 1

T

Tw

0

ρ(s− t+ τ)ds− 1

T

Tw

0

ρ(s− u− τ)ds+ r(τ)

]
=

= ρ(t− u+ τ)ρ(t− u− τ)− ρ(t− u+ τ)
1

T

Tw

0

ρ(s− t+ τ)ds−
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− ρ(t− u+ τ)
1

T

Tw

0

ρ(s− u− τ)ds+ ρ(t− u+ τ)r(τ)−

− ρ(t− u− τ)
1

T

Tw

0

ρ(s− t− τ)ds+
1

T

Tw

0

ρ(s− t− τ)ds
1

T

Tw

0

ρ(s− t+ τ)ds+

+
1

T

Tw

0

ρ(s− t− τ)ds
1

T

Tw

0

ρ(s− u− τ)ds− r(τ)
1

T

Tw

0

ρ(s− t− τ)ds−

− ρ(t− u− τ)
1

T

Tw

0

ρ(s− u+ τ)ds+
1

T

Tw

0

ρ(s− u+ τ)ds
1

T

Tw

0

ρ(s− t+ τ)ds+

+
1

T

Tw

0

ρ(s− u+ τ)ds
1

T

Tw

0

ρ(s− u− τ)ds− r(τ)
1

T

Tw

0

ρ(s− u+ τ)ds+

+r(τ)ρ(t−u−τ)−r(τ)
1

T

Tw

0

ρ(s−t+τ)ds−r(τ)
1

T

Tw

0

ρ(s−u−τ)ds+r2(τ).

That is, we have that

Eρ̂2(τ) = (ρ(τ)− r(τ))
2

+ r2(0) + r2(τ)+

+
1

T 2

Tw

0

Tw

0

[
ρ2(t− u)dtdu+ ρ(t− u+ τ)ρ(t− u− τ)dtdu

]
−

− 1

T 3

Tw

0

Tw

0

Tw

0

[2ρ(s− t)ρ(t− u) + ρ(t− s− τ)ρ(t− s+ τ)+

+ρ(t−s+τ)ρ(t−u−τ)−ρ(t−s+τ)ρ(t−u+τ)+ρ(t−u+τ)ρ(s−u−τ)+

+ ρ(t− u− τ)ρ(s− u+ τ)− ρ(t− u− τ)ρ(s− u+ τ)] dsdtdu =

=
1

T 4

[
Tw

0

Tw

0

ρ(t− s)dtds

]2

+
1

T 4

[
Tw

0

Tw

0

ρ(t− s+ τ)dtds

]2

+

+
2

T 2

Tw

0

(T − s)[ρ2(s) + ρ(s+ τ)ρ(s− τ)]ds−
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− 1

T 3

Tw

0

Tw

0

Tw

0

[ρ(t− s+ τ)ρ(s− u+ τ) + 2ρ(t− s)ρ(s− u)+

+ ρ(t− s− τ)ρ(s− u− τ)] dtdsdu+ (ρ(τ)− r(τ))
2
.

Then from (5.11) follows

Dρ̂(τ) =
1

T 4

[
Tw

0

Tw

0

ρ(t− s)dtds

]2

+
1

T 4

[
Tw

0

Tw

0

ρ(t− s+ τ)dtds

]2

+

+
2

T 2

Tw

0

(T − s)[ρ2(s) + ρ(s+ τ)ρ(s− τ)]ds−

− 1

T 3

Tw

0

Tw

0

Tw

0

[ρ(t− s+ τ)ρ(s− u+ τ) + 2ρ(t− s)ρ(s− u)+

+ ρ(t− s− τ)ρ(s− u− τ)] dtdsdu. (5.12)

If in the definitions of the variables ρ̂(τ), m̂ and m̂τ we substitute the
integrals by corresponding integral sums, that is

ρ̂n(τ) =
1

n

n−1∑
i=0

(
X(ti + τ)− 1

n

n−1∑
i=0

X(ti + τ)

)(
X(ti)−

1

n

n−1∑
i=0

X(ti)

)
,

where {ti} is a partition of the interval [0, T ], then it is easy to see that ρ̂(τ)

is a mean square limit of the ρ̂n(τ). Therefore from the Definition 1.6 and
Lemma 3.1, Chapter 6 in book [19] follows that for each τ > 0, the variable
ρ̂(τ)−Eρ̂(τ) is a square Gaussian random variable. Then from the Theorem
3.4 we have that for 0 < A <∞ the following estimate is true:

P

{
Aw

0

|ρ̂(τ)−Eρ̂(τ)|pdτ > ε

}
6 2

√
1 +

ε1/p
√

2

C
1
p (p, T )

exp

{
− ε

1
p

√
2C

1
p (p, T )

}
.

From definition of the value C(p, T ) (see Theorem 3.4) and from formula
(5.12) follows the expression (5.10) for C(p, T ). ♦

Corollary 5.1. Let the conditions of the theorem 5.4 hold. Then for

u >

(
p√
2

+

√
(
p

2
+ 1)p

)
C1/p(p, T ),
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where C(p, T ) was defined in (5.10), the following inequality holds:

P


(
Aw

0

|ρ̂(τ)−Eρ̂(τ)|pdτ

)1/p

> u

 6 2

√
1 +

u
√

2

C
1
p (p, T )

exp

{
− u
√

2C
1
p (p, T )

}
.

Theorem 5.5. Let X be a measurable stationary Gaussian process with
EX(t) = m and with covariance function defined in (5.8). Also, let C(p, T )

be such as defined in (5.10). Then for

ε >

(
Aw

0

|r(τ)|pdτ

)1/p

+

(
p√
2

+

√(p
2

+ 1
)
p

)
C1/p(p, T ),

where A is an arbitrary number and r(τ) is defined in (5.9), the following
inequality holds:

P


(
Aw

0

|ρ̂(τ)− ρ(τ)|pdτ

)1/p

> ε

 6

6 2

1 +

ε−(Ar

0

|r(τ)|pdτ

)1/p
√2

C
1
p (p, T )



1/2

exp


−
ε−

(
Ar

0

|r(τ)|pdτ

)1/p

√
2C

1
p (p, T )


.

Proof. It is easy to see that the following inequalities hold true:

(
Aw

0

|ρ̂(τ)− ρ(τ)|pdτ

)1/p

=

(
Aw

0

|ρ̂(τ)−Eρ̂(τ)− r(τ)|pdτ

)1/p

6

6

(
Aw

0

|ρ̂(τ)−Eρ̂(τ)|pdτ

)1/p

+

(
Aw

0

|r(τ)|pdτ

)1/p

.

162



For any ε > 0 we have that

P


(
Aw

0

|ρ̂(τ)− ρ(τ)|pdτ

)1/p

> ε

 6

6 P


(
Aw

0

|ρ̂(τ)−Eρ̂(τ)|pdτ

)1/p

> ε−

(
Aw

0

|r(τ)|pdτ

)1/p
 .

Now, if we choose

ε >

(
Aw

0

|r(τ)|pdτ

)1/p

+

(
p√
2

+

√(p
2

+ 1
)
p

)
C1/p(p, T ),

where C(p, T ) was defined in (5.12), then form the corollary 5.1 we get the
assertion of the this theorem . ♦

Let H be the hypothesis, which says that under 0 6 τ 6 A the covariance
function of a real valued measurable stationary Gaussian process X with
unknown mean is equal to ρ(τ). As an estimate for ρ(τ) we shall take ρ̂(τ).

Let’s define

g(ε) = 2

√
1 +

ε
√

2

C
1
p (p, T )

exp

{
− ε
√

2C
1
p (p, T )

}
.

Then from the theorem 5.5 follows that if

ε > zp :=

(
Aw

0

|r(τ)|pdτ

)1/p

+

(
p√
2

+

√
(
p

2
+ 1)p

)
C1/p(p, T ),

then

P


(
Aw

0

|ρ̂(τ)− ρ(τ)|pdτ

)1/p

> ε

 6 g

ε−( Aw

0

|r(τ)|pdτ

)1/p
 .

Let εδ be a solution of the equation g

ε−(Ar

0

|r(τ)|pdτ

)1/p
 = δ,

where 0 < δ < 1.
Remark 5.8. Let’s define D(u) = 2

√
1 +
√

2u exp{− u√
2
}. Then D(0) = 2
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and for u > 0, D(u) is monotonically decreasing to zero, therefore the
equation D(u) = δ has only one solution, which we shall denote as uδ. The

equation g

ε−(Ar

0

|r(τ)|pdτ

)1/p
 = δ for ε >

(
Ar

0

|r(τ)|pdτ

)1/p

can be

written as

D


ε−

(
Ar

0

|r(τ)|pdτ

)1/p

C
1
p (p, T )

 = δ.

Thus, this equation has the only solution εδ = uδC
1
p (p, T )+

(
Ar

0

|r(τ)|pdτ

)1/p

.

Let’s choose Sδ = max{εδ, zp}. Then it is evident that g(Sδ) 6 δ and

P


(
Aw

0

|ρ̂(τ)− ρ(τ)|pdτ

)1/p

> Sδ

 6 δ. (5.13)

Then for testing the hypothesis H we can use the following criterion.
Criterion 5.3. For a given confidence level δ the hypothesis H is accepted
if (

Aw

0

|ρ̂(τ)− ρ(τ)|pdτ

)1/p

6 Sδ

otherwise, the hypothesis is rejected.

Remark 5.9. In this criterion, the type I error (or error of the first kind)
does not exceed δ. Since in this paper we do not consider an alternative
hypothesis, then we do not estimate the type II error here. But we would
like to note that in the case, when neither r(T, τ), nor C(p, T ) tend to zero
under T → ∞, the type II error can not be made arbitrarily small. We
plan to consider similar criterion with different alternative hypotheses and
to study its asymptotic properties in the next paper.

Example 5.3. Let’s consider the hypothesis that the covariance function
of a stochastic process is the following:

ρ(τ) =

(
1 +

τ2

a2

)−ν
,
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where a > 0, ν > 0 are known numbers. We restrict ourselves to the case,
which is the most frequently used in meteorological studies, that is

ρ(τ) =
a2

τ2 + a2
, (5.14)

and we estimate each of the integrals in the definition of the value C(p, T ).
We have that

I1 =

Tw

0

Tw

0

ρ(t− s)dtds =

Tw

0

Tw

0

a2

a2 + (t− s)2
dtds =

= a

Tw

0

(
arctg

T − s
a

+ arctg
s

a

)
ds 6 a

Tw

0

(∣∣∣∣arctg T − sa

∣∣∣∣+
∣∣∣arctg s

a

∣∣∣) ds 6 πaT.

Due to the similar considerations we obtain an estimate for the next integral:

I2 =

Tw

0

Tw

0

ρ(t− s+ τ)dtds = a

Tw

0

(
arctg

T − s+ τ

a
+ arctg

τ − s
a

)
ds 6

6 a

Tw

0

(∣∣∣∣arctg T − s+ τ

a

∣∣∣∣+

∣∣∣∣arctg τ − sa
∣∣∣∣) ds 6 πaT.

In the paper [83], it was shown that if a covariance function ρ(τ) is conti-
nuous one, then

I3 =

Tw

0

(T − s)(ρ2(s) + ρ(s+ τ)ρ(s− τ))ds 6 4Tρ2(0).

Since now we are considering continuous covariance function, then the esti-
mate given above holds in our case too.

Taking into account estimates for the integrals I1 – I4 and the fact that
Dρ̂(τ) > 0 we get an estimate for C(p, T ):

C(p, T ) 6 A

[
2 (πa)

2

T 2
+

4ρ2(0)

T

]p/2
. (5.15)
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Let’s now estimate the value of r(τ). Due to the similar considerations as
in the case of estimating I2, we get that:

r(τ) =
a2

T 2

Tw

0

Tw

0

dsdt

a2 + (s− t− τ)2
6
πaT

T 2
=
πa

T
. (5.16)

From the inequalities (5.15) and (5.16) follows that C(p, T )→ 0 and r(τ)→
0 as T → ∞. This means that for testing the hypothesis about covariance
function, given in (5.14),we can use the Criterion 5.3.

5.4. A criterion for testing hypotheses about the
covariance function of a stationary Gaussian
stochastic process when the alternative hypothesis
is available

In the previous sections were formulated the criteria for testing hypotheses
about the covariance function of Gaussian stationary stochastic process.
Namely were proposed the hypotheses which we accepted when the certain
conditions holds and otherwise the hypotheses were rejected. In additional,
in this subsection we consider the problem of testing hypotheses about the
covariance function of a stationary Gaussian stochastic process when the
alternative hypothesis is available.

Let X = {X(t), t ∈ T = [0, T +A], 0 < T <∞, 0 < A <∞}, EX(t) = 0
be a measurable real-valued Gaussian stationary stochastic process with the
covariance function

ρ(τ) = EX(t+ τ)X(t), 0 6 τ 6 A,

and defined on the probability space {Ω,B, P}.
We suppose that H1 is the hypothesis, which consists in the fact that if

0 6 τ 6 A then the covariance function of real-valued Gaussian stationary
stochastic process X equals to ρ1(τ). As a estimation of the covariance
function we choose the correlogram ρ̂(τ) that is defined in (3.8). Let there
exist an alternative hypothesis H2 which consists in the fact that if 0 6 τ 6
A then the covariance function of real-valued Gaussian stationary stochastic
process X equals to ρ2(τ). We assume that ρ1(τ) > ρ2(τ).

Let εδ be a solution of the equation g(ε) = δ for a given 0 < δ < 1,
where

g(ε) = 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 .
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From Theorem 3.4 we have that if condition ε > zp = Cp

(
p√
2

+
√

(p2 + 1)p
)p

holds, then

P

{
Aw

0

|ρ̂(τ)− ρ(τ)|pdτ > ε

}
6 g(ε).

