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Introduction

Nowadays, the theory of stochastic processes is widely used in various
fields of science and not only. Using stochastic processes, we can describe
a large number of production processes, as well as processes occurring in
economics, finance, insurance, radiophysics, etc. Since the covariance functi-
on is one of the most important characteristics of stochastic processes, the
tasks of evaluating this function and constructing the criteria for its identi-
fication are an actual direction in the theory of stochastic processes and are
widely used in solving statistical problems of stochastic processes. Another
actual direction in the theory of stochastic processes is computer simulation
of stochastic processes and fields, which is an effective means of reproducti-
on and prediction of various phenomena and processes of the environment.
Due to the powerful possibilities of computer techniques the problems of
numerical simulations become especially important and allow to predict the
behavior of a random process. The given monograph is dedicated to these
tasks, namely, the tasks of simulation of stochastic processes and fields and
the problem of identifying the covariance function of stochastic processes
and fields.

In the first chapter we consider the space of sub-Gaussian random vari-
ables Sub(2), the Orlicz spaces of random variables Ly () and the space
of quadratically Gaussian random variables SG=(Q2). The concept of sub-
Gaussian random value was introduced in 1960 by Kahan. Later, in 1985,
Kozachenko and Ostrovsky introduced and investigated certain properties
of ¢-sub-Gaussian random variables. The partial case of (p-sub-Gaussian
random variables are quadratically Gaussian random variables. Quadrati-
cally Gaussian stochastic processes appeared in the literature in the mi-
ddle of the twentieth century and were intensively investigated by many
scholars, in particular by Kozachenko and his students. Since estimates for
quadratically Gaussian stochastic processes are used in the evaluation of
the spectral and covariance functions of stochastic processes and fields and
the construction of criteria for the identification of these characteristics, it
is precisely to this class of random variables and stochastic processes we
devotes considerable attention. In the first section we consider the problem
of evaluation of the exponential moments of quadratic forms from random
variables from the space SG=(2) and limits in square mean of such quadratic
forms. The upper and lower estimates for distributions of quadratic forms of
quadratically Gaussian random variables and limits in square mean of such
quadratic forms are found. The necessary definitions and assertions about
the random variables from the Orlicz spaces are given for further work.

The second chapter is devoted to the construction of models of Gaussi-



an non-stationary stochastic processes with given accuracy and reliability.
A well-known, suggested by Mikhailov, method for constructing models of
Gaussian stationary processes, namely, the method of partition and randomi-
zation of the spectrum, was modified here. Using the modified method of
partition and randomization of the spectrum we constructed the models of
Gaussian non-stationary stochastic processes. In addition, were investigated
the conditions for selecting a partition of a set are so that the constructed
model approximates a Gaussian non-stationary stochastic process with gi-
ven reliability and accuracy in the spaces C(T) and L,(T).

The third chapter is devoted to the construction of models of Gaussian
non-stationary stochastic fields with given accuracy and reliability. At the
beginning of the section, we constructed a model of stochastic field and
obtained the estimates of k-th moments of sub-Gaussian random variables.
With the help of these estimates, we investigated the accuracy and reliability
of the constructed models and established a sufficient condition that the
model of a stochastic Gaussian non-stationary field approximates it with
given reliability and accuracy in the space L,(T),p > 1. In addition, in
Section 3.4, new estimates for Bessel functions of the first kind are found.
Also, the differences between the Bessel functions with different arguments
are considered. Estimates for differences between two and four functions are
obtained.

In the fourth chapter, a separable, real, stationary Gaussian stochastic
process £(t) is considered. Using previously obtained inequalities, estimates
for the deviation of normalized correlogram from the covariance function
in the metric of the space Ly(0,B), 0 < B < oo are found for a stochastic
process £(t). Here we considered the case when the process £(t) is a centered
stochastic process and the case when the mean of the process is different
from 0. The covariance function is evaluated using correlograms.

In the fifth chapter we proved the theorem on the deviation of the covari-
ance function from its estimate, that is, the correlogram. The criteria for
testing the hypotheses about the covariance function of the Gaussian stati-
onary stochastic process and the Gaussian non-stationary stochastic process
are formulated. A theorem on the deviation of a covariance function from its
estimate is proved in the case when the value of the process is known only
for a finite set of points. On the basis of this theorem, a criterion for testi-
ng the hypothesis about the covariance function of a Gaussian stationary
stochastic process is formulated. We proposed a criterion for comparing two
hypotheses about the covariance function and a criterion for testing the
hypothesis about the covariance function of a Gaussian stochastic process
in the case when the mean of this process is different from zero. All these
results are based on the estimates of the norms of quadratically Gaussian
stochastic processes in the space L,(T'), p > 1, that were obtained in Section
1.6.

In the sixth chapter we find the estimates for the distribution of the



supremum of quadratically Gaussian stochastic processes defined on R™.
The obtained results are used, in particular, to stationary in the wide means
quadratically Gaussian stochastic processes. For a real stationary Gaussi-
an stochastic process, with the help of the obtained inequalities, we find
estimates for the deviation of the correlogram from the covariance functi-
on in the uniform metric on (0, 00). We constructed a criterion for testing
hypothesis about the covariance function of the process on the interval (a, b)
by observing the trajectory of the process on a segment of arbitrary length.

In the seventh chapter homogeneous and isotropic mean-square conti-
nuous Gaussian random field £(z) defined in R™ with F¢(x) = 0 is consi-
dered. For this random field, we obtained estimates for the distribution of
spherical mean deviations from the covariance function in Lso-metric and
metric of the space L,(€2),p > 1. In Section 7.3 we considered the case
when the values of the field on a sphere are known. Using the obtained
inequalities, we constructed the criteria for testing the hypotheses about
the covariance function of a stochastic field. The evaluation is carried out
by observing the stochastic field on the ball, and the spherical mean is used
as the estimate of the covariance function.



Chapter 1

Orlicz, SG=(Q2) and Sub(f?) spaces of random
variables.

1.1. Orlicz spaces of random variables.

Definition 1.1. [88] A continuous even convex function U = {U(x),z €
R} is called Orlicz C-function, if it is monotone increasing, U(0) = 0, U(x) >
0, z # 0.

Example 1.1. The next functions are Orlicz C-functions:
1) Ulx)=alz|* z€Ra>0, a>1;
2) U(z) = c(exp{alz|*} — 1), z € R, ¢ > 0,a > 0, > 1;

3) U(zx) = clexp{p(z)} — 1), x € R,c > 0, ¢ = {p(x),x € R}-arbitrary
Orlicz C-function.