Denote Sδ = max{εδ, zp}.
Criterion 5.4. For a given level of confidence δ the hypothesis H1 about
that the covariance function of Gaussian stationary stochastic process equals
to ρ1(τ) is accepted if

Aw

0

|ρ̂(τ)− ρ1(τ)|pdτ < Sδ. (5.17)

The hypothesis H2 about that the covariance function of Gaussian stati-
onary stochastic process equals to ρ2(τ) is accepted if

Aw

0

|ρ̂(τ)− ρ2(τ)|pdτ < Sδ. (5.18)

If both of the inequalities (5.17) and (5.18) hold true or not true, none of
the inequalities, then the main and the alternative hypotheses are rejected.
This is means that for the application of this criterion are not enough data.
It needs to increase the upper limit of the interval, calculate all constants
and check whether the mentioned inequalities hold true.

5.5. A criterion for testing hypotheses about the
covariance function of non-stationary Gaussian
random process

In all previous section of this chapter were considered Gaussian stati-
onary random processes. Based on the estimates that were obtained in the
section 1.6 we can prove theorem that is similar to the previous cases and
with it help formulate a criteria for testing hypotheses about the covariance
function of non-stationary Gaussian stochastic process.

Consider measurable real-valued Gaussian non-stationary stochastic process
X = {X(t), t ∈ T = [0, T ], 0 < T < ∞}, EX(t) = 0 with the covariance
function

ρ(t, s) = EX(t)X(s), 0 6 t 6 T, 0 6 s 6 T,

and defined on the probability space {Ω,B, P}.
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As an estimator of the covariance function ρ(t, s) we choose

ρ̂n(t, s) =
1

N

N∑
i=1

X(ti)X(si), (5.19)

where Xi(t), Xi(s), i = 1, . . . , N are observed independent trajectories of
the process X.
Remark 5.10. Since,

Eρ̂n(t, s) = E

(
1

N

N∑
i=1

Xi (t)Xi (s)

)
=

1

N

N∑
i=1

ρ(t, s) = ρ(t, s),

then ρ̂n(t, s) is unbiased estimate for ρ(t, s).

Theorem 5.6. Let X be a measurable real-valued non-stationary Gaussian
stochastic process, Xi(t), 0 6 t 6 T and Xi(s), 0 6 s 6 T , i = 1, 2, . . . , N

are observed independent trajectories of the process X. Let EX(t) = 0,
ρ(t, s) be a covariance function of this process and

Cp =
1

Np

Tw

0

Tw

0

(
ρ(t, t)ρ(s, s) + ρ2(t, s)

)p
dtds.

If condition

ε >

(
p√
2

+

√
(
p

2
+ 1)p

)p
Cp

holds, then

P

{
Tw

0

Tw

0

(ρ̂n(t, s)− ρ(t, s))pdtds > ε

}
6 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 .

Proof. Consider

E(ρ̂n(t, s)− ρ(t, s))2 = E(ρ̂n(t, s))2 − ρ2(t, s).

From the Isserlis equality for jointly Gaussian random variables it follows

Eρ̂2
n(t, s) = E

(
1

N2

N∑
i=1

N∑
k=1

Xi (t)Xi (s)Xk (t)Xk (s)

)
=
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=
1

N2

N∑
i=1

N∑
k=1

EXi (t)Xi (s)Xk (t)Xk (s) =

=
1

N2

N∑
i=1

N∑
k=1

(EXi (t)Xi (s)EXk (t)Xk (s) + EXi (t)Xk (t)EXk (s)Xi (s) +

+ EXk (t)Xi (s)EXk (s)Xi (t)) = ρ2(t, s)+

+
1

N2

N∑
i=1

N∑
k=1

(EXi (t)Xk (t)EXk (s)Xi (s) + EXk (t)Xi (s)EXk (s)Xi (t)) .

Since ρ(t, s) = ρ(s, t) and

EXi (t)Xk (s) =

{
0, приi 6= k,

ρ(t, s), i = k,

then
Eρ̂2

n(t, s) = ρ2(t, s) +
1

N

(
ρ(t, t)ρ(s, s) + ρ2(t, s)

)
.

Hence

E(ρ̂n(t, s)− ρ(t, s))2 =
1

N

(
ρ(t, t)ρ(s, s) + ρ2(t, s)

)
. (5.20)

♦

From the values of ρ̂n(t, s), ρ(t, s), Definition 1.6 and Lemma 3.1, Chapter
6 in book [19] it follows that for all t, s ∈ T ρ̂n(t, s) − ρ(t, s) is a square
Gaussian stochastic process. From Theorem 3.4 follows that

P

{
Tw

0

Tw

0

|ρ̂n(t, s)− ρ(t, s)|pdtds > ε

}
6 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 ,

Applying equality (5.20) we obtain

Cp =
1

Np

Tw

0

Tw

0

(
ρ(t, t)ρ(s, s) + ρ2(t, s)

)p
dtds.

Denote

g(ε) = 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 .

From the Theorem 5.6 it follows that if ε > zp = Cp

(
p√
2

+
√

(p2 + 1)p
)p
,
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then

P

{
Tw

0

Tw

0

|ρ̂n(t, s)− ρ(t, s)|pdtds > ε

}
6 g(ε).

Let εδ be a solution of the equation g(ε) = δ, where 0 < δ < 1. Put
Sδ = max{εδ, zp}. Then it is obvious that g(Sδ) 6 δ and

P

{
Tw

0

Tw

0

|ρ̂n(t, s)− ρ(t, s)|pdtds > ε

}
6 δ. (5.21)

Let H be the hypothesis that the covariance function of a measurable
real-valued non-stationary Gaussian stochastic process X equals to ρ(t, s)
if 0 6 t 6 T , 0 6 s 6 T . As a estimation of the ρ(t, s) we choose ρ̂n(t, s).
From the Theorem 5.6 it follows that to test the hypothesis one can use the
following criterion.
Criterion 5.5. For a given level of confidence δ the hypothesisH is accepted
if

Tw

0

Tw

0

|ρ̂n(t, s)− ρ(t, s)|pdtds < Sδ

otherwise hypothesis is rejected.

Remark 5.11. By using this criteria the error of the first kind does not
exceed δ.

170



Chapter 6
Square Gaussian stochastic processes defined
on R+.

Orlicz space, considered in the first chapter, contains a wide class of
random variables and processes. An important role among them occupy
square Gaussian random variables and processes. This is the class we use
for the estimation of correlation function of Gaussian stochastic process.
Square Gaussian random processes were first introduced by Ryzhov Yu.M.
and were investigated by Kozachenko Yu.V., Moklyachuk O.M.,Oleshko T.,
Stadnik A.

This chapter is devoted to investigation Square Gaussian stochastic pro-
cesses defined on R+. The problem of estimation for distribution of supremu-
ma for such processes is considered. Obtained inequalities are applied for
investigation of stationary in wide sense square Gaussian stochastic processes.
For the real-valued stationary Gaussian stochastic process the estimations
for correlogram deviation from correlation function in uniform metric are
obtained and criterion for testing of hypothesis about correlation function
of Gaussian stationary stochastic processes is constructed.

Using both, criterion constructed in previous chapter and сriterion which
was constructed in this chapter, enable us significantly reduce the probabi-
lity of the second type’s error.

6.1. The estimations for distribution of supremuma
Square Gaussian stochastic processes

Let {Ω,B, P} be a common probability space, U(x) = e|x| − 1.
Suppose that function R1(s), −A1 < s < A2, A1 > 0, A2 > 0 (is possible

that A1 =∞ and A2 =∞) is continuous and such that R1(0) = 1 and R1(s)
increases monotonically with s > 0 and decreases monotonically with s < 0.

Suppose also that R2(s), |s| < A, A > 0 (is possible that A = ∞) is
even function, such, that R2(0) = 1 and R2(s) increases monotonically with
s > 0.

Definition 6.1. [52] Will say that stochastic process X = {X(t), t ∈ T},
where T is some parametric set from the space LU (Ω), U(x) = e|x| − 1,

belongs to the class O(R1, R2), if in space LU (Ω) exist such norm 〈〈·〉〉, that
the following conditions hold true:

1) one can found such constants K1 and K2, that for all t ∈ T, u ∈ T,

171



we will have
K2‖X(t)‖ 6 〈〈X(t)〉〉 6 K1‖X(t)‖,

K2‖X(t)−X(u)‖ 6 〈〈X(t)−X(u)〉〉 6 K1‖X(t)−X(u)‖,
where ‖ · ‖ is Luxemburg norm in the space LU (Ω),

2) for −A1 < s < A2, t ∈ T we have

E exp

{
s

X(t)

〈〈X(t)〉〉

}
6 R1(s),

3) for |s| < A, t, u ∈ T we have

E exp

{
s

X(t)−X(u)

〈〈X(t)−X(s)〉〉

}
6 R2(s),

4)
sup

m(t,s)<h

〈〈X(t)−X(s)〉〉 6 σ(h),

where σ = {σ(h), h > 0}, is continuous monotone increasing function,
σ(0) = 0 and σ(h) −→ 0 for h −→ 0, m(t, s) is a metric in the space
(T,m).

Lemma 6.1. [52] Square Gaussian stochastic process X = {X(t), t ∈ T}
belongs to the class O(R,R), where

R(s) = exp

{
−|s|

2

}
(1− |s|)− 1

2 , |s| < 1,

〈〈X(t)〉〉 =
√

2(E|X(t)|2)
1
2 ,

〈〈X(t)−X(s)〉〉 =
√

2(E((X(t)−X(s))2)
1
2 .

Let (T,m) be a compact metric space with metrics m and let X =
{X(t), t ∈ T} be separable square-Gaussian stochastic process.

Suppose, that exist continuous function σ = {σ(h), h > 0}, strictly
monotone increasing such that σ(h) −→ 0 for h −→ 0 and the following
inequality holds

sup
m(t,s)<h,t,s∈T

(E(X(t)−X(s))2)
1
2 6 σ(h).

Remark 6.1. If process X(t) is continuous in L2−norm, then the function

σ(h) = sup
m(t,s)<h,t,s∈T

(E(X(t)−X(s))2)
1
2 ,
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has this property if it is continuous and strictly monotone increasing.
We introduce the following notation:

• ε0 = inf
t∈T

sup
s∈T

m(t, s),

• δ0 = sup
t∈T

(
E|X(t)|2

) 1
2 ,

• σ(−1)(h)-inverse to σ(u) function,

• t0 = σ(ε0),

• N(ε)-the smallest number of closed balls of radius ε, which cover
(T,m),

• r(u) > 0, u > 1 is monotone increasing function, r(u) −→∞
for u −→∞, such, that r(et) is convex function for t > 0.

Theorem 6.1. If the condition

t0w

0

r(N(σ(−1)(v)))dv <∞,

holds, then for all real p, 0 < p < 1, and u such that

0 < u <
1− p√

2
min

{
1

δ0
,

1

t0

}
we have the inequality

E exp

{
u sup
t∈T
|X(t)|

}
6 2

(
R

(
u
√

2δ0
1− p

))1−p(
R

(
u
√

2t0
1− p

))p
×

×r(−1)

(
1

t0p

t0pw

0

r(N(σ(−1)(v)))dv

)
, (6.1)

where
R(z) = (1− z)− 1

2 exp
{
−z

2

}
, (6.2)

0 6 z < 1

Proof. The proof of the theorem follows from lemma 4.1 [59] ifM = 1, A+ =

1. ♦
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Corollary 6.1. Let the conditions of theorem 6.1 hold and
z0 = max(δ0, t0). Then for 0 < p < 1 and for all

0 < u <
1− p
z0

√
2

inequality

E exp

{
u sup
t∈T
|X(t)|

}
6 2R

(
u
√

2z0

1− p

)
r(−1)

(
1

t0p

t0pw

0

r(N(σ(−1)(v)))dv

)
.

(6.3)
holds.

Proof. Since the function R(z) is monotone increasing for 0 < z < 1, then
corollary follows from the theorem 6.1. ♦

Let (T,m)-be separable finite dimensional metric space. Suppose, that
space (T,m) can be represented as a countable union of compact sets Bk,
k = 1, 2, . . ., namely T =

⋃∞
k=1Bk. Consider a separable square Gaussian

stochastic process X = {X(t), t ∈ T}.
Assume the existence of such continuous strictly monotone increasing

functions σk = {σk(h), h > 0}, that σk(h) −→ 0 when h −→ 0, for which
the next inequalities hold

sup
m(t,s)<h,t,s∈Bk

(E(X(t)−X(s))2)
1
2 6 σk(h).

We denote

• ε0k = inf
t∈Bk

sup
s∈Bk

m(t, s),

• δ0k = sup
t∈Bk

(
E|X(t)|2

)1/2,
• σ(−1)

k -inverse to σk function

• t0k = σk(ε0k),

• z0k = max(δ0k, t0k),

• Nk(u) - the smallest number of closed balls of radius u, which cover
Bk,

• r(u) > 0, u > 1 - monotone increasing function, r(u) −→∞ for
u −→∞, such, that function r(et) is convex for t > 0.
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From the theorem 6.1 the next theorem follows.
Theorem 6.2. If for all k condition

t0kw

0

r(Nk(σ
(−1)
k (v)))dv <∞,

holds, then for all real p, 0 < p < 1 and u such, that
0 < u < 1−p√

2
min

{
1
δ0k
, 1
t0k

}
inequality

E exp

{
u sup
t∈Bk

|X(t)|
}

6 2

(
R

(
u
√

2δ0k
1− p

))1−p(
R

(
u
√

2t0k
1− p

))p
×

×r(−1)

(
1

t0kp

t0kpw

0

r(Nk(σ
(−1)
k (v)))dv

)
, (6.4)

is true, where R(z) defined in (6.2), 0 6 z < 1.

Theorem 6.3. Let c(t), t ∈ T be continuous function and 0 < c(t) < 1 for
all t ∈ T . We denote γk = supt∈Bk |c(t)|. If for 0 < p < 1 conditions

1) d =
∑∞
k=1 γkz0k <∞,

2)
r pt0k
0

r(Nk(σ
(−1)
k (v)))dv <∞,

3)
∏∞
k=1

(
r(−1)

(
1

pt0k

r pt0k
0

r(Nk(σ
(−1)
k (v)))dv

)) γkzok
d

<∞

hold, then for all 0 < u < 1−p
d
√

2
inequality

E exp

{
u sup
t∈T
|c(t)X(t)|

}
6 2R

(
ud
√

2

1− p

)
×

×
∞∏
k=1

(
r(−1)

(
1

t0kp

t0kpw

0

r(Nk(σ
(−1)
k (v)))dv

)) γkzok
d

, (6.5)

is true, where R(s) = exp
{
− |s|2

}
(1− |s|)− 1

2 , |s| < 1.

Proof. Obviously, that

sup
t∈T
|c(t)X(t)| 6 sup

k
sup
t∈Bk

|c(t)||X(t)| =
∞∑
k=1

γk sup
t∈Bk

|X(t)|.
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Then for u > 0

E exp

{
u sup
t∈T
|c(t)X(t)|

}
6 E exp

{
u

∞∑
k=1

γk sup
t∈Bk

|X(t)|

}
. (6.6)

Will choose z0k = max(δ0k, t0k). Since R(z) is monotone increasing function
for 0 < z < 1, then from theorem 6.2 and corollary 6.1 for all k and

0 < u <
1− p√

2

1

z0k

the next inequality holds

E exp

{
u sup
t∈Bk

|X(t)|
}

6 2R

(
u
√

2z0k

1− p

)
r(−1)

(
1

t0kp

t0kpw

0

r(Nk(σ
(−1)
k (v)))dv

)
.

(6.7)
♦

Assume that {qk} is such sequence, that qk > 1, k = 1, 2, . . . and
∑∞
k=1

1
qk

=

1.

From (6.6), (6.7) and Holder inequality [19] follows, that for u > 0 for
which all inequalities 0 < uγkqk <

1−p√
2

1
z0k
, k = 1, 2, . . . hold, we have

E exp

{
u sup
t∈T
|c(t)X(t)|

}
6 E

∞∏
k=1

exp

{
uγk sup

t∈Bk
|X(t)|

}
6

6
∞∏
k=1

(
E exp

{
uγkqk sup

t∈Bk
|X(t)|

})1/qk

6

6
∞∏
k=1

(
2R

(
uγkqk

√
2z0k

1− p

)
r(−1)

(
1

t0kp

t0kpw

0

r(Nk(σ
(−1)
k (v)))dv

))1/qk

=

=

∞∏
k=1

21/qk

∞∏
k=1

(
R

(
uγkqk

√
2z0k

1− p

))1/qk

×

×
∞∏
k=1

(
r(−1)

(
1

t0kp

t0kpw

0

r(Nk(σ
(−1)
k (v)))dv

))1/qk

.

Last inequality holds for all u, for wich inequalities

0 < u <
1− p√

2

1

z0kγkqk
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hold for all k = 1, 2, . . .. We denote d =
∑∞
k=1 γkz0k and choose qk = d

γkz0k(
qk > 1,

∑∞
k=1

1
qk

= 1
)
.

Than for 0 < u < 1−p
d
√

2
the following conditions hold true

R

(
u
qkγkz0k

√
2

1− p

)
= R

(
u
d
√

2

1− p

)
and

∞∏
k=1

(
R

(
u
qkγkz0k

√
2

1− p

)) 1
qk

=

=

(
R

(
u
d
√

2

1− p

))∑∞
k=1

1
qk

= R

(
u
d
√

2

1− p

)
.

Since
∞∏
k=1

2
1
qk = 2

∑∞
k=1

1
qk = 2,

we will have

E exp

{
u sup
t∈T
|c(t)X(t)|

}
6 2R

(
ud
√

2

1− p

)
×

×
∞∏
k=1

(
r(−1)

(
1

t0kp

t0kpw

0

r(Nk(σ
(−1)
k (v)))dv

)) γkZ0k
d

for
0 < u <

1− p
d
√

2
.

Theorem 6.4. If the conditions of the theorem 6.3 hold, than for an arbi-
trary x > 0 and 0 < p < 1 the following inequality holds

P

{
sup
t∈T
|c(t)X(t)| > x

}
6 2 exp

{
−x(1− p)

d
√

2

}(
1 +

√
2x(1− p)

d

)1/2

Φ̃(p),

where

Φ̃(p) =

∞∏
k=1

r(−1)

(
1

t0kp

t0kpw

0

r
(
Nk(σ

(−1)
k (v))

)
dv

) γkZ0k
d

.
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Proof. From the theorem 6.3 and Chebyshev inequality follows, that for
x > 0 and 0 < u < 1−p

d
√

2
we will obtain

P

{
sup
t∈T
|c(t)X(t)| > x

}
6

E exp{u sup
t∈T
|c(t)X(t)|}

exp{ux}
6

6 2R

(
ud
√

2

(1− p)

)
exp{−ux}Φ̃(p) =

= 2

(
1− ud

√
2

(1− p)

)−1/2

exp

{
− ud

√
2

2(1− p)

}
exp{−ux}Φ̃(p).

Let us denote D = d
√

2
1−p . Then

P

{
sup
t∈T
|c(t)X(t)| > x

}
6 Z(u, x)Φ̃(p),

for 0 < u < 1
D , where

Z(u, x) = 2(1− uD)−1/2 exp
{
−u

2
(D + 2x)

}
.

It is easy to verify, that for 0 < u < 1
D infinum of this function is achieved

in the point u = 1
D −

1
D+2x <

1
D . Therefore,

inf
0<u< 1

D

Z(u, x) = 2 exp
{
− x
D

}( D

D + 2x

)−1/2

.

The last equality proves the theorem. ♦

6.2. Stationary square Gaussian stochastic processes.

Let X = {X(t), t > 0} be a stationary in the wide sense square Gaussian
stochastic process and let for all t, s > 0,

(E(X(t)−X(s))2)
1
2 = σ̃(|t− s|)

be true.
Assume that σ̃(|t − s|) < σ(|t − s|), where σ = {σ(u), u > 0} is stri-

ctly monotone increasing continuous function, σ(u) −→ 0 for u −→ 0 and
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lim
u−→∞

σ(u) = cσ <∞. Since(
E(X(t)−X(s))2

)1/2
6
(
E(X(t))2

)1/2
+
(
E(X(s))2

)1/2
,

then cσ = 2
(
E(X(t))2

)1/2
.

Let λ = {t0, t1, . . . , tk, . . .}, k = 1, 2, . . . be such partition of R+, that
t0 = 0, tk−1 < tk, tk − tk−1 > 1 and tk −→∞ for k −→∞ and let c(t) > 0
be some continuous function, that 0 < c(t) < 1.

Let us denote Bk = [tk−1, tk], k = 1, 2, . . . , γk = sup
t∈Bk

|c(t)|.

As before, we denote

• ε0k = inf
t∈Bk

sup
s∈Bk

m(t, s),

• δ0k = sup
t∈Bk

(
E|X(t)|2

)1/2,
• t0k = σ(ε0k),

• z0k = max(δ0k, t0k),

• Nk(u) - the smallest number of closed balls of radius u, which cover
Bk,

• r(u) > 0, u > 1- monotone increasing function, r(u) −→∞ for
u −→∞, such, that function r(et) is convex for t > 0.

We will use this denotation throughout this section.
Lemma 6.2. Let X = {X(t), t > 0} be a stationary separable square
Gaussian stochastic processes.

If the following conditions hold

1)
∑∞
k=1 γk <∞,

2)
∑∞
k=1 γk ln(tk − tk−1) <∞,

3) for some α > 0 and any ε > 0

εw

0

(
σ(−1)(u)

)−α
du <∞,
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then for 0 < p < 1 and 0 < u < 1−p
d
√

2
inequality

E exp

{
u sup
t∈R+

|c(t)X(t)|
}

6 2R

(
ud
√

2

1− p

)
×

× exp

1

d

∞∑
k=1

γkz0k ln

( 1

pt0k

pt0kw

0

(
1 +

tk − tk−1

2σ(−1)(v)

)α
dv

)1/α
 6

6 2R

(
ud
√

2

1− p

)
exp

{
1

d

∞∑
k=1

γkz0k

[
ln(tk − tk−1) +

1

α
lnR∗(p)

]}
holds true, where
d =

∑∞
k=1 γkz0k,

R∗(p) = sup
k

{(
1

pt0k

r pt0k
0

(
1 + 1

2σ(−1)(v)

)α
dv
) 1
α

}
.

Proof. Lemma follows from the theorem 6.3. We put r(v) = vα, v > 0,

α > 0. In this case T = R, m(t, s) = |t− s|. Since Bk = [tk−1, tk], then

Nk(u) 6
tk − tk−1

2u
+ 1

and

1

pt0k

pt0kw

0

r
(
Nk

(
σ

(−1)
k (u)

))
du 6

1

pt0k

pt0kw

0

r

(
1 +

tk − tk−1

2σ(−1)(u)

)
du

(for stationary process σk(u) = σ(u), k = 1, 2, . . .).
Since for x > 1 and y > 0 the inequality

1 + xy 6 x(1 + y)

holds and taking into account that r(v) = vα, α > 0 is an increasing functi-
on, we have

r

(
1 +

tk − tk−1

2σ(−1)(u)

)
6 r

(
(tk − tk−1)

(
1 +

1

2σ(−1)(u)

))
=

= (tk − tk−1)α
(

1 +
1

2σ(−1)(u)

)α
.
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Then

r(−1)

(
1

pt0k

pt0kw

0

r(Nk(σ(−1)(u)))du

)
=

(
1

pt0k

pt0kw

0

r(Nk(σ(−1)(u)))du

) 1
α

6

6 (tk − tk−1)

(
1

pt0k

pt0kw

0

(
1 +

1

2σ(−1)(u)

)α
dv

) 1
α

.

Thus,

∞∏
k=1

(
r(−1)

(
1

pt0k

pt0kw

0

r
(
Nk

(
σ(−1)(v)

))
dv

)) γkz0k
d

=

= exp

{
1

d

∞∑
k=1

γkz0k ln

[
r(−1)

(
1

pt0k

pt0kw

0

r
(
Nk

(
σ(−1)(v)

))
dv

)]}
=

= exp

1

d

∞∑
k=1

γkz0k ln

( 1

pt0k

pt0kw

0

(
1 +

tk − tk−1

2σ(−1)(v)

)α
dv

)1/α
 6

6 exp

1

d

∞∑
k=1

γkz0k ln

(tk − tk−1)

(
1

pt0k

pt0kw

0

(
1 +

1

2σ(−1)(v)

)α
dv

) 1
α

 =

= exp

{
1

d

[ ∞∑
k=1

γkz0k ln(tk − tk−1)+

+
1

α

∞∑
k=1

γkz0k ln

(
1

pt0k

pt0kw

0

(
1 +

1

2σ(−1)(v)

)α
dv

)]}
. (6.8)

♦
Since z0k 6 cσ, then

∞∑
k=1

γkz0k 6 cσ

∞∑
k=1

γk <∞,

and
∞∑
k=1

γkz0k ln(tk − tk−1) 6 cσ

∞∑
k=1

γk ln(tk − tk−1) <∞.

For ε > 0
1

ε

εw

0

(
1 +

1

2σ(−1)(v)

)α
dv <∞,
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because
εw

0

(
σ(−1)(v)

)−α
dv <∞,

therefore all integrals in (6.8) is convergent.
Consider a function z(u) = 1

u

r u
0

(
1 + 1

2σ(−1)(v)

)α
dv and denote

f(v) =
(

1 + 1
2σ(−1)(v)

)α
, α > 0.

z′(u) = − 1

u2

uw

0

f(v)dv +
1

u
f(u) =

1

u

(
f(u)− 1

u

uw

0

f(v)dv

)
.

Function f(v) decreases for v > 0 and α > 0, therefore 1
u

r u
0
f(v)dv >

f(u), that is z′(u) < 0, and therefore, z(u) - decreases.
ε0k > 1, t0k = σk(ε0k) = σ(ε0k) > σ(1), this means R∗ exist, moreover,

R∗(p) 6
1

pσ(1)

pσ(1)w

0

(
1 +

1

2σ(−1)(v)

)α
dv.

Therefore

R∗(p) = sup
k

{
1

pt0k

pt0kw

0

(
1 +

1

2σ(−1)(v)

)α
dv

}
<∞.

Then
∞∑
k=1

γkz0k ln

(
1

pt0k

pt0kw

0

(
1 +

1

2σ(−1)(v)

)α
dv

) 1
α

=

=
1

α
lnR∗(p)

∞∑
k=1

γkz0k 6
1

α
lnR∗(p)cσ

∞∑
k=1

γk <∞.

Therefore,

E exp

{
u sup
t∈R+

|c(t)X(t)|
}

6 2R

(
ud
√

2

1− p

)
×

exp

{
1

d

∞∑
k=1

γkz0k

[
ln(tk − tk−1) +

1

α
lnR∗(p)

]}
.