The main properties of Orlicz C-function reviewed in the book [88].
Let {Q, B, P} is the probability space. Denote:

e Lo(f2)- space of all random variables defined on the probability space
{Q,B, P}

o L,(Q2)-space of random variables with finite p-th absolute moment
(p=>1);

. LZ(,O)(Q)—space of zero-mean random variables with finite p-th absolute
moment (p > 1).

The space L,(2) is Banach with respect to the norm

I€ll, = [EIEP)YP € € Ly(Q).

Example 1.2. Let U(z) = [P, z € R, p > 1. In this case Ly(Q) is a
L,(f2) space and Luxemburg norm ||¢|| and norm ||¢]|, are equivalent.

Convergence in the space Lo (§2) by the norm || e ||z called the convergence
in the mean square and if £, — £ in the space Lo(Q2), then we can write
down & = 1.i.m.p—00én-

Definition 1.2. [19] Let U-arbitrary Orlicz C-function. The Orlicz space,
generated by the function U(z), is defined as the family of random variables

9



¢ € Ly(Q) where for each function & there exists a constant r¢ > 0 such
that
EU <£> < oo0.
Te
Theorem 1.1. [19] The Orlicz space Ly (§2) endowed with the Luzemburg

el =inf {r>0: £0(£) <1} ()

,
is a Banach space and
Ly () C L1(2). (1.2)

The functional ||e|| can take value oo on the space Lo(§2) and ||{]|y < oo
if and only if £ € Ly (92), namely
Ly(Q) ={€ € Lo(Q) : [[¢]lo < o0}

By Ly () we denote the Orlicz space generated by Orlicz C-function
U(x).

Since (1.2) is true, than the space of zero-mean random variables can be
written as

LY(Q) = {€ € Ly(Q) : BE =0},
Lemma 1.1. [19] The space ngo)(Q) is Banach subspace in the Ly ()
space with respect to the norm || e ||y.

1.2. Orlicz space of exponential type.

Let’s consider the spaces of Orlicz, for which there are corresponding
ones exponential moments.
Definition 1.3. [19] Suppose that ¢ = {¢p(x),z € R} is an arbitrary C-
function. The Orlicz space generated by the C-function

U(z) = exp{p(x)} — 1,2 € R,

is called an Orlicz space of exponential type.

We denote this space by Exp,(€2) and the norm of the space Exp,(f2)
by f[olls,. | |

Random variables belonging to space of exponential type have power
moments any order, yielding the inclusion

Exp, () C L,(Q)

10



for any p > 1. By Theorem 3.2 in the book [19], this is a topological embeddi-
ng: that is, there exists a constant ¢ > 0 such that

1€l < cliélle, -

for any £ € Fap,(€2). In general, the calculation of ¢ is cumbersome, but in
the case of N-functions this constant can be represented in a form convenient
for applications.
Remark 1.1. In what follows, we will write Exp,)(Q2) instead of Exp, ()
when ¢ = {|z|*,z € R}, a > 1, and the corresponding norm | e ||z, will be
denoted || ® || g(a)-

Denote

Exp®(Q) = {£ € Exp,(Q) : B¢ = 0}.

From Lema 1.1 we obtainte that the space Ea:pfpo)(Q) is Banach subspace
in the Exp,(2) space with respect to the norm || e ||7. If we consider only
centered random variables, then we can easily determine norms that will be
equivalent to the Luxemburg norms.

Let v is a Gaussian random variable with (0, 02) parameters. This random
variable belong to Ly (€2) Orlicz space, where U(z) = exp{z?} — 1 and the
norm of this random variable is equal to C| e ||, .

1.3. Sub-Gaussian random variable

Definition 1.4. [19] A random variable x is sub-Gaussian if there exists
a > 0, such that the inequality

2)\2
Eexp{A\x} < exp { ¢ 5 } ;

holds for all A € R.
The space of all sub-Gaussian random variables defined on a common
probability space {2, B, P} we denote Sub(2). The space Sub({2) is a Banach
1

space with respect to the norm 7() = sup [W] ’,
A£0

Lemma 1.2. [19] Assume that £1,&a, ..., &, are independent sub-Gaussian
random variables. Then

2 (Z &-) <Y )
k=1 k=1
Lemma 1.3. [19] Let & be a zero-mean random variable such that E€

2k4+1 _

11



07 6(¢) = sup [(2;;3’, Eg?k] T _ oo, Then € € Sub(Q) and () < 6(c).
k>1

Definition 1.5. [19] Let T be a parametric set. A stochastic process £ =
{&(t),t € T} is called sub-Gaussian if for all t € T, £(t) € Sub(Q2) and
suprer 7(£(1)) < oo.

1.4. Space of square Gaussian random variables

$G=(9)
Let
o &= (&,...,6n)T be N-dimensional Gaussian column vector (N > 1),

E¢. =0,k=0,...,N;
— 7T —
e B =cové = E£E be the covariance matrix of the vector &;
e A= (ajk)j»\szl be a symmetric matrix with real-valued entries

(AT = A).

! _ . _ _ N2
Lemma 1.4. [59] For |s| < 1 and D (gTAg) -y (gTAg - EgTAg) >0
the next inequality holds

T — _T
S § AS — E§ A —1/2 { |5|}
expl — | V—>—"—+ < (1—1s)) expy —— ¢ .

Remark 1.2. The conclusion of lemma also holds for an asymmetric matrix
A. In this case one can use the immediate equality

A+ AT =
ZaF

=T = =T
§ AE=¢ (
and observe that the matrix 1(A 4+ AT) is symmetric.

Remark 1.8. Assume that & = (&1,...,&n,) T, Ny > Tand 7 = (n1,...,95,) 7,
Ny > 1 are zero-mean jointly Gaussian vectors and let A = (a;x) be an
N7 X Ny matrix with real valued entries. Consider the quadratic form

=T ,_ 1 2
& A= Eé\[:lzg:lajkfjﬂk'
Introducing a random Ny + Na-vector (£;7) = (€1, &Ny, 715 1N,) T

12



and a block (N7 + Na) x (N7 4+ Na)-matrix
(3 4)

7T _ - _ ~ =
& An=(En AEn).
_ _ _ 2
Corollary 1.1. Let D (fTAﬁ) =F (§TAﬁ — E{TAﬁ> > 0. Then forT
|s| < 1 the following inequality holds

o O
[=XNTES

we have the equality

—T T
s [ £ An—E{ An —1/2 { |S|}

expy —= | ¥——M— < (1—1s)) expy —— .
V2 (D (ETAH>)1/2 2

Remark 1.4. It is an easy exercise to check that corollary 1.1 also holds for
a linear combination of the form

n =T —
¢ =318 Ay,

where &;,...,&,,7,-..,7, are zero-mean jointly Gaussian random vectors
whose dimensions can be arbitrary and where Aj,..., A, are symmetric
matrices which fit these dimensions. In this case, the only restriction is
the condition that the random variable ¢ is nonsingular. However, this
fact is obvious since the random variable { can always be represented as
WTZW, where 7 is a compound Gaussian vector formed by the vectors
&y &M, - - -5 7, and the matrix A is built from the matrices Ay, A,

On a probability space {2, B, P}, consider a family of random variables
of the form ETAE — EETAE, where € is a zero-mean Gaussian vector of an
arbitrary dimension N > 1 defined on {2, B, P}, and A is an arbitrary
N x N-symmetric matrix with real-valued entries.