Theorem 6.5. Let X = {X(t), t > 0} be a stationary separable square
Gaussian stochastic processes and let the following conditions hold
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1)
∑∞
k=1 γk <∞,

2)
∑∞
k=1 γk ln(tk − tk−1) <∞,

3) for some α > 0 and for any ε > 0

εw

0

(
σ(−1)(u)

)−α
du <∞.

Then for an arbitrary x > 0 and 0 < p < 1 the following inequality holds
true

P

{
sup
t∈R+

|c(t)X(t)| > x

}
6 2 exp

{
−x(1− p)

d
√

2

}(
1 +

√
2x(1− p)

d

)1/2

×

×Φ̃1(p) 6 2 exp

{
−x(1− p)

d
√

2

}(
1 +

√
2x(1− p)

d

)1/2

Φ̃2(p),

where

d =

∞∑
k=1

γkz0k,

Φ̃1(p) = exp

1

d

∞∑
k=1

γkz0k ln

( 1

pt0k

pt0kw

0

(
1 +

tk − tk−1

2σ(−1)(v)

)α
dv

)1/α
 ,

(6.9)

Φ̃2(p) = exp

{
1

d

∞∑
k=1

γkz0k

[
ln(tk − tk−1) +

1

α
lnR∗(p)

]}
, (6.10)

R∗(p) = sup
k


(

1

pt0k

pt0kw

0

(
1 +

1

2σ(−1)(v)

)α
dv

) 1
α

 .

Proof. The proof follows from lemma 6.2 and Chebyshev inequality. ♦
Example 6.1. Let X = {X(t), t ∈ T} be a stationary square Gaussian
stochastic processes and assume also, that σ(v) 6 cvβ , v > 0, c > 0, β 6 1

та σ(v) 6 cσ.

Consider c(t) = 1
(ln(e+t))γ , t > 0, γ > 2. Let us verify, that conditions

of the theorem 6.5 hold for 0 < α < β in this case and let us estimate the
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probabilities

P

{
sup
t∈R+

|c(t)X(t)| > x

}
.

Will choose the points tk in this way:
tk = ek+1 − e, k = 0, 1, . . . ,

tk − tk−1 = ek(e− 1) > 1, k = 1, 2, . . . .

1) c(t) > 0 is monotone decreasing function, therefore

γk = max
t∈[tk−1,tk]

c(t) = c(tk−1) =
1

(ln(e+ ek − e))γ
=

1

kγ
, k = 1, 2, . . .

Hence,
∞∑
k=1

γk =

∞∑
k=1

c(tk−1) =

∞∑
k=1

1

kγ
<∞,

this means that condition 1) of the theorem 6.5 holds.
2)

∞∑
k=1

γk ln(tk − tk−1) =

∞∑
k=1

ln(ek(e− 1))

kγ
6
∞∑
k=1

k + 1

kγ
<∞,

i.e. condition 2) of the theorem 6.5 holds.
Let us verify that condition 3) of the theorem 6.5 holds true.
Since σ(v) 6 cvβ , v > 0, then σ(−1)(v) >

(
v
c

)1/β
. Whereas

α < 1
εw

0

(
1 +

1

2σ(−1)(v)

)α
dv 6

εw

0

(
1 +

c1/β

2v1/β

)α
dv 6

6
εw

0

(
1 +

cα/β

2αvα/β

)
dv = ε+

cα/β

2α

εw

0

v−
α
β dv <∞,

for α < β, we have that condition 3) holds also.
Let us estimate Φ̃1(p) from the theorem 6.5.
Since t0k = σ(ε0k) = σ

(
tk−tk−1

2

)
, than for v < t0k

σ(−1)(v) 6 σ(−1)(t0k) =
tk − tk−1

2
,

namely
tk − tk−1

2σ(−1)(v)
> 1.
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Hence,
pt0kw

0

(
1 +

tk − tk−1

2σ(−1)(v)

)α
dv 6

pt0kw

0

(
tk − tk−1

σ(−1)(v)

)α
dv =

= (tk − tk−1)α
pt0kw

0

(
1

σ(−1)(v)

)α
dv 6 (tk − tk−1)α

pt0kw

0

( c
v

)α
β

dv =

= c
α
β (tk − tk−1)α

(pt0k)1−αβ

1− α
β

.

Therefore (
1

pt0k

pt0kw

0

(
1 +

tk − tk−1

2σ(−1)(v)

)α
dv

)1/α

6

6
c1/β(tk − tk−1)(pt0k)−1/β(

1− α
β

)1/α
=

2

p1/β
(

1− α
β

)1/α
.

From the last inequality and (6.9) follows

Φ̃1(p) 6 exp

1

d

∞∑
k=1

γkz0k ln

 2

p1/β
(

1− α
β

)1/α


 =

2

p1/β
(

1− α
β

)1/α
.

From previous inequality for α −→ 0, we will have

Φ̃1(p) 6
2e1/β

p1/β
.

So, from the theorem 6.5 for x > 0, 0 < p < 1 we have estimates

P

{
sup
t∈R+

|c(t)X(t)| > x

}
6 4

e1/β

p1/β
exp

{
−x(1− p)

d
√

2

}(
1 +

√
2x(1− p)

d

)1/2

.
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z0k = max
{
σ
(
tk−tk−1

2

)
, δ0k

}
, and δ0k = sup

t∈Bk

(
E|X(t)|2

)1/2
= δ0,

because the process is stationary and σ
(
tk+1−tk

2

)
< cσ.

Suppose that cσ 6 δ0. Then z0k = δ0 and

d =

∞∑
k=1

γkz0k = δ0

∞∑
k=1

1

kγ
.

Put p = d
√

2
x . Then for x > d

√
2 we will obtain

P

{
sup
t∈R+

|c(t)X(t)| > x

}
6 4e1+ 1

β exp

{
− x

d
√

2

}(√
2x

d

) 1
2 (

x

d
√

2

) 1
β

,

or

P

{
sup
t∈R+

|c(t)X(t)| > x

}
6 exp

{
− x

d
√

2

}(
x

d
√

2

) 1
2 + 1

β

C(β),

where C(β) = 4
√

2e1+ 1
β .

Lemma 6.3. Let X = {X(t), t > 0} be a stationary separable square
Gaussian stochastic process.

If the following conditions hold

1)
∑∞
k=1 γk <∞,

2)
∑∞
k=1 γk ln(tk − tk−1) <∞,

3) for some α > 1 and for any ε > 0

εw

0

(
ln

(
1 +

1

2σ(−1)(u)

))α
du <∞,

then for 0 < p < 1 and 0 < u < 1−p
d
√

2
inequality

E exp

{
u sup
t∈R+

|c(t)X(t)|
}

6 2R

(
ud
√

2

1− p

)
×

exp

{
21− 1

α

d

∞∑
k=1

γkz0k [ln(tk − tk−1))+
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+

(
1

pt0k

pt0kw

0

(
ln

(
1 +

1

2σ(−1)(v)

))α
dv

) 1
α

 6

6 2R

(
ud
√

2
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)
exp
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α

d
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k=1

γkz0k

(
ln(tk − tk−1) + R̃(p)

1
α

)]}
holds true, where
d =

∑∞
k=1 γkz0k,

R̃(p) = max
k

{(
1

pt0k

r pt0k
0

(
ln
(

1 + 1
2σ(−1)(v)

))α
dv
)}

.

Proof. Consider r(v) = (ln v)α, α > 1, v > 1. Whereas

r(xy) = (lnx+ ln y)α 6 2α−1 ((lnx)α + (ln y)α) ,

we will obtaine

1

pt0k

pt0kw

0

r(Nk(σ(−1)(v)))dv 6
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pt0kw

0

r
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6
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0

r
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(
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1
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0
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(
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(
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1
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1
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0

(
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(
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]
.

since for our case ln r(−1)(z) = z
1
α , then

∞∏
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(
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(
1
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pt0kw

0
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)) γkz0k
d

=
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d

∞∑
k=1

γkz0k

(
1

pt0k

pt0kw

0
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) 1
α
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α

d
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+
1

pt0k

pt0kw

0

(
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(
1 +

1

2σ(−1)(v)

))α
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] 1
α

 6
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α

d
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+
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0

(
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1
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) 1
α

 .

Function

f(v) =

(
ln

(
1 +

1

2σ(−1)(v)

))α
decreases for v > 0, therefore z(u) = 1

u

r u
0
f(v)dv also decreases for u > 0.

Denote

R̃(p) = max
k

{
1

pt0k

pt0kw

0

(
ln

(
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1

2σ(−1)(v)

))α
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}
<∞.

Using (6.5) we obtain

E exp
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× exp
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(
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) 1
α

)]}
.

Theorem 6.6. Let X = {X(t), t > 0} be a stationary separable square
Gaussian stochastic process.

If the following conditions hold

1)
∑∞
k=1 γk <∞,

2)
∑∞
k=1 γk ln(tk − tk−1) <∞,

3) for some α > 1 and any ε > 0

εw

0

(
ln

(
1 +

1

2σ(−1)(u)

))α
du <∞,
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then for arbitrary x > 0, 0 < p < 1 inequality

P

{
sup
t∈R+

|c(t)X(t)| > x

}
6 2 exp

{
−x(1− p)

d
√

2

}(
1 +

√
2x(1− p)

d

)1/2

×

×Φ̃3(p) 6 2 exp

{
−x(1− p)

d
√

2

}(
1 +

√
2x(1− p)

d

)1/2

Φ̃4(p)

holds true where

d =

∞∑
k=1

γkz0k,

Φ̃3(p) = exp

{
21− 1

α

d

∞∑
k=1

γkz0k [ln(tk − tk−1)+

+

(
1

pt0k

pt0kw

0

(
ln

(
1 +

1

2σ(−1)(v)

))α
dv

) 1
α

 ,

Φ̃4(p) = exp

{
21− 1

α

d

[ ∞∑
k=1

γkz0k

(
ln(tk − tk−1) +

(
R̃(p)

) 1
α

)]}
,

R̃(p) = max
k

{(
1

pt0k

pt0kw

0

(
ln

(
1 +

1

2σ(−1)(v)

))α
dv

)}
.

Proof. The proof follows from lemma 6.3 and Chebyshev inequality. ♦

6.3. The estimates for correlogram deviation from
correlation function of stationary Gaussian
stochastic process in uniform metric

Assume that ξ = {ξ(t), t > 0} is a real-valued continuous in mean
square stationary Gaussian stochastic process with Eξ(t) = 0 and correlati-
on function ρ(τ) = Eξ(t+ τ)ξ(t).
Consider correlogram

ρ̂T (τ) =
1

T

Tw

0

ξ(t+ τ)ξ(t)dt.

as an estimate of correlation function ρ(τ). ρ̂T (τ) is unbiased estimate of
ρ(τ): Eρ̂T (τ) = ρ(τ).

Let the process ξ(t) have a square integrable spectral density f = {f(λ), λ ∈
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R} (f ∈ L2(R)), that is
+∞w

−∞
f2(λ)dλ <∞.

By the definition of spectral density, the function f is Lebesque integrable
(f ∈ L1(R)). In this case correlation function ρ(τ) of stochastic process is
square integrable, namely ‖ρ‖22 =

r +∞
−∞ ρ2(τ)dτ <∞.

Let us denote X(T, τ) = ρ̂T (τ) − ρ(τ). As before, X(T, τ) is square
Gaussian stochastic process. Let us estimate E(X(T, τ))2 and E(X(T, τ)−
X(T1, τ1))2.

Assume that space (T,m) is defined as follows

T = {(T, τ) : A < T <∞, a < τ < b, 0 < a < b,A > 0} ,

m ((T1, τ1), (T2, τ2)) = max
(T1,τ1),(T2,τ2)∈T

{|T1 − T2|, |τ1 − τ2|} .

Lemma 6.4. If the condition

+∞w

−∞
f2(λ)dλ <∞. (6.11)

holds true, then

sup
(T,τ)∈T

E(X(T, τ))2 =
C1

T
,

where C1 = (1 +
√

2)‖ρ‖22.

Proof. By the Isserlis formula [19] and by the well-known formula

Tw

0

Tw

0

f(t− s)dtds = 2

Tw

0

(T − u)f(u)du

for the even function f , we will get

E(X(T, τ))2 = Eρ̂2(τ)− (Eρ̂(τ))2 =

=
2

T 2

Tw

0

(T − u)(ρ2(u) + ρ(u− τ)ρ(u+ τ))du.

From the condition ρ ∈ L2(R) and fact that ρ(τ) is "even"follows, that

+∞w

0

ρ2(u)du =
1

2

+∞w

−∞
ρ2(u)du <∞.
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Then ( τ > 0 for definiteness)

+∞w

0

ρ(u− τ)ρ(u+ τ)du 6

(
+∞w

0

ρ2(u− τ)du

) 1
2
(

+∞w

0

ρ2(u+ τ)du

) 1
2

=

=

(
+∞w

−τ
ρ2(v)dv

) 1
2
(

+∞w

τ

ρ2(v)dv

) 1
2

6

(
+∞w

−∞
ρ2(v)dv

) 1
2
(

+∞w

0

ρ2(v)dv

) 1
2

=

=
√

2

+∞w

0

ρ2(v)dv <∞,

and we will get

E(X(T, τ))2 6
2 + 2

√
2

T

+∞w

0

ρ2(u)du =
(1 +

√
2)‖ρ‖22
T

.