Definition 1.6. [81] Let T be some parametric set, = = {&,t € T} be
the family of jointly Gaussian random variables, E& = 0 (for example,
& be Gaussian random process). The space SG=(2) is called the space of
square Gaussian random variables, if random variables ¢ from SG=(f2) can
be represented in the form

¢ =€ AE— EE AL, (1.3)
where

13



o &= (&,...,&n)T is Gaussian random vector for N > 1, E¢ = 0,

e random variables &;,7 =1,..., N belong to =,

e A is an arbitrary symmetric matrix,

or random variables from SGz(2) are mean square limits of a sequence of
random variables (,, = EZAHEH - EE:A,LE”, n > 1.

Remark 1.5. Assume that 77 and 6 are random vectors with components
from Z, and C is a symmetric matrix. Then ¢ = 77 C0 — E7" CH belongs to
the space SG=(2).
Remark 1.6. Let 1j;, 7 =1,2,...,n be the random vectors with components
from E, C; be the symmetric matrices, w1, us, . . . , 4, be the arbitrary numbers.
Then ¢ = Y7, u; (7F Cim; — En! C;m;) belongs to the space SG=(9).

In [19] was proved, that the space SGz(Q2) is a closed subspace of the
space Expfoo)(ﬂ) with p(z) = |z|,2 € R and || @ [[g, and Ly(£2)-norm are
equivalent. This means that space SGz(2) is Banach space relative to the

norm ||¢|| = y/E¢2. For the random variables from SG=(Q) the following
lemma holds.

Lemma 1.5. [81] Assume that (;,i=1,2,...,n are random variables from
SG=(2). Then for all |s| <1 for all \; € RY,i=1,2,...,n inequality

s ¢
exp {\/§ (DC)% } < R(]s]) (1.4)

holds, where ¢ = > | Ni(;,
R(s)zexp{—%}(l—s)_% (1.5)

Definition 1.7. [81] A random vector { € R? is said to be square Gaussian,
if all its components (;, i = 1,2,...,d, belong to the space SG=().

Definition 1.8. [81] A random process ( = {((t),t € T} is called the
square Gaussian random process relative to family =, if for all ¢ € T random
variables ((t) belong to the space SG=(2) and sup,cp EC?(t) < .

Let us consider the examples of square Gaussian random processes.

1. Let & (¢),&(¢), ..., &n(t),t € T be a family of zero-mean jointly Gaussi-
an random processes and assume that for each ¢t € T' exist symmetric

matrix A(t). Then ((t) =& (¢)A(t)E(t) — EET(t)A(t)E(t)
be the square Gaussian random process with ET(t) = (&1(t),&(t), ..., &n(1)).

14



2. The mean square limits of a sequence of random processes

Gu(t) = En (DA (D), (1) — BT, (£) An(B)E, (1),

where £, (t) are zero-mean Gaussian random vector-processes and A, (t)
are symmetric matrices, be the square Gaussian random process.

3. Assume that & = {£(¢),t € T} is zero-mean stationary Gaussian
random process. Correlogram

~

14
Blr) = o [ €t + me(0)dt — B+ ew), V>0,
0

of this process § = {£(t),t € T} is the square Gaussian random
process.

1.5. The estimates for the distribution of quadratic
forms defined on the space of square Gaussian
random variables SG=(f?)

The following lemma improves the corresponding lemma from [81].

Lemma 1.6. Let ZT = (C1,-..,Cq) be the random vector, ¢; € SG=(Q),
1=1,...,d, and let A be the d x d symmetric positive-dimensional matriz.
Then for all |t| < % the following inequality holds

(1.6)

where R(s) = exp {

2
Proof. Let us prove this lemma for A = I , where I is unit matrix, and for
such vectors ¢, for which ¢; are orthogonal, i.e. D(Z?Zl XiGi) = Zle NEC.
Put 02 = E¢?, i =1,2,...,d. In this case from (1.4) (for |s| < 1) follows,
that for all \; € R,i =1,2,...,d inequality

s NG
V2(X L, No?)

Eexp < R(|s]) (1.7)

172 ( =

holds true.

15



Let us denote 5

\/ 2 Zj:l )‘1201‘2

~1/2
From (1.7) follows, that for |u| < (2 Zle No?) / we obtain

u =

d
Eexp {uzxig} <R | |u|

i=1
Let us define s; = u)\;0;. Then

d
2> A2 |. (1.8)
=1

moreover ZZ 1 57 < $. Tt follows from (1.8), that for all s; for which
Z‘j L 52 <  the next inequality holds

Eexp{ZsLQ‘} <R

=1

One can apply (1.9), to obtain inequality

oo (e0) s ) k)

i=1 =1

“gell (oo} e )

SN

i=1

1 d e
2dZE'ljlexp{sgi }

where §; = £1 and sums ) are calculated by all possible d;, that means we

16



have total 2¢ numbers. Thus,

d

EHch< o

=1

Consider function f(z) =Inch/z, z > 0. f(z) > 0 is convex function.

_ . _ bh\/g . 1_5h(2f)
Really, f(0) = Inch0 = 0, f'(2) = 37457, ['(2) = (h%f) < 0,
because sh(24/2) > 24/z, z > 0. Therefore, for all z; > 0,5 =1,2,...,d, the

inequality [51]

holds. This means

Therefore, for Zf 157 < % we have

2
Let us put s? = Z . Than from previous inequality we obtain

llal

Ech < R(V2t) (1.10)

for all |t] < %

Let us consider the general case. Take a symmetric matrix B such, that
BB = A, R = cov( and let O be the orthogonal matrix reducing BRB to
the diagonal form, that is

OBRBOT = D = diag(d}){_,

17



Let § = OB(. Then
9'9=C BOTOBC =C AL,
covl = OBcov(BOT = D.
Since 0 = (61,...,04) is square Gaussian random vector ({ is square

Gaussian random vector), we can to apply inequality (1.10) to it. Consi-
dering that 79 = Z‘Ll 0? = ZTAZ , we obtain

Lemma is proved completely. &

Corollary 1.2. Assume that for ¢, and A,, n > 1 the conditions of the

lemma 1.6 are fulfilled and n = l.i.m.n_woZ:AnZn, En # 0. Then for all
[t] < % the following inequality holds

Ech( Z’;) < R(V2t)).