Consider a partition of the space T: T =
⋃∞
k=1Bk, where

Bk = {(T, τ) : Tk 6 T 6 Tk+1, a 6 τ 6 b},

Tk < Tk+1, Tk+1 − Tk > 1, Tk −→∞ if k −→∞.
Lemma 6.5. Assume that condition

+∞w

−∞
f2(λ) (ln(1 + |λ|))2α

dλ <∞. (6.12)

holds for α > 0. Then

sup
(T,τ),(T1,τ1)∈Bk,m((T,τ),(T1,τ1))<h

(
E (X(T, τ)−X(T1, τ1))

2
) 1

2

6 σk(h),

where

σk(h) =
C

1
2
2

T
1
2
k (ln(eα+C

h ))
α
2

, C > 0 is an arbitrary constant,

f̃ =
r +∞
−∞ f2(λ)

(
ln
(
eα + C|λ|

2

))2α

dλ,

C2 = 8π

[
f̃
(

ln
(
eα + C

b−a

))−α
+ ‖f‖2f̃

1
2

]
+ 2‖ρ‖22×

×
(

1 +
6Tk+1

Tk
+
T 2
k+1

T 2
k

)
Tk+1 − Tk

Tk

(
ln

(
eα +

1

Tk+1 − Tk

))α
. (6.13)

191



Proof. Consider (T, τ) and (T ′, τ ′) with Bk and suppose that T 6 T ′.

E (X(T, τ)−X(T ′, τ ′))
2

=

=

∣∣∣∣∣ 1

T 2

Tw

0

Tw

0

[
ρ2(t− s) + ρ(t− s− τ)ρ(t− s+ τ)

]
dtds

− 2

TT ′

Tw

0

T ′w

0

[ρ(t− s+ τ − τ ′)ρ(t− s) + ρ(t− s+ τ)ρ(t− s− τ ′)] dtds 6

+
1

T ′2

T ′w

0

T ′w

0

[
ρ2(t− s) + ρ(t− s− τ ′)ρ(t− s+ τ ′)

]
dtds

∣∣∣∣∣∣
6

∣∣∣∣∣ 1

T 2

Tw

0

Tw

0

[
ρ2(t− s) + ρ(t− s+ τ)ρ(t− s− τ)

]
dtds−

− 2

T 2

Tw

0

Tw

0

[ρ(t− s)ρ(t− s+ τ − τ ′) + ρ(t− s+ τ)ρ(t− s− τ ′)] dtds+

+
1

T 2

Tw

0

Tw

0

[
ρ2(t− s) + ρ(t− s+ τ ′)ρ(t− s− τ ′)

]
dtds

∣∣∣∣∣
+

∣∣∣∣∣ 2

T 2

Tw

0

Tw

0

[ρ(t− s)ρ(t− s+ τ − τ ′) + ρ(t− s+ τ)ρ(t− s− τ ′)] dtds+

− 2

TT ′

Tw

0

T ′w

0

[ρ(t− s)ρ(t− s+ τ − τ ′) + ρ(t− s+ τ)ρ(t− s− τ ′)] dtds

∣∣∣∣∣∣+
+

∣∣∣∣∣∣ 1

T ′2

T ′w

0

T ′w

0

[
ρ2(t− s) + ρ(t− s+ τ ′)ρ(t− s− τ ′)

]
dtds−

− 1

T 2

Tw

0

Tw

0

[
ρ2(t− s) + ρ(t− s+ τ ′)ρ(t− s− τ ′)

]
dtds

∣∣∣∣∣ = I +A1 +A2.

Let us estimate A1, A2 та I.

A1 =

∣∣∣∣∣ 2

T 2

Tw

0

Tw

0

[ρ(t− s)ρ(t− s+ τ − τ ′) + ρ(t− s+ τ)ρ(t− s− τ ′)] dtds−
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− 2

TT ′

Tw

0

T ′w

0

[ρ(t− s)ρ(t− s+ τ − τ ′) + ρ(t− s+ τ)ρ(t− s− τ ′)] dtds

∣∣∣∣∣∣ =

=

∣∣∣∣∣ 2

T 2

Tw

0

Tw

0

[ρ(t− s)ρ(t− s+ τ − τ ′) + ρ(t− s+ τ)ρ(t− s− τ ′)] dtds−

− 2

T 2

Tw

0

T ′w

0

[ρ(t− s)ρ(t− s+ τ − τ ′) + ρ(t− s+ τ)ρ(t− s− τ ′)] dtds+

+
2

T 2

Tw

0

T ′w

0

[ρ(t− s)ρ(t− s+ τ − τ ′) + ρ(t− s+ τ)ρ(t− s− τ ′)] dtds−

− 2

TT ′

Tw

0

T ′w

0

[ρ(t− s)ρ(t− s+ τ − τ ′) + ρ(t− s+ τ)ρ(t− s− τ ′)] dtds

∣∣∣∣∣∣ 6
6

∣∣∣∣∣∣ 2

T 2

T ′w

T

Tw

0

[ρ(t− s)ρ(t− s+ τ − τ ′) + ρ(t− s+ τ)ρ(t− s− τ ′)] dtds

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
(

2

T 2
− 2

TT ′

) Tw

0

T ′w

0

[ρ(t− s)ρ(t− s+ τ − τ ′)+

+ρ(t− s+ τ)ρ(t− s− τ ′)] dtds| 6

6
2

T 2

∣∣∣∣∣∣
T ′w

T

(
Tw

0

ρ2(t− s)dt
Tw

0

ρ2(t− s+ τ − τ ′)dt

) 1
2

ds+

+

T ′w

T

(
Tw

0

ρ2(t− s+ τ)dt

Tw

0

ρ2(t− s− τ ′)dt

) 1
2

ds

∣∣∣∣∣∣+
+

∣∣∣∣∣∣∣
(

2

T 2
− 2

TT ′

) Tw

0

T ′w

0

ρ2(t− s)dt
T ′w

0

ρ2(t− s+ τ − τ ′)dt

 1
2

ds+

+

Tw

0

T ′w

0

ρ2(t− s+ τ)dt

T ′w

0

ρ2(t− s− τ ′)dt

 1
2

ds


∣∣∣∣∣∣∣ 6

6
4

T 2
|T ′ − T |

+∞w

−∞
ρ2(u)du+

∣∣∣∣ 2

T 2
− 2

TT ′

∣∣∣∣ 2T +∞w

−∞
ρ2(u)du =
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=
4(T ′ + T )|T ′ − T |

T 2T ′
‖ρ‖22 6 4‖ρ‖22

2Tk+1

Tk

|T ′ − T |
T 2

.

In a similar way, we obtain

A2 =

∣∣∣∣∣ 1

T 2

Tw

0

Tw

0

[
ρ2(t− s) + ρ(t− s+ τ ′)ρ(t− s− τ ′)

]
dtds−

− 1

T ′2

T ′w

0

T ′w

0

[
ρ2(t− s) + ρ(t− s+ τ ′)ρ(t− s− τ ′)

]
dtds

∣∣∣∣∣∣ 6
6

∣∣∣∣∣
(

1

T 2
− 1

T ′2

) Tw

0

Tw

0

[
ρ2(t− s) + ρ(t− s+ τ ′)ρ(t− s− τ ′)

]
dtds

∣∣∣∣∣+
+

1

T ′2

∣∣∣∣∣
Tw

0

Tw

0

[
ρ2(t− s) + ρ(t− s+ τ ′)ρ(t− s− τ ′)

]
dtds−

−
T ′w

0

T ′w

0

[
ρ2(t− s) + ρ(t− s+ τ ′)ρ(t− s− τ ′)

]
dtds

∣∣∣∣∣∣ 6
6 2‖ρ‖22

|T ′ − T |
T 2

(
1 +

T ′ + T

T ′
+
T 2

T ′2

)
6 2‖ρ‖22

|T ′ − T |
T 2

×

×
(

1 +
2Tk+1

Tk
+
T 2
k+1

T 2
k

)
.

We use the following lemma, proven in [19].
Lemma A. Let YT (τ) =

√
T (ρ̂T (τ) − ρ(τ)), τ > 0. For any T > 0 and

τ, τ1 > 0 the inequality

E|YT (τ)− YT (τ1)|2 6 8π

[
+∞w

−∞
f2(λ) sin2 λ(τ − τ1)

2
dλ

]
+

+8π‖f‖2

[
+∞w

−∞
f2(λ) sin2(

λ(τ − τ1)

2
)dλ

] 1
2

holds, where ‖f‖22 =
r +∞
−∞ f2(λ)dλ <∞.

For our case from lemma [19], we will get

E(X(T, τ)−X(T, τ ′))2 6
8π

T

([
+∞w

−∞
f2(λ) sin2 λ(τ − τ ′)

2
dλ

]
+
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+‖f‖2

[
+∞w

−∞
f2(λ) sin2 λ(τ − τ ′)

2
dλ

] 1
2

 . (6.14)

Since the inequality [73] ∣∣∣sin u
v

∣∣∣ 6 ( ln(eα + u)

ln(eα + v)

)α
holds for all u > 0, v > 0 and α > 0, then

∣∣∣∣sin λ(τ − τ ′)
2

∣∣∣∣ 6
(

ln
(
eα + C|λ|

2

))α
(

ln
(
eα + C

|τ−τ ′|

))α ,
where C > 0 is an arbitrary constant, and (6.14) can be rewritten as

I 6
8π

T

+∞w

−∞
f2(λ)

(
ln

(
eα +

C|λ|
2

))2α

dλ
1(

ln
(
eα + C

|τ−τ ′|

))2α+

+‖f‖2

(
+∞w

−∞
f2(λ)

(
ln

(
eα +

C|λ|
2

))2α

dλ

) 1
2

1(
ln
(
eα + C

|τ−τ ′|

))α
 .

From the inequality (6.12) follows that

f̃ =

+∞w

−∞
f2(λ)

(
ln

(
eα +

C|λ|
2

))2α

dλ <∞.

Then

I 6
C̃2

T
(

ln
(
eα + C

|τ−τ ′|

))α ,
where

C̃2 = 8π

[
f̃

(
ln

(
eα +

C

b− a

))−α
+ ‖f‖2f̃

1
2

]
.

Hence,

E(X(T, τ)−X(T ′, τ ′))2 6
C̃2

T
(

ln
(
eα + C

|τ−τ ′|

))α +
C∗|T ′ − T |

T 2
,
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C∗ = 2‖ρ‖22
(

1 + 6Tk+1

Tk
+

T 2
k+1

T 2
k

)
.

Whereas

sup
h<Tk+1−Tk

h

(
ln

(
eα +

1

h

))α
= (Tk+1 − Tk)

(
ln

(
eα +

1

Tk+1 − Tk

))α
,

then

sup
(T,τ),(T ′,τ ′)∈Bk,m((T,τ),(T ′,τ ′))<h

(
E (X(T, τ)−X(T ′, τ ′))

2
) 1

2

6 σk(h),

where

σk(h) =
C

1
2
2

T
1
2

k

(
ln
(
eα + C

h

))α
2

,

C2 = C̃2 + C∗ Tk+1−Tk
Tk

(
ln
(
eα + 1

Tk+1−Tk

))α
. ♦

As before, we denote

• ε0k = inf
(T1,τ1)∈Bk

sup
(T2,τ2)∈Bk

m ((T1, τ1), (T2, τ2)) = max
{
Tk+1−Tk

2 , b−a2

}
,

• δ0k = sup
(T,τ)∈Bk

(
E(X(T, τ))2

) 1
2 =

C
1
2
1

T
1
2
k

,

• σ(−1)
k (v) - inverse to σk(h) function,

σ
(−1)
k (v) =

C

exp

{(
C2

v2Tk

) 1
α

}
− exp{α}

,

• t0k = σk(ε0k),

• Nk(ε)-the smallest number of closed balls of radius ε, which cover Bk,

• r(u) > 0, u > 1 is monotone increasing function, r(u) −→∞
for u −→∞, such, that function r(et) is convex for t > 0.

Since C is an arbitrary constant, then let us choose for simplicity C =√
b− a, and put Tk+1 − Tk > b− a for our partition.

Lemma 6.6. Assume that X(T, τ) = ρ̂T (τ)−ρ(τ), c = {c(T ), T ∈ [A; +∞)}
is some continuous function with 0 < c(T ) < 1. Let us denote
γk = maxT∈[Tk;Tk+1] c(T ).

If conditions
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1)
∑∞
k=1 γkz0k ln(Tk+1 − Tk) <∞,

2)
r +∞
−∞ f2(λ) (ln(1 + |λ|))2α

dλ <∞, α > 2

hold, then for 0 < p < 1 and 0 < u < 1−p
d
√

2
the next inequality

E exp

{
u sup

(T,τ)∈T
|c(T )X(T, τ)|

}
6 2R

(
ud
√

2

1− p

)
×

× exp

{
1

d

∞∑
k=1

γkz0k ln(Tk+1 − Tk) +
2P̃

p
2
α

(
1− 2

α

)} , (6.15)

holds true, where
d =

∑∞
k=1 γkz0k,

P̃ = sup
k

(
ln
(
eα + 2

√
b−a

Tk+1−Tk

))
.

Proof. Let us put r(v) = (ln v)f , v > e, 1 < f < α
2 . For our case

r(xy) = (lnx+ ln y)f 6 2f−1
(
(lnx)f + (ln y)f

)
and

Nk(σ
(−1)
k (v)) 6

(
Tk+1 − Tk
2σ

(−1)
k (v)

+ 1

)(
b− a

2σ
(−1)
k (v)

+ 1

)
6

6
(Tk+1 − Tk)(b− a)(

σ
(−1)
k (v)

)2 ,

for v < t0k. Then

1

pt0k

pt0kw

0

r(Nk(σ
(−1)
k (v)))dv 6

1

pt0k

pt0kw

0

r

 (b− a)(Tk+1 − Tk)(
σ

(−1)
k (v)

)2

 dv 6

6
1

pt0k

pt0kw

0

r

(
(b− a)(Tk+1 − Tk)

C2
exp

{
2

(
C2

v2Tk

) 1
α

})
dv =

=
1

pt0k

pt0kw

0

(
ln

(b− a)(Tk+1 − Tk)

C2
+ 2

(
C2

v2Tk

) 1
α

)f
dv 6

6 2f−1

(ln
(b− a)(Tk+1 − Tk)

C2

)f
+

2f

pt0k

(
C2

Tk

) f
α
pt0kw

0

v−
2f
α dv

 =
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= 2f−1

(ln
(b− a)(Tk+1 − Tk)

C2

)f
+

2fC
f
α
2

T
f
α

k pt0k

(pt0k)1− 2f
α

1− 2f
α

 =

= 2f−1

(ln
(b− a)(Tk+1 − Tk)

C2

)f
+

2fC
f
α
2

T
f
α

k

(pt0k)−
2f
α

1− 2f
α

 .
Since

t0k = σk(ε0k) =
C

1
2
2

T
1
2

k

(
ln
(
eα + 2C

Tk+1−Tk

))α
2
,

then
1

pt0k

pt0kw

0

r(Nk(σ
(−1)
k (v)))dv 6

6 2f−1

(ln(Tk+1 − Tk))
f

+
2fC

f
α
2

T
f
α

k p
2f
α

(
1− 2f

α

) T
f
α

k

(
ln
(
eα + 2

√
b−a

Tk+1−Tk

))f
C

f
α
2

 =

= 2f−1

(ln(Tk+1 − Tk))
f

+
2f

p
2f
α

(
1− 2f

α

) (ln

(
eα +

2
√
b− a

Tk+1 − Tk

)) f
α

 ,
1 < f < α

2 .

In our case ln r(−1)(z) = z
1
f , therefore, if f converge to one, we will get

∞∏
k=1

(
r(−1)

(
1

pt0k

pt0kw

0

r(Nk(σ
(−1)
k (v)))dv

)) γkz0k
d

=

= exp


∞∑
k=1

γkz0k

d

(
1

pt0k

pt0kw

0

r(Nk(σ
(−1)
k (v)))dv

) 1
f

 6

6 exp

{
21− 1

f

∞∑
k=1

γkz0k

d
[ln(Tk+1 − Tk)+

+
2

p
2
α

(
1− 2f

α

) 1
f

(
ln

(
eα +

2
√
b− a

Tk+1 − Tk

))
 6

6 exp

{
1

d

∞∑
k=1

γkz0k ln(Tk+1 − Tk) +
2P̃

p
2
α

(
1− 2

α

)} , (6.16)
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where P̃ = sup
k

(
ln
(
eα + 2

√
b−a

Tk+1−Tk

))
.

The proof of the theorem follows from (6.5) and the last inequality. ♦

Theorem 6.7. Assume that X(T, τ) = ρ̂T (τ) − ρ(τ), c = {c(T ), T ∈
[A; +∞)} is some сontinuous function and 0 < c(T ) < 1.

Let us denote γk = maxT∈[Tk;Tk+1] c(T ).

If the next conditions hold

1)
∑∞
k=1 γkz0k ln(Tk+1 − Tk) <∞,

2)
r +∞
−∞ f2(λ) (ln(1 + |λ|))2α

dλ <∞, α > 2,

than for arbitrary x > d
√

2 inequality

P

{
sup

(T,τ)∈T
|c(T )X(T, τ)| > x

}
6

6 2e exp

{
− x

d
√

2
+

2P̃(
1− 2

α

) ( x

d
√

2

) 2
α

}(
x
√

2

d

) 1
2

Φ̃5,

holds, where
d =

∑∞
k=1 γkz0k,

P̃ = sup
k

(
ln
(
eα + 2

√
b−a

Tk+1−Tk

))
,

Φ̃5 = exp
{

1
d

∑∞
k=1 γkz0k ln(Tk+1 − Tk)

}
.

Proof. We will easily get our inequality, if we put p = d
√

2
x (x > d

√
2) in

(6.16) and use Chebyshev inequality and theorem 6.4. Indeed,

P

{
sup

(T,τ)∈T
|c(T )X(T, τ)| > x

}
6 2 exp

{
−x(1− p)

d
√

2

}
×

×

(
1 +

x
√

2(1− p)
d

) 1
2

exp

{
2P̃

p
2
α

(
1− 2

α

)} Φ̃5 =

= 2 exp

{
− x

d
√

2

(
1− d

√
2

x

)}(
1 +

x
√

2

d

(
1− d

√
2

x

)) 1
2

×

× exp

{
2P̃(

1− 2
α

) ( x

d
√

2

) 2
α

}
6
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6 2e exp

{
− x

d
√

2
+

2P̃(
1− 2

α

) ( x

d
√

2

) 2
α

}(
x
√

2

d

) 1
2

Φ̃5.

Theorem 6.8. Assume that X(T, τ) = ρ̂T (τ)− ρ(τ) and let c(T ) = T
1
2

(lnT )β

be the function defined for all T > em, where m - some fixed number , m > 4

and 2 < β < m
2 .

If for some α > 2 the next condition holds

+∞w

−∞
f2(λ) (ln(1 + |λ|))2α

dλ <∞,

then for arbitrary x > d
√

2 inequality

P

{
sup

(T,τ)∈T
|c(T )X(T, τ)| > x

}
6

6 2e exp

{
− x

d
√

2
+Dα

(
x

d
√

2

) 2
α

}(
x
√

2

d

) 1
2

D

holds, where
d = C0e

1
2 Σ∞k=1

1
(m+k+1)β

,

C0 is known constant, which is determined through C1 and C2 :

C1 = (1 +
√

2)‖ρ‖22,

C2 = 8π

[
f̃
(

ln
(
eα + C

b−a

))−α
+ ‖f‖2f̃

1
2

]
+ 2‖ρ‖22(1 + 6e+ e2)×

×(e− 1)
(

ln
(
eα + 1

em(e−1)

))α
,

Dα =
2
(

ln
(
eα + 2

√
b−a

em(e−1)

))
(
1− 2

α

) , D = exp

{∑∞
k=1

1
(m+k+1)β−1∑∞

k=1
1

(m+k+1)β

}
,

Proof. Theorem follows from the previous one. Function
c(T ) > 0 is monotone increasing function with β < lnT

2 . Since β > 2, then
we choose for simplicity A = em, m > 4. Let us verify if conditions of the
theory 6.7 is done and let us find the estimations for distribution

P

{
sup

(T,τ)∈T
|c(T )X(T, τ)| > x

}
.
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Let us choose the points Tk of partition in the following way:
Tk = em+k, k = 1, 2, . . . . In this case Tk+1 − Tk = em+k(e− 1) > 1.

γk = c(Tk+1) =
T

1
2

k+1

(lnTk+1)β
=

e
m+k+1

2

(m+ k + 1)β
, k = 1, 2, . . . ,

z0k = max{δ0k, t0k} = max

 c
1
2
1

T
1
2

k

,
c

1
2
2

T
1
2

k

(
ln
(
eα + 2

√
b−a

Tk+1−Tk

))α
2

 =
C0

e
m+k

2

,

where

C0 = max

C 1
2
1 ,

C
1
2

2(
ln
(
eα + 2

√
b−a

em(e−1)

))α
2

 ,

C2 = 8π

[
f̃
(

ln
(
eα + C

b−a

))−α
+ ‖f‖2f̃

1
2

]
+ 2‖ρ‖22(1 + 6e+ e2)×

×(e− 1)
(

ln
(
eα + 1

em(e−1)

))α
.

Thus,

d =

∞∑
k=1

γkz0k = C0e
1
2

∞∑
k=1

1

(m+ k + 1)β
<∞, при β > 1,

∞∑
k=1

γkz0k ln(Tk+1 − Tk) 6 C0e
1
2

∞∑
k=1

1

(m+ k + 1)β−1
<∞, for β > 2,

i.e. condition 1) of the theorem 6.7 is done.
Let us estimate Φ̃5 and P̃ .

Φ̃5 = exp

{
1

d

∞∑
k=1

γkz0k ln(Tk+1 − Tk)

}
6 exp

{∑∞
k=1

1
(m+k+1)β−1∑∞

k=1
1

(m+k+1)β

}
,

P̃ = max
k>m

(
ln

(
eα +

2
√
b− a

ek(e− 1)

))
=

(
ln

(
eα +

2
√
b− a

em(e− 1)

))
.

Therefore,

P

{
sup

(T,τ)∈T
|c(T )X(T, τ)| > x

}
6
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6 2e exp

{
− x

d
√

2
+Dα

(
x

d
√

2

) 2
α

}(
x
√

2

d

) 1
2

D,

where

Dα =
2
(

ln
(
eα + 2

√
b−a

em(e−1)

))
(
1− 2

α

) , D = exp

{∑∞
k=1

1
(m+k+1)β−1∑∞

k=1
1

(m+k+1)β

}
.

Theorem 6.8 enable us to construct criterion for testing of hypothesis about
correlation function of stochastic process.

6.4. Construction of the criterion for testing
hypotheses about the covariance functions of
stationary Gaussian stochastic process

Assume thatξ = {ξ(t), t > 0} is a real-valued continuous in mean square
stationary Gaussian stochastic process with spectral density f(λ), Eξ(t) = 0
and correlation function ρ(τ) = Eξ(t+ τ)ξ(t), a 6 τ 6 b.

As an estimate of ρ(τ) we consider ρ̂T (τ) = 1
T

r T
0
ξ(t + τ)ξ(t)dt and we

assume, that T > em (m > 4).
Let H be the hypothesis that for a 6 τ 6 b the correlation function of

stochastic process ξ(t) equals ρ(τ). To test the hypothesis H one can use
the following criterion.
Criterion 6.1. For some level of confidence γ, 0 < γ < 1, one can find
such xγ , that

A(xγ) = 2e exp

{
− xγ

d
√

2
+Dα

(
xγ

d
√

2

) 2
α

}(
xγ
√

2

d

) 1
2

D = γ,

where α > 2 is such, that
r +∞
−∞ f2(λ)(ln(1 + |λ|))2α <∞,

d = C0e
1
2 Σ∞k=1

1
(m+k+1)β

,

C0 is known constant, which is determined through C1 and C2,

Dα =
2
(

ln
(
eα + 2

√
b−a

em(e−1)

))
(
1− 2

α

) , D = exp

{∑∞
k=1

1
(m+k+1)β−1∑∞

k=1
1

(m+k+1)β

}
,

2 < β < m
2 .
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The hypothesis H is accepted if for T > em

sup
a<τ<b

T
1
2

(lnT )β
|ρ̂T (τ)− ρ(τ)| < xγ

and hypothesis is rejected otherwise.

Remark 6.2. Note, that this criterion can be used for large enough T (for
simplicity we consider T > em, where m > 4), and the probability of the
first type’s error does not exceed γ in this case. Using both, criterion 6.1
and сriterion which was constructed earlier, enable us significantly reduce
the probability of the second type’s error.
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Chapter 7
Estimation of correlation function of
homogeneous and isotropic Gaussian random
field.

In the previous chapters, the problem of estimation of correlation functi-
on of Gaussian stochastic process was considered. In this chapter we wi-
ll consider the similar problem for Gaussian random field. Estimates of
the correlation functions of random fields were considered in the works of
Dychovychnyj A.A. [27], Rakhimov G.M. [116], Revenko A.O. [117]. In the
work of Dychovychnyj, for example, a random field is considered on a ball
and on a cube in Rn.

In this chapter homogeneous and isotropic mean-square continuous Gaussi-
an random field ξ(x) defined in Rn with Eξ(x) = 0 is considered. The
spherical correlogram of random field is chosen as estimator of correlation
function. For this field the inequalities for distribution of spherical mean
deviation from its correlation function in L2-metric are obtained. Based
on these inequalities the new criterion for testing of hypotheses about its
correlation function is constructed. Random field is observed on the ball in
Rn.

7.1. The estimates for distribution of spherical mean
deviation from its correlation function in L2-metric

Assume that ξ(x) is homogeneous in wide sense random field defined in
Rn (suppose that Eξ(x) = 0). It means that E|ξ(x)|2 < +∞ and Eξ(x)ξ(y)

depends only on the distance |x − y| between x and y. This implies that
B(x, y) = Eξ(x)ξ(y) = B(|x− y|).
Definition 7.1. [141] Let SO(n) be a group of rotations Rn around the
origin. A homogeneous random field ξ(x) is called isotropic if Eξ(x)ξ(y) =

Eξ(gx)ξ(gy) for all g ∈ SO(n).

Сorrelation function B(x, y) of homogeneous and isotropic random field
depends only on the distance between x and y and is known that

B(|x− y|) =
w

Rn
ei(λ,x−y)F (dλ), (7.1)
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where F (·) is a finite measure on σ-algebra Bn Borel sets of Rn.
Move to spherical coordinates in (7.1). We obtaine [141]

B(r) = 2
n−2
2 Γ

(n
2

) +∞w

0

Jn−2
2

(λr)

(λr)
n−2
2

dΦ(λ),

where
r = |x− y| is a distance between x and y, Φ(λ) =

r
√
v21+···+v2n6λ

F (dv),

therefore Φ(λ) is nondecreasing function on [0,+∞) and
r +∞
0

dΦ(λ) =
F (Rn) < +∞.

Consider spherical Bessel function

Yn(z) = 2
n−2
2 Γ

(n
2

) Jn−2
2

(z)

z
n−2
2

. (7.2)

Then (7.1) can be written as

B(r) =

+∞w

0

Yn(λr)dΦ(λ). (7.3)

In this section we deal with homogeneous and isotropic mean-square
continuous Gaussian random field ξ(x) defined in Rn with Eξ(x) = 0.
Assume that sample paths of the field are continuous with probabi-
lity 1 on any bounded and closed area. The necessary and sufficient
conditions of this fact are considered in [141].