Proof. Since n = 1.i.m.,—_ oM, than En, — En, for n — 0o, that means
n n

=limagy_—eo——,
En i Eny,

where 7, = Z:Anzn Then exists a subsequence {7, } of the sequence {n,}
such that n,, — n for n, — oo with probability 1. We will apply the
Fatou lemma to obtain

[12 1) — Elimi 2 i)
Ech( t Eﬁ)E}grgnéch( t En'ﬂzk) <

< e .
< liminf Ech < t i > <R (\/§|t|>

ng — 00 o

The theorem is proved. &

Lemma 1.7. Assjyme that for ¢ and A the conditions of the lemma 1.6 are
fulfilled and n = ( AC. Then for x > % the following inequality holds

18



11

n 241
P — —/——r—. 1.11
() = w0 o

Proof. From the Chebyshev inequality and (1.6) follows, that for > 0
and [t| < % we have

t2
n Ech\[E  R(W2H)
Pi—>zx7;< <
En ch vit2x ch vVit2x
Let us donote t = ﬁ — ﬁ , T > % Then

Since exp{Q\/lﬂ — %} <1 forz > %, then

n 91/4,.1/4
Pl e 2
En ch (v —3)
Lemma is proved. &

Corollary 1.3. Assume that for , and A,, n > 1 the conditions of the
lemma 1.6 are fulfilled. Then the inequality (1.11) holds for

n= l.i.m.n_moZ:AnZn, En #£0.
Proof. Corollary follows from lemma 1.7 and corollary 1.2. &

Lemma 1.8. Let&1,&s,...,&m, m = 1 be independent normal random vari-
ables and E¢, = 0,E; = o3,¢,, = 1,k = 1,...,m and s > 0. Then the
following inequality holds

Eexp{ (Zk 1£kck} < !

(1+5?)

/4"

20351 04)2

Proof. 1t is obviously, that for &, ¢ and for real valued r equality

Eexp{zk 1§kc’“} HE {Z’Skc’“} (1.12)

holds.
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Taking into account that Fexp{iséZ} = (1 — 2i8013)71/2, (1.12) can be
rewritten in the form

mo g2 m 2.\ "3
Eexp {iZk_l f’fc’“} - (1 - 2¢0kck> .
T
k=1

m 4o} 7%
Let us denote I = [] (1 + —’C) .
k=1
Then
R 4o
lnI:—ikZ_lln <1+r2) (1.13)
Consider the function f(z) =In(l+ ), > 0. f(x) is convex function

(f(0) =0, f"(z) < 0) and therefore

m

FOQ e <D flaw),
k=1 k

=1

that is

=3 f) < -1 )
k=1

k=1
for z, > 0.
From the last inequality and (1.13) follows, that

1 4 &,
Inl < len <1+7220k>

k=1

-1

4 m 4

I< (1 + o—,‘§> :
" k=1
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m 4 1
Let r = 72(216:81 %)% Then

_1
I<(1+s*) * for the real valued s,
which was to be proved. &

Theorem 1.2. Let A be a symmetric real-valued n x n matriz,
E = (&1,&,...,&) be the random vector such that & are the normal

random variables with E&, = 0 and DETAE > 0. Then

T — T —
A —FE¢ A 1
Eexp ’LS(f g g 5) S o1
V2 DE" A (173
for s > 0.
Proof. Let € = (&1,&a,...,&,)7 be an n-dimensional Gaussian column vector,

such that B¢, = 0, k = 1,...,n, and let B = cové = E&T be the covari-
ance matrix of the vector . Take a symmetric matrix A = (aij)ij=1 with
real-valued entries (A7 = A) and let U be the ortogonal matrix reducing
(BY/2)T AB'/? to the diagonal form. £ = BY/2U7, where 7 = (v1,...,7n)"
is a standard Gaussian random vector. Then

T —
€ AE=7TUTBPABY?UY = 7TAY = S i,

where A = diag{\1,...,\,} is the diagonal matrix. Since for A\, = +1
we obtain D (37 _; AvZ) = 2> p_, 04 > 0 and for ¥ holds lemma 1.8
(Evg =0, B9 = 1, A\, = £1) we will have
AE—FE¢ A
e | 2 AE—ET 4D ||
V21 DE" A€

Eexp{ (Zk 1 )‘k'yk (ZZ=1 )‘k’yi)) H < 1 _.
2V/ 2 k=1 0% (1+s?)7

Corollary 1.4. Let(;,i=1,2,...,n be the random variables from SG=(2).
Then for s > 0 the next inequality holds

.S ¢ 1
’EeXp {Zx/?(vm()w}‘ S (1+s2)1/4
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where ( = Z?:l AiGi, A are real numbers.

Proof. ¢; € SG=(Q) therefore (; can be represented as (; = EZTCzEl —

E (& CZEZ-), where ¢, are Gaussian random vectors, C; are the symmetric

matrices. Let us consider vector ET = (£,,...,€,) and the matrix
MGy 0o ... 0
C— 0 XCy ... 0
00 MG

In this case ( = > 1| NG = ETC’E - F (ETC’E) is square Gaussian random
variable, and therefore for ¢ the inequality of the theorem holds. &

Lemma 1.9. Let ZT = (C1,...,Cy) be the random vector such, that (; €
SG=(Q) and let A be a symmetric positive-valued matriz. Then the inequali-

ty
E exp v < AC < g(u)
2 g AC
holds true, where g(u) = \/ﬁ eroo exp{ s } ﬁds7 u > 0.

Proof. Let us consider orthogonal square Gaussian random variables (j,

EQQ = O'J , 0] > 0>, A\; € R!. Then from the theorem 1.2 and corollary 1.4

for s > 0 we have

LD W
Eexp ZiM S% (1.14)
V2SI 203 || T (14 s

Let us rewrite the left part in the form

.S Z?:l o5 (/\ UJ)

Fexp{i—
V2 (S M)
— Ajoj 2 _
Define s; as follows s; = SW Then s* = Zj 1 s], and (1.14) can

be rewritten in the form
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FexpQi— 295

For t; > 0 we will have

—
—
t
@
i
o]
-~
)
<
Q ‘g\
s
[N}
9~
S
@
]

ol
——
|

)
gﬁb\w
——
jsW
)

=
W
)
3
Il

j=1 77

Eexp _Z# =
j=1 73
1 Sl 1 53
:Rjn jEexp{Z2j_18JUj}jl:[lmtj eXp{—Qt?}dﬁ dsy| <
1 — ¢ n 1 2
San f Eexp{sz_lsjUj} 1 \/ﬂtJ exp{—2}d51 ds,, <
<f’ fﬁ< 1 )eXP{_s?z }, dsy...dsy
Rr o1\ V2Tt 25 ) (14220 877

Denote 3£ ——. u;. Then
T j
J

j=1""1 Rn Jj=1
X 1 —duy ... duy,. (1.16)
(1+ E?:l t?“?)z
Define 7 as ¢ = o7 ;fj 7 St =u? u>0.

Since f(z) = §In(1 + z) is convex function and f(0) = 0, then
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for a; > 0 such, that Z?:l a; = 1 and for z; > 0 we have

n
iln(l_FE% i) > Zal (1+ ;).
1 u I
-1 In(1+ ; ajx;) < Zat n(1+ x;)).

Then

1 n
A+ 30, i)t~ 1;[1 L4 a)d
2
Whereas >0, u—é =1, then

1 1
1 = 2 1
(L4 S, 2ud)f 1+ X0, Buu?)i

<
=+ uf u2)4u

From the last inequality and (1.16) follows that

<

2
te
2

" (242 u?
Eexp —Y 223 <||E||——-r ,
jz:; 207 H 1—|—§2u2)%

S

where ¢; are independent normally distributed random variables N(0,1).
Let us use the inequality F[¢|* < (E|€)¥,0 < a < 1, to obtaine

n 242
]tJ

+2
1 Z;lzlu%
Fex - <|EF| —
P 22% —( <(1+g2u2)i>)

j=1
+oo 2
1 S 1
T _L P {_2} 1+ 82u2)% ds = g(u).

n 9
Eexp{lﬂz:i_lcj} < g(u),

Hence,

2 Zj:1 0]2.
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where

1 52 1
u)=——= | expq—— ———ds
9t VQW_L p{ 2}(1+s2u2)i
Let us consider a general case. Let B be such a symmetric matrix, that

BB = A, R = cov(. Let O be the ortogonal matrix reducing BRB to the
diagonal form OBRBO™T = D = diag(d2)?_,. Denote § = OB(. Then

9'9=¢"BOTOBC = (' AC,

cov = OBcov(BOT = D. Since 6; € SGE(Q),gT = (04,.. .,9 ), then the

inequality from lemma holds for §. Therefore, 970 = S, 67 ( AC and
2 7TA7
FEexp _w G A < g(u).
2 57 AT
Lemma is proved. &
Theorem 1.3. Let ZT = (C1,-..,Cn) be square Gaussian random wvector,

G € SG=(Q), i = 1,...,n and let A be some symmelric positive-valued

matriz. Then for random variable n = ZTAE, En # 0, the next inequalities

hold )
n u‘x
— > 1 — - .
p{ 77>w}_1 g(u)exp{ 5 }, (1.17)

foranyu >0, and0 <z < — 21ng()

where g(u) = E fioo exp{ } 1+52u2)4 ————ds and
n 21/4y1/4
P{ > y} < —— (1.18)
TR T

1
fory> 5.

Proof. From the lemma 1.9 we have

Denote 6 = £-. Let F(v) be distribution function of .
P <o) = [aP() = j{i?} Flo) <
0 p{—*3"}
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1 29 2
——— 5 —FEexp {u} < L)u% = g(u) exp {M} .
exp{—*3"} 2 exp {— 5% } 2
Then P{0 >z} > 1 — g(u)exp {%
Let us return to the old notation. Then
2
P{Ein >ax}>1—g(u)exp {uzx} .

The inequality (1.18) for n = ZTAZ was obtained in lemma 1.7. O

Corollary 1.5. Assume, that for a sequence of random variables (,, and
for a sequence of symmetric positive-valued matrices A,,, m > 1, the condi-
tions of the theorem 1.3 are fulfilled. Then theorem is true also for n =

L 00Comn AmCom-
Proof. Corollary follows from the theorem 1.3 and Fatou lemma. &

From the inequalities (1.17), (1.18) of the theorem 1.3 follows, that for u > 0,

21In 1
0<x<—r;7%(u)andy>§

p{gne[x,y]} < g(u)eXP{z} * ch (vVI-1)

or

2 11

n u“x 21yz1
P{— €z, >1l—-gu)exps — ¢ — —F—F——~-
{En [ y]} g(u) p{ 2} (V=)

Let us evaluate g(u) :

where
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1.6. An estimate for norm in L,(T) of the square
Gaussian stochastic process

In the following theorem we obtain the estimate for the norm of square
Gaussian stochastic processes in the space L, (T). This result we shall use for
construction a criterion for testing hypotheses about the covariance function
of Gaussian stochastic process.

Theorem 1.4. Let {T, A, u}be a measurable space, where T is a parametric
set and let Y = {Y(t),t € T} be a square Gaussian stochastic process.
Suppose that Y is a measurable process. Further, let the Lebesgue integml

[(EY2(t))2du(t) be well defined for p > 1. Then the mtegmlf £))Pdu(t)
T
exists with probability 1 and

1/p\/2 .
P{jw(t) pdu(t)>5}<2 £ ;[exp = (1.19)
T Cy V207

for all e > (% +/(E+1)p ) Cp, where Cp, = f EY?2(t))5du(t).

Proof. Since ma())(xae_x = %% then 2% % < a% e~ .
x>

If ¢ is a random variable from the space SGz(2) and z =

sk

where s > 0 then

o(Gavee) < e (i)

5 «
E|<|a ( QEC ) aae_aEeXp{}\}%}.

From the inequality (1.4) for 0 < s < 1 we get that

o 2E¢? KRS s ¢
E|(| << ) (Eexp{\/5 EC2}+E6XP{ V2 VB

< 1_S< - )aae eXp{ \%}:

and

T




where Lg(s) = 1175 ( v ch2> exp {—%}

Let Y(t),t € T be a measurable square Gaussian stochastic process.
Using the Chebyshev inequality we derive that for all I > 1

l
B (a! YK du(t))
P{Tfy(m du(t)>5} < 5 .