In the theorem 7.1 we will give sufficient conditions which are close to
the necessary conditions.
Theorem 7.1. [141] Suppose that for some ε > 0 condition

∞w

0

ln1+ε(1 + λ)dΦ(λ) < +∞

holds. Then the random field ξ(x) is continuous with probability one on any
bounded and closed area.

We denote by SR(x) and VR(x) sphere and ball of radius R centered at
a point x respectively.Let m(R)

n (·) be a Lebesgue measure on SR(x).
Then

Un(R) =
Rnπ

n
2

Γ
(
n
2 + 1

) , ωn(R) =
2Rn−1π

n
2

Γ
(
n
2

)
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are the volume of ball and the surface area of the sphere of radius R in Rn
respectively.

Consider a random field

ηR(x) =
1

ωn(R)

w

SR(x)

ξ(y)m(R)
n (dy).

Theorem 7.2. [141] Random field ηR(x) is homogeneous and isotropic.
Homogeneous and isotropic random fields ηR(x) and ξ(x) are related each
other and the following equalities hold

EηR1
(x1)ηR2

(x2) =

+∞w

0

Yn(λR1)Yn(λR2)Yn(λrx1x2
)dΦ(λ), (7.4)

EηR(x1)ξ(x2) =

+∞w

0

Yn(λR)Yn(λrx1x2
)dΦ(λ), (7.5)

where
• Yn(z) is defined in (7.2),
• rx1x2

= |x1 − x2| is a distance between the points x1 and x2.

Let the random field ξ(x) be observed on the ball VR+r(0), r > 0, and
let the spectral function Φ(λ) of the field ξ(x) be absolutely continuous.

Let a spherical correlogram [14]

B̂(r) =
1

Un(R)

w

VR(0)

ξ(x)

 1

ωn(r)

w

Sr(x)

ξ(t)m(r)
n (dt)

 dx =

be an estimator of correlation function in point r.

=
1

Un(R)

w

VR(0)

ξ(x)ηr(x)dx. (7.6)

Using (7.3) and the theorem 7.2, we obtain that B̂(r) is unbiased estimate
of B(r):

EB̂(r) =
1

Un(R)

w

VR(0)

Eξ(x)ηr(x)dx =

=
1

Un(R)

w

VR(0)

+∞w

0

Yn(λr)Yn(0)dΦ(λ)dx =
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=
1

Un(R)

w

VR(0)

+∞w

0

Yn(λr)dΦ(λ)dx = B(r),

since Yn(0) = 1.

Сalculate EB̂2(r) :

EB̂2(r) = E

 1

Un(R)

w

VR(0)

ξ(x)ηr(x)dx

2

=

= E
1

U2
n(R)

w

VR(0)

w

VR(0)

ξ(x)ηr(x)ξ(y)ηr(y)dxdy.

By the Isserlis equality [19] and relationships (7.4),(7.5) we have

EB̂2(r) =
1

U2
n(R)

w

VR(0)

w

VR(0)

[Eξ(x)ηr(x)Eξ(y)ηr(y)+

+Eξ(x)ξ(y)Eηr(x)ηr(y) + Eξ(x)ηr(y)Eξ(y)ηr(x)] dxdy =

=
1

U2
n(R)

w

VR(0)

w

VR(0)

(+∞w

0

Yn(λr)Yn(0)dΦ(λ)

)2

+

+B(|x− y|)
+∞w

0

Y 2
n (λr)Yn(λ|x− y|)dΦ(λ)+

+

+∞w

0

Yn(λr)Yn(λ|x− y|)dΦ(λ)

+∞w

0

Yn(λr)Yn(λ|x− y|)dΦ(λ)

]
dxdy =

=
1

U2
n(R)

w

VR(0)

w

VR(0)

[
B2(r) +B(|x− y|)

+∞w

0

Y 2
n (λr)Yn(λ|x− y|)dΦ(λ)+

+

(
+∞w

0

Yn(λr)Yn(λ|x− y|)dΦ(λ)

)2
 dxdy =

+B2(r) +
1

U2
n(R)

w

VR(0)

w

VR(0)

[
B(|x− y|)

+∞w

0

Y 2
n (λr)Yn(λ|x− y|)dΦ(λ)+

+

(
+∞w

0

Yn(λr)Yn(λ|x− y|)dΦ(λ)

)2
 dxdy.
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Therefore,

E
(
B̂(r)−B(r)

)2

= EB̂2(r)−B2(r) =

=
1

U2
n(R)

w

VR(0)

w

VR(0)

[
B(|x− y|)

+∞w

0

Y 2
n (λr)Yn(λ|x− y|)dΦ(λ)+

+

(
+∞w

0

Yn(λr)Yn(λ|x− y|)dΦ(λ)

)2
 dxdy.

Consider ζ(r) = B̂(r)−B(r), 0 6 r 6 B, 0 < B < +∞.
ζ(r) is a square Gaussian random process, since B̂(r) is a limit of integral
sums

1

U2
n(R)

∑
k

ηk(xk)ξ(xk)∆xk,

Eζ(r) = 0.

Let η =
r B
0

(
B̂(r)−B(r)

)2

dr, 0 6 r 6 T.

It is clear that η = l.i.m.k−→∞
∑
k ζ

2(rk)∆rk.

Eη =

Bw

0

E
(
B̂(r)−B(r)

)2

dr =

=
1

U2
n(R)

Bw

0

w

VR(0)

w

VR(0)

[
B(|x− y|)

+∞w

0

Y 2
n (λr)Yn(λ|x− y|)dΦ(λ)+

+

(
+∞w

0

Yn(λr)Yn(λ|x− y|)dΦ(λ)

)2
 dxdydr. (7.7)

Theorem 7.3. For estimator B̂(r) of correlation function B(r) of homogeneous
and isotropic continuous in mean square random field ξ(x) the following
inequalities hold

P

{
Bw

0

(
B̂(r)−B(r)

)2

dr > x

Bw

0

DB̂(r)dr

}
> 1− g(u) exp

{
u2x

2

}
(7.8)

for u > 0, 0 < x < − 2 ln g(u)
u2 ,
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where g(u) = 1√
2π

r +∞
−∞ exp

{
− s

2

2

}
ds

(1+s2u2)
1
4
and

P

{
Bw

0

(
B̂(r)−B(r)

)2

dr > y

Bw

0

DB̂(r)dr

}
6

2
1
4 y

1
4

ch
(√

y
2 −

1
2

) (7.9)

for y > 1
2 .

Remark 7.1. The inequalities (7.8),(7.9) enable us to construct confidence
sets for correlation function B(r) in L2(0, B) space.

Let H be the hypothesis that the covariance function of homogeneous
and isotropic continuous in mean square Gaussian random field ξ(x) equals
B(r), for 0 6 r 6 B. As an estimator for B(r) we choose B̂(r) defined in
(7.6). To test the hypothesis H one can use the following criterion.
Criterion 7.1. For some level of confidence α, 0 < α < 1, we can find such
positive xα and yα, that

s(xα, u) + f(yα) = α,

where
s(x, u) = g(u) exp

{
u2x

2

}
, u > 0, f(x) = 2

1
4 x

1
4

ch(
√

x
2−

1
2 )
.

The hypothesis H is accepted if

xα <

r B
0

(
B̂(r)−B(r)

)2

dr

E
r B
0

(
B̂(r)−B(r)

)2

dr
< yα

and hypothesis is rejected otherwise.

Remark 7.2. The probability of the first type’s error does not exceed α when
we use this criterion.

7.2. Construction criterion for testing hypothesis
about the covariance function of the homogeneous
and isotropic random field

Let ξ(x) be a continuous in mean square homogeneous and isotropic
Gaussian random field in Rn with zero-mean. Without any loss of generality,
we can assume that the sample paths of the field ξ(x) are continuous with
probability one on any bounded and closed set.

Let the random field ξ(x) be observed on the ball VR+τ (0), τ > 0 and
let the spectral function of the field Φ(λ) be absolutely continuous.
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Theorem 7.4. Let a spherical correlogram

B̂(τ) =
1

Un(R)

w

VR(0)

ξ(x)

 1

ωn(r)

w

Sr(x)

ξ(t)m(τ)
n (dt)

 dx =

=
1

Un(R)

w

VR(0)

ξ(x)ητ (x)dx (7.10)

be an estimator of the covariance function B(τ). Then the following inequali-
ty holds for all ε >

(
p√
2

+
√

(p2 + 1)p
)p
Cp

P

{
Aw

0

(B̂(τ)−B(τ))pdτ > ε

}
6 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 ,

where

Cp =
1

U2
n(R)

Aw

0

w

VR(0)

w

VR(0)

(
B(|x− y|)

∞w

0

Y 2
n (λτ)Yn(λ|x− y|)dΦ(λ)+

+

[∞w
0

Yn(λτ)Yn(λ|x− y|)dΦ(λ)

])
dxdydτ

and 0 < A < ∞.

Remark 7.3. Since the sample paths of the field ξ(x) are continuous with
probability one on the ball VR+τ (0), B̂(τ) is a Riemann integral.

Proof. Consider

E(B̂(τ)−B(τ))2 = E(B̂(τ))2 −B2(τ).

From the Isserlis equality for jointly Gaussian random variables and relati-
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onships 7.4 and 7.5 it follows that

EB̂2(τ) =
1

U2
n(R)

w

VR(0)

w

VR(0)

(Eξ(x)ητ (x)Eξ(x)ητ (x)+

+ Eξ(x)ξ(y)Eητ (x)ητ (y) + Eξ(x)ητ (y)Eξ(y)ητ (x)) dxdy =

=
1

U2
n(R)

w

VR(0)

w

VR(0)

[∞w
0

Yn(λτ)Yn(0)dΦ(λ)

]2

+

+ B(|x− y|)
∞w

0

Y 2
n (λτ)Yn(λ|x− y|)dΦ(λ)+

+

∞w

0

Yn(λτ)Yn(λ|x− y|)dΦ(λ)

∞w

0

Yn(λτ)Yn(λ|x− y|)dΦ(λ)

)
dxdy =

=
1

U2
n(R)

w

VR(0)

w

VR(0)

(
B2(τ) +B(|x− y|)

∞w

0

Y 2
n (λτ)Yn(λ|x− y|)dΦ(λ)+

+

[∞w
0

Yn(λτ)Yn(λ|x− y|)dΦ(λ)

]2
 dxdy = B2(τ)+

1

U2
n(R)

w

VR(0)

w

VR(0)

(
B(|x− y|)

∞w

0

Y 2
n (λτ)Yn(λ|x− y|)dΦ(λ)+

+

[∞w
0

Yn(λτ)Yn(λ|x− y|)dΦ(λ)

])
dxdy.

Therefore,

E(B̂(τ)−B(τ))2 =
1

U2
n(R)

w

VR(0)

w

VR(0)

(
B(|x− y|)

∞w

0

Y 2
n (λτ)Yn(λ|x− y|)dΦ(λ)+

+

[∞w
0

Yn(λτ)Yn(λ|x− y|)dΦ(λ)

])
dxdy. (7.11)

Since B̂(τ) − B(τ) is a square Gaussian random field (see Lemma 3.1,
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Chapter 6 in book [19]), then it follows from the Theorem 3.4 that

P

{
Aw

0

(B̂(τ)−B(τ))pdτ > ε

}
6 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 .

Applying equality (7.11) we get

Cp =
1

U2
n(R)

Aw

0

w

VR(0)

w

VR(0)

(
B(|x− y|)

∞w

0

Y 2
n (λτ)Yn(λ|x− y|)dΦ(λ)+

+

[∞w
0

Yn(λτ)Yn(λ|x− y|)dΦ(λ)

])
dxdydτ. ♦

Denote

g(ε) = 2

√√√√1 +
ε1/p
√

2

C
1
p
p

exp

− ε
1
p

√
2C

1
p
p

 .

From the Theorem 3 it follows that if ε > zp = Cp

(
p√
2

+
√

(p2 + 1)p
)p

then

P

{
Aw

0

(B̂(τ)−B(τ))pdτ > ε

}
6 g(ε).

Let εδ be a solution of the equation g(ε) = δ, 0 < δ < 1. Put Sδ =
max{εδ, zp}. It is obviously that g(Sδ) 6 δ and

P

{
Aw

0

(B̂(τ)−B(τ))pdτ > Sδ

}
6 δ. (7.12)

Let H be the hypothesis that the covariance function of homogeneous
and isotropic continuous in mean square Gaussian random field ξ(x) equals
B(τ) for 0 6 τ 6 A. From the Theorem 7.4 and (7.12) it follows that to
test the hypothesis H one can use the following criterion.
Criterion 7.2. For a given level of confidence δ the hypothesisH is accepted
if

Aw

0

(B̂(τ)−B(τ))pdµ(τ) < Sδ

otherwise hypothesis is rejected.

Remark 7.4. The equation g(ε) = δ has a solution for any δ > 0, since g(ε)
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is a monotonically decreasing function. We can find the solution of equation
using numerical methods.

Remark 7.5. One can easily see that Criterion 7.2 can be used if Cp → 0 as
R→∞.

Example 7.1. Let the hypothesis H is such that the covariance function
of a homogeneous and isotropic Gaussian stochastic field ξ(x) equals to
B(τ) = 9

√
π
J3/2(cτ)

(cτ)3/2
, where J3/2(cτ) is Bessel functions of the first kind,

c > 0, 0 6 τ 6 A. It is known that for B(τ) exist the spectral function in
the following form

Φ(λ) =

{ (
λ
c

)3
, as 0 < λ 6 c,

1, as λ > c.