Then from the generalized Minkowski inequality together with the inequali-
ty (1.20) for I > 1 we obtain that

E@Y(t) |pdu<t>>l | j (B Y(0) ) du(t)
< 2Lo(s) 2EY (1)) (p)™ 5™ exp{—pl}) Fdu(t)
= (2Lo(s) [(2EY2(6)) 857 ()" exp{—p}du(t)
sP(pmexp{—p}Tj(EW(t»ﬁdu(t»

Assuming that C, = [(EY?(t))2du(t) we deduce that
T

l
E (f Y ()P du(t)> < 2Lo(s)2% (Ip)" exp{—pl}Cls 7',
T

Hence,

P\l
F {f [ Y(0) 17 du(t) > } <2-(2%)'Lo(s) (0")' (exp{—p})' Cp(s ™)' Q
T

= 2Lo(s)a' (1)’
2% prc ! Q%pC% .
where a = =2, That is a» = =%+~ Let us find the minimum of the
esePp
function (1) = a'(IP)! regarding I. One can easily check that I* = —1r is a
eaPr

point in which this function reaches its minimum.
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Then

1 1 1 )

I _

1 1 p—T
2Lo(s)(1*) = 2Lo(s)acar < > «@? —9Lg(s)aca? +q cab -e cab

1
ear
1 1
p p
=2Ly(s)exp pese — ¢ =2Lg(s)exp | — i 5
1 - 1 -
22peCy 220y
2 1, el
= expq —s | =+ T
1-s 2 akcy

ce . 1/p .
In turn, minimizing 6(s) = \/12? exp {—s <; — ) } in s, we deduce
22C¢

* _ 1
s =1 ET Thus
cl/p
p

1
T =

From the fact that [* > 1 it follows that inequality (1.19) holds if

sel/P > 1. Substituting in this expression the value of s* we obtain the

ﬁpc;/P
following inequality /7 > pC’;/ P (C’;/ P 4 /2¢'/P). Solving this inequali-

ty with respect to € and taking into account that € > 0 we deduce that

P
inequality (1.19) holds when £ > (% + /(5 + 1)p> Cp. The theorem is
¢

proved.
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Chapter 2

The construction of the model of Gaussian
stochastic processes with a certain accuracy
and reliability.

Stochastic processes are widely used in various fields of science. Wi-
th the help of stochastic processes can be described many phenomena in
the environment. In order to effectively study of all necessary qualitative
and quantitative properties and characteristics of the process in the theory
of stochastic processes was decided to construct their models. During the
twentieth century a number of simulation methods have been developed,
among them the method of minimal transformation, canonical representati-
ons, autoregression, and others like that. However, in 1978 Mikhailov in [96]
proposed a somewhat new approach to the construction of models. This
method took the name of the method of partition and randomization of
the spectrum. In the paper [131], this method was modified and applied for
the construction of models of Gaussian nonstationary stochastic processes
and fields. The advantage of this method is that the constructed models are
sub-Gaussian. In addition, with this method, the covariance functions of the
models and the covariance functions of the processes are almost identical.

The first part of this chapter contains the construction of model of the
Gaussian stochastic process. In addition to constructing models of Gaussian
stochastic processes, in this chapter we also investigated the accuracy and
reliability of these models in the different functional spaces. The accuracy
and reliability of the constructed models are mainly investigated in the
papers by Kozachenko and his students. The results presented in this chapter
were published in the papers [131] and [85].

2.1. Constructing a model of Gaussian stochastic
process

Let {2, B, P} be a standart, fixed probability space, T be a parametric
set. Let £ = {£(¢),t € T} be a zero-mean real-valued Gaussian stochastic
process. The covariance function of the process is defined as

R(t,s) = | g(t, N)g(s, NAF(N),
0

where F()) is a distribution function. According to the Karhunen theorem
[40], the process £ can be represented as follows
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£(t) = | gt A)dn(N), (2.1)

OHS

where n()) is a Gaussian process with independent increments, such that
E(n(b) —n(c))? = F(b) — F(c),b > ¢, and En()) = 0.

Let L > 0 be a given real number. We consider such partition A =
{)\0, ~-~7>\N} of the set [0700] that \g =0, \x < )\k+1, An_1 =L, Ay = F00.
For this partition we can write

N—1 Ak41
¢ = | gt Ndny)
k=0 X
As a model for the process £ we consider

N—-1
t)=> mg(t,C), (2.2)
k=0

where 7, and (i are independent random variables, 7, are such Gaussian
random variables that En, = 0, En? = F(\y1) — F(Ag) = b3; G, k =
0,...,N — 2 are random variables taking values on the segments [Ag; Agp41],
(N-1 =L and if b2 > 0, then

FQ) = F(A)
F(Akr1) — F(A)
If bi = 0, then {; = 0 with probability one. For the sake of simplicity we

assume that b2 >0,k=0,1,..,N.
This model is a zero-mean process

Fr(\) = P{Cx < \} =

— N-1
E¢A(t) Eangtck = > EmEg(t,¢) =0.
k=0 k=0

Covariance function of the process £, (¢) is almost the same as covariance
function of the process £(t), namely at a certain choice of A, covariance
function of the process £, (t) can be made arbitrarily close to the covariance
function of £(¢).

Ak+1
Putting n, = [ dn(\) we consider the following difference
A
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MmO =60 -0 =3 [ gt NN~ | gltG)dn() =
k=0 X k=0 Xy

Ic

j 9(t,Ge)) dn(N)  (2:3)

k=0 X\g

MZ

Let the following condition hold for the function g(t, \)
[ g(t,A) —g(t,u) < S(fu—X])- Z(1), (2.4)

where Z(t), t € T is some continuous function and S(A), A € R monotone
increases, such that S(A) — 0 as A — 0.

Lemma 2.1. Let condition (2.4) holds for a function g(t, \). Then we have

Ab1 2m-+1
El | (9(t,)) = g(t,G0)) dn()) =0,
Ak
Aot 1 2m
E( | (g(t,A)—g(t,Ck))dn(A)) <
Ak
(2m)| Ak 1 "
< g Z2MOE | [ SN = GF (Y

Ak
Proof. Since for a zero-mean Gaussian random variable £ it is
_ 2m+1 _ ok _ (2R)! o
E¢ =0,E¢ =0,E¢ =5 1’

and the random variables (; are independent of (), then by the Fubini’s
theorem (E¢, is a conditional expectation with respect to (i ):

Akt 2m
E (f (g(t’/\)—g(taCk))dn()\)) —

Ak

Ak41

2m
= EE, j (g(t,A) —g(t, Ck)) dU(A)) =

Ak
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m

Ak41
ZQ(jﬁji!E(f |g(t’)‘)_g(t7Ck)|2dF()\)) <

Ak
Ak+1 m
(2m)! ) ) B
S Smmit J SPIA=GDZ°dF(N) | =
Neg1 m
o @em)! ., )
= 52 (OE J S2(A—GDdF(Y) |
which finishes the proof. o

Theorem 2.1. The stochastic process £(t) — Ep(t) is sub-Gaussian and the
following inequality holds

T(§(t) = &a(t)) <

2

Zbksup ES®™ (G — Gi]) *+js2 (A= LDFX)|

where by = F(Apy1) — F(\x) and ¢ are random variables independent of
Cx but with the same distribution as (.

Proof. Using the Lemma 2.1 for k¥ < N — 2 we obtain

7 ( f (9(t,\) _g(t7Ck))d77(>‘)> <6? ( f (9(t;A) —g(t>Ck))d77(A)) <

)\k )\k
Aes1 m #

< sup by Z%(t) (E ( f 52(|/\—Ck|)dFk(/\)) ) =

m>1 el

Akt1 [ Akt1 m "

= sup b2Z2(t) j j S2(IA—u)dF(\) | dFe(u) | .

m>=1

= Ak Ak
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In the case when £k = N — 1 we have

2 ( [ttt %) - g(t,L»dn(A)) < ( [t %) - g(t,L»dn(A)) <

L L

0o 2m #
< sup me' (I tL))dnm) ] <
m>1 7

< sup [(I lg(t, \) — g(t L)QdF()\)> ]m < Zz(t)TSQ(prDdF()\).
m>1 7

Ak41
Lemma 1.3 implies that [ (g(¢,\) —

g(t,Ck))dn(N) are sub-Gaussian
Ak

random variables.

Since the terms in the sum (2.3) for different k are independent, so from
the last equality we have

N-2 Akt1 [ Akt1 m #
< Z%(t) ) by sup S2(IX —u))dFy(N\) | dFp(u) | +
k=0 m2>1 )

+22(t) [ S*(A = L)dF (),
L
Then, from the Fubini’s theorem and the Lyapunov inequality we obtain

T(§(t) — &a(t)) <

Akt1 [ k41 m "
Z su>p1b2 ( f ( j 52(|/\u|)dFk()\)> dFk(u)) +

Ak Ak

[N

+ Ts?(u ~ L)dF()
L

N-—-2

>~ sup o (Eg; (EaS%(1Ge —GiD)™) ™ +

=0 m2>1

3=

Z(t)
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[SIE

+ [ $2(A—LhaF(y)| <
L
1
N-2 L 2
<20 | 2 sup b (B Ea S™" (16 = i)™ +js? A= LDAFO)| - <
k=0 "%
1
2
2m # 2(
Z bi sup (ES”" (G = Gi) +js (A= LDdFM)|
which is the desired statement. &

Corollary 2.1. If for all \,u € Ry there exists an absolute constant C > 0
so, that

sup |g(t, \) — g(t,u)| < C,
teT

then we have

T(§(t) — &a(t)) <

1
2

Zbkiup (ES*™ (G = Gi) ™ + C*(F (o0) = F(L))|

where b2 and ¢} remain the same as in the previous Theorem 2.1.

Example 2.1. Let covariance function of stochastic process £ have the
following form

R(t,s) = jcos tA cos sSAAF ().
0
ie. g(t,\) = cos(tA). Then &(t) f costAdn(A) is a zero-mean real-valued

Gaussian stochastic process, where n(/\) is a Gaussian process with independent
increments, E(n(b) — n(c))? = F(b) — F(c),b > c. En()\) = 0.
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Consider the following straightforward estimate:

tA—u) . tA+u)|?

2sin sin

|cos tA — cos tu|® =

< 22(17Q)t2a|u _ )\|20¢’

where 0 < o < 1.

By virtue of Theorem 2.1 and Corollary 2.1 and taking into account
that the functions Z(t) = 20t S()\) = A, while C' = 2 we obtain the
following inequality

N-2
TAE() = 6a () 220NN b | Ar — A P +4(F (+00) = F(L)).
k=0

Example 2.2. Consider the covariance function of stochastic process &
which have the following form

R(t,s) = le(t)\)Jl(sA)dF()\),
0

ie. g(t,\) = Ji(tA), where J;(tA) = L [cos(lp — tAsing)dy is the integral
0
representation of the Bessel functions of the first kind.

Then £(t) = [ J;(tA)dn(X) is a zero-mean real-valued Gaussian stochastic
0

process, where n(\) is a Gaussian process with independent increments,
E(n(b) —n(c))* = F(b) — F(c),b > c. En(A) = 0.
Let us find the estimate for the squared difference

Ay u) = [Li(EA) = Ji(tu) .
By direct calculations we get

2

1|r 2p — (A i t(u — \)si
0
1 ¢l . t(u—Nsing|?
<7TQOJ 281n72 do <
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1 ¢ t2
< —2jt2|u— N2 sin? pdp = —|u — A%
Y T

Applying Theorem 2.1 and Corollary 2.1 and having in mind that Z(t) =
ﬁ7 S(A) = A and C =1, we arrive at the following inequality

N—-2

T2(E(t) — €a(t) < %tQ Y Bl Akrs = Akl? + (F(00) — F(L)).

k=0

2.2. Accuracy and reliability the model for Gaussian
stochastic process in space L,(T),p > 1

Definition 2.1. [72] A stochastic process &4 (t) approximates the process
&(t) with reliability (1 —4),0 < ¢ < 1 and accuracy € > 0 in L,(T), if the
partition A is such that the following inequality holds

<j|§ |”dt> >ep <4

Theorem 2.2. [53] Suppose that & = {{(t),t € T} is a sub-Gaussian

2(¢ (t)) E(£(t))2. Suppose there

exists an. integral | (E(£(t)) ) dt < 0o, p = 1. Then the integral | | £(t) [P
T T

stochastic process, EE(t) = 0, T 2t) =1

1
dt < oo, exists with probability 1 and for all £ such that € > c{;p%, where
P
cp = J (E(£(1))?)? dt the inequality holds true
T

52

P{|£(t) Iz, > £} < 2exp§

2
p
2¢)

Theorem 2.3. Suppose that the partition A in the model €5 (t) is such that

T — Pt < e’ e
J (r(6(0) = €alt) dt < — G @n))

Then this model approximates the Gaussian process £(t) with accuracy e > 0
and reliability 1 — 6,0 < 6 < 1 in the space L,(T),p > 1.
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Proof. Ife > (f (T(£(t) — &a(2)))P dt) ’ -p2, then according to the Theorem
T
2.2 and Definition 2.1 we have

2
€

P {[ &(t) = &a(t) I, > e} <2exp{ ——5 ¢ <9,
2¢cp

where ¢, = [ (T(£(t) — €a(2))) dt.
T
And then the last inequality is true if the following condition holds

[ (rle) ey ar < —= .
T (2 In 5) ’
which finishes the proof. &

Example 2.3. Let F()\) in Example 2.1 be such that F(+o00) =1, F(L) =

1—ﬁ,O<a<I,T:[O,T].