We will estimate the value of Cp from the Theorem 7.4. Consider the followi-

ng integrals I1 =
∞r

0

Yn(λτ)Yn(λ|x− y|)dΦ(λ) and I2 =
∞r

0

Y 2
n (λτ)Yn(λ|x−

y|)dΦ(λ). We will choose n = 3 and we will evaluate the integral I1

|I1| =

∣∣∣∣∣
∞w

0

Y3(λτ)Y3(λ|x− y|)dΦ(λ)

∣∣∣∣∣ =

∣∣∣∣∣ 3

c3

cw

0

Y3(λτ)Y3(λ|x− y|)λ2d(λ)

∣∣∣∣∣ 6
6

3

c3

cw

0

|Y3(λτ)| |Y3(λ|x− y|)|λ2dλ.

We will estimate the value of |Y3(λτ)|. We will use an estimate of Bessel
functions of the first kind that was obtained in the paper [133], namely

|Jk(u)| 6 21−α|u|απα 1

kα
. (7.13)

For simplicity we choose α = 1. Then

|Y3(λτ)| =
∣∣∣∣√2Γ(

3

2
)
J1/2(λτ)

(λτ)3/2

∣∣∣∣ 6 2
√

2
|λτ |
|λτ |3/2

πΓ

(
3

2

)
= 2
√

2πΓ

(
3

2

)√
λτ.

Similarly, we obtain that∣∣∣Y3(λ
√
|x− y|)

∣∣∣ 6= 2
√

2πΓ

(
3

2

)√
λ|x− y|.
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Then

|I1| 6
3

c3

cw

0

2
√

2πΓ

(
3

2

)√
λτ2
√

2πΓ

(
3

2

)√
λ|x− y|λ2dλ =

=
24

c3
π2Γ2

(
3

2

)√
τ
√
|x− y|

cw

0

λ3dλ = 6π2Γ2

(
3

2

)
c
√
τ
√
|x− y|.

Consider the integer iнтеграл I2

|I2| =

∣∣∣∣∣
∞w

0

Y 2
3 (λτ)Y3(λ|x− y|)dΦ(λ)

∣∣∣∣∣ =

∣∣∣∣∣ 3

c3

cw

0

Y 2
3 (λτ)Y3(λ|x− y|)λ2d(λ)

∣∣∣∣∣ 6
6

3

c3

cw

0

∣∣Y 2
3 (λτ)

∣∣ |Y3(λ|x− y|)|λ2dλ.

Using the similar estimates as in calculating of the integral I1 we obtained
that

|I2| 6
3

c3

cw

0

2

(√
2πΓ

(
3

2

)√
λτ

)2

2
√

2πΓ

(
3

2

)√
λ|x− y|λ2dλ =

=
48
√

2

c3
π3Γ3

(
3

2

)
τ
√
|x− y|

cw

0

λ7/2dλ =
96
√

2

9
π3Γ3

(
3

2

)
τ
√
|x− y|c3/2.

Now we consider the following integral

|I3| = 27
√
π

∣∣∣∣∣∣
Rw

0

√
R2−x2w

−
√
R2−x2

(
J3/2(|x− y|)
|x− y|3/2

∞w

0

Y 2
3 (λτ)Y3(λ|x− y|)dΦ(λ)+

∞w

0

Y3(λτ)Y3(λ|x− y|)dΦ(λ)

)
dxdy

∣∣∣∣∣ 6
27
√
π

Rw

0

√
R2−x2w

−
√
R2−x2

(∣∣∣∣J3/2(|x− y|)
|x− y|3/2

∣∣∣∣ cw
0

∣∣Y 2
3 (λτ)

∣∣ |Y3(λ|x− y|)|λ2dλ+

cw

0

|Y3(λτ)| |Y3(λ|x− y|)|λ2dλ

)
dxdy.
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Taking into account the estimates for I1 and I2, and (7.13) we will get

|I3| 6 27
√
π

Rw

0

√
R2−x2w

−
√
R2−x2

|x− y|
|x− y|3/2

2π

3

(
96
√

2

9
π3Γ3

(
3

2

)
τ
√
|x− y|c3/2+

+ 6π2Γ2

(
3

2

)
c
√
τ
√
|x− y|

)
dydx = 36π3

√
πcΓ2

(
3

2

)
×

×

(
96
√

2

9
πΓ

(
3

2

)
τ
√
c+ 6τ

)
Rw

0

√
R2−x2w

−
√
R2−x2

dydx.

in this case we will obtained

2

Rw

0

√
R2 − x2dx = 2R2

π/2w

0

√
1− cos2 t sin tdt = 2R2

π/2w

0

sin2 tdt =

= 2R2

π/2w

0

1− cos 2t

2
dt =

πR2

2
.

Then

|I3| 6 18R2π4
√
πcΓ2

(
3

2

)(
96
√

2

9
πΓ

(
3

2

)
τ
√
c+ 6τ

)
We will estimate the value of Cp. From the Theorem 7.4 and above menti-
oned it follows that

Cp 6
1

Up3 (R)

Aw

0

(
18R2π4

√
πcΓ2

(
3

2

)(
96
√

2

9
πΓ

(
3

2

)
τ
√
c+ 6τ

))p/2
dτ 6

1

Up3 (R)
18Rp

(
π4
√
πcΓ2

(
3

2

))p/2
Dp

Aw

0

(96
√

2

9
πΓ

(
3

2

)√
c

)p/2
τp/2+

+ 6p/2τ
p+1
2

)
dτ =

18Rp

Up3 (R)

(
π4
√
πcΓ2

(
3

2

))p/2
Dp×

×

(96
√

2

9
πΓ

(
3

2

)√
c

)p/2
2A

p+2
2

p+ 2
+ 6p/2

2A
p+3
2

p+ 3

 ,
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where

Dp =

{
1, as 0 < p 6 1,
2p, as p > 1.

Taking into account the value of Up3 (R) we will get

Cp 6
18Γ

(
5
2

)
R2pπ3/2

(
π4
√
πcΓ2

(
3

2

))p/2
Dp×

×

(96
√

2

9
πΓ

(
3

2

)√
c

)p/2
2A

p+2
2

p+ 2
+ 6p/2

2A
p+3
2

p+ 3

 .

7.3. Estimation of homogeneous and isotropic
Gaussian random field’s correlation function when
the values of field are observed on a ball

As before, we will use the following notations:
• SR(x), VR(x) sphere and ball of radius R centered at a point x;
• Un(R, ) ωn(R) the volume of ball and the surface area of the sphere of
radius R;
• m(R)

n (·) a Lebesgue measure on SR(x);
• Φ(λ) the spectral function Φ(λ) of the field ξ(x).

Consider a random field

η̂r(x) =
1

ω̂n(r)

m∑
k=1

ξ(xk)∆Sk, (7.14)

where
xk points on the sphere Sr(x);

∆Sk square of the k-th element of sphere’s partition;
ω̂n(r) =

∑m
k=1 ∆Sk.

Theorem 7.5. Random field η̂r(x) is homogeneous and isotropic.
Homogeneous and isotropic random fields η̂r(x) and ξ(x) are homogeneously
and isotropically related each other and the following equalities hold

Eη̂r1(x1)η̂r2(x2) =

+∞w

0

Yn(λr1)Yn(λr2)Yn(λrx1x2)dΦ(λ), (7.15)
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Eη̂r(x1)ξ(x2) =

+∞w

0

Yn(λr)Yn(λrx1x2
)dΦ(λ), (7.16)

where
rx1x2 = |x1 − x2| is a distance between the points x1 and x2.

Yn the spherical Bessel function, introduced in (7.2).

Proof. The proof of this theorem is similar to corresponding theorem in
[141] ♦

Consider homogeneous and isotropic continuous in mean square Gaussi-
an random field ξ(x) in Rn with mean zero and correlation function B(r).
Assume that B(r) can be presented as (7.3). Suppose that the spectral
function Φ(λ) of this field is absolutely continuous, random field is observed
on a ball VR+r(0), 0 6 r 6 B, and value of field is known only in some a
points on the ball.

Consider N spheres on the ball VR(x) with radiuses iR
N , 1 6 i 6 N ,

R
N < r, and centers in 0.

As an estimator of correlation function in point r will use

B̂N (r) =
1

Ûn(R)

N∑
i=1

M∑
j=1

ξ(xij)η̂r(xij)∆Sij , (7.17)

where
• xij - points on the sphere S iR

N
(0);

• ∆Sij - the surface area of the j-th element of sphere’s S iR
N

(0) partition;

• ω̂n
(
iR
N

)
:=
∑M
j=1 ∆Sij ;

• Ûn(R) :=
∑N
i=1

∑M
j=1 ∆Sij .

B̂N (r) is unbiased estimate:

EB̂N (r) =
1

Ûn(R)

N∑
i=1

M∑
j=1

Eξ(xij)η̂r(xij)∆Sij =

=
1

Ûn(R)

N∑
i=1

M∑
j=1

+∞w

0

Yn(λr)Yn(0)dΦ(λ)∆Sij =

=
1

Ûn(R)

N∑
i=1

M∑
j=1

+∞w

0

Yn(λr)dΦ(λ)∆Sij = B(r).

Using the Isserlis formula and equalities (7.15),(7.16) one can calculate
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EB̂2
N (r).

EB̂2
N (r) = E

 1

Ûn(R)

N∑
i=1

M∑
j=1

ξ(xij)η̂r(xij)∆Sij

2

=

=
1

Û2
n(R)

N∑
i=1

M∑
j=1

N∑
p=1

M∑
l=1

Eξ(xij)η̂r(xij)ξ(xpl)η̂r(xpl)∆Sij∆Spl =

=
1

Û2
n(R)

N∑
i=1

M∑
j=1

N∑
p=1

M∑
l=1

[Eξ(xij)η̂r(xij)Eξ(xpl)η̂r(xpl)+

+Eξ(xij)ξ(xpl)Eη̂r(xij)η̂r(xpl) + Eξ(xij)η̂r(xpl)Eξ(xpl)η̂r(xij)] ∆Sij∆Spl =

=
1

Û2
n(R)

N∑
i=1

M∑
j=1

N∑
p=1

M∑
l=1

(+∞w

0

Yn(λr)Yn(0)dΦ(λ)

)2

+

+

+∞w

0

B(|xij − xpl|)
+∞w

0

Y 2
n (λr)Yn(λ|xij − xpl|)dΦ(λ)+

+

+∞w

0

Yn(λr)Yn(λ|xij − xpl|)dΦ(λ)

+∞w

0

Y 2
n (λr)Yn(λ|xij − xpl|)dΦ(λ)

]
×

×∆Sij∆Spl = B2(r) +
1

Û2
n(R)

N∑
i=1

M∑
j=1

N∑
p=1

M∑
l=1

[
+∞w

0

B(|xij − xpl|)×

×
+∞w

0

Y 2
n (λr)Yn(λ|xij − xpl|)dΦ(λ)+

+

(
+∞w

0

Yn(λr)Yn(λ|xij − xpl|)dΦ(λ)

)2
∆Sij∆Spl.

Then
E
(
B̂N (r)−B(r)

)2

= EB̂2
N (r)−B2(r) =

=
1

Û2
n(R)

N∑
i=1

M∑
j=1

N∑
p=1

M∑
l=1

[
+∞w

0

B(|xij − xpl|)×

×
+∞w

0

Y 2
n (λr)Yn(λ|xij − xpl|)dΦ(λ)+
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+

(
+∞w

0

Yn(λr)Yn(λ|xij − xpl|)dΦ(λ)

)2
∆Sij∆Spl.

Consider ζ(r) = B̂N (r)−B(r), 0 6 r 6 B, 0 < B < +∞.
Since B̂N (r) is a quadratic form of Gaussian vectors, therefore ζ(r) is Square
Gaussian random process and Eζ(r) = 0.

Let η =
r B
0

(
B̂N (r)−B(r)

)2

dr. Since η is a mean square limit of
quadratic forms of the type

∑
k ζ

2(rk)∆rk, where rk ∈ [0, B], then the
next theorem holds.
Theorem 7.6. For the estimator B̂N (r) of correlation function B(r) homogeneous
and isotropic continuous in mean square Gaussian random field ξ(x) the
following inequalities hold

P

{
Bw

0

(
B̂N (r)−B(r)

)2

dr > x

Bw

0

DB̂N (r)dr

}
> 1− g(u) exp

{
u2x

2

}

for u > 0, 0 < x < − 2 ln g(u)
u2 ,

where g(u) = 1√
2π

r +∞
−∞ exp

{
− s

2

2

}
ds

(1+s2u2)
1
4
, and

P

{
Bw

0

(
B̂N (r)−B(r)

)2

dr > y

Bw

0

DB̂N (r)dr

}
6

2
1
4 y

1
4

ch
(√

y
2 −

1
2

)
for y > 1

2 .

Let H be the hypothesis that for 0 6 r 6 B the covariance function
of homogeneous and isotropic continuous in mean square Gaussian random
field ξ(x) equals B(r). As an estimator for B(r) we choose B̂N (r), defined
in (7.17). To test the hypothesis H one can use the following criterion.
Criterion 7.3. For some level of confidence α, 0 < α < 1, one can find
such positive xα and yα, that

s(xα, u) + f(yα) = α,

where
s(x, u) = g(u) exp

{
u2x

2

}
, u > 0, f(x) = 2

1
4 x

1
4

ch(
√

x
2−

1
2 )
.
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The hypothesis H is accepted if

xα <

r B
0

(
B̂N (r)−B(r)

)2

dr

E
r B
0

(
B̂N (r)−B(r)

)2

dr
< yα

and hypothesis is rejected otherwise.

Remark 7.6. The probability of the first type’s error does not exceed α when
we use this criterion.
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aléatories. Studia Math. 19, № 1, 1–25 (1960)
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