With the aid of the Corollary 2.1 we get

N-2
T2(E() — a () < 22070 T A yr — Al ** + 4(F (+00) — F(L)).
k=0
Letting |Agp+1 — Ax| = ﬁ we conclude

(e - ) < 207 P() (2 )+ AR (o)~ FIL) <

<4 L 20‘+L
SO\ 2(NV-1) 1+ L’

hence

T(E(t) — En(t)) < 2 [(2(1\?1)) N ﬁ

[N

2«
Next, minimize y; (L) = 2 {(2(1%1)) + 1+1La] with respect to L; it
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follows that argument minimum is y1(Lo),

)

= 1
23a

Hence
T P ap T
J(T(f(t) —&a(1)))Pdt < <2£> (2(N1— 1)> Oft%dt -
2\/§ P 1 En
:<%><%N1» T

Hence, by Theorem 2.3, the inequality

P
[(ret) - eaten)? de < -
T max (pé,(an%V)
follows, when N satisfies
T +1(2y/3)P - max (p?, (In 2 )\
N>2 , (0. )") 1. (25)
2 T E )

Thus the model &, (t) approximate process £(t) with reliability 1 —4,0 <
0 < 1 and accuracy € > 0 in the space L,(T), if the relationship (2.5) holds.

N-1

= > mgcos(t(y) is the model from the Example
k=0

2.1 and let the partition A is such that |Ag11 — x| = ﬁ, when 0 < a <1

Example 2.4. Let A ()
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we have

L

PAel0) ~ 6al0) < 20 (L)

) ) + 4(F(4+00) — F(L)).

Namely

(T(§(t) — &a(t)))Pdt <

O

T 5

< I (22(1_a>t2aF(L) (NLl> ’ + 4(F (+00) — F(L))) dt <

T
P L pe 3 P
< [ (20 rwpt (7)o +aED(Froe) - FEDE ) di =
0
p(l a) p L pa Tpa+1 v P
=27 D (F(L))2 42 D T(F — F(L))2
WFONE () ey +AEDIT(FCo) = P
1, as 0 < 2 <1,
where D, = 951, as 2 2> 1

The inequality from Theorem 2.3 holds, when N satisfies

1 1
N 2% Dy L - T 9s (F(L))>

1 -

NS

(1 + pa)7= < — 43 D, T(F(+00) — F(L)
max(pQ ,(21n%)2>

Let in the Gaussian stochastic process (t) = [ costAdn(\) functionF'(\)
0

defined as follows F'(A) = 1— ﬁ, then using for the N previous inequality
whenp=4,a=1,T=1,§=0,01 and € = 0,06 we get

. ((1 f ﬁ) 1n200)%

2\ 1
(0, 0000324 — 320 (ln 200) >

1+ L3

Using the software package Mathematica, we find that the minimum of
this function with respect to L equal to N(29,746) = 1458, 486, it is easy
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to see in the next graph.

|00 -
a0 -
4000 - —

2000 | e

zlu 4I0 ﬁlu slu wlul 1
1— In 200) 2
Figure 2.1. Graph of N(L) = v2L ((-im) )

2
<0,0000324—320 ( %g) )

A

Namely, selecting the minimal partition N = 1459, we can construct

a model &4 (t) that approximate the process £(t) with reliability 0,99 and
accuracy 0,06 in the space L4([0,1]).

015 “‘

00 f . .s Y 5
ik .5 % g

E S ‘: - - N 5
0.05 A :::ﬁ: ix . : i
:;-zgzﬁ_:‘. 1% .::f

e T e TRy SR
T ol ‘\?‘J:‘.?\f\:’:’f:‘/;:j”

SR LY = g Chid HY T
£l )\] fie ¥

-0

-0.15F

Figure 2.2. Implementation of Gaussian stochastic process, Fi(A\) =1 — ﬁ

If for this Gaussian stochastic process we choose F'(A\) =1 — ﬁ, and
p=2a=1,T=1,§ = 0,01, ¢ = 0,06, than the inequality for N will
have the following form

N>\/§L (1—T1Ls)ln200
“ V3

In
0,0036 — S=290

In this case, minimizing the previous function with respect to L, using
the software package Mathematica, we deduce that N(8,3751) = 310, 405.
Therefore, selecting the minimal partition N = 311, we can construct
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Figure 2.3. Graph of N(L \/7L ( 1*“ )

0,0036— 8 ln 200

a model &4 (t) that approximate the process &(t) with reliability 0,99 and
accuracy 0,06 in the space Ly(]0, 1]).

2k

_ak
Figure 2.4. Implementation of Gaussian stochastic process, F(A\) =1 — H%

2.3. Accuracy and reliability of a model of Gaussian
stochastic process in C(T)

Let T = [0,T] be a parametric set. Let £ = {{(¢),t € T} be a zero-
mean real-valued Gaussian stochastic process. Let the image of the process
represented by (2.1), and the model &x (¢) defined in (2.2).

We assume that na (t) = £(t) — €a(t) represented similarly as in (2.3).

For any ¢, s € T we consider the following difference

N—1 Ak41

NG =3 | @ 9t Ge) = 9(3,0) + 95, i) dn(N).

k=0 A 26)
2.6
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Assume that for g(¢, A) the following conditions hold
[ 9(t,A) = g(t,u) [SS(A—ul)-Z(1), (2.7)

| 9(t,A) = g(t,u) = g(s,A) + g(s,u) [< Si(| A= u ) [ Z1(t) = Z1(s) |, (2.8)
where Z(t) and Z(t) are some continuous functions, S(A),A € R is a
monotonically increasing function, such that S(A) — 0 when A — 0.

Example 2.5. Let g(t, A) be continuous, twice differentiable function on ¢
and on A and let C(t) = sup ‘ag .4) ’ < 0.

yE[O,A]
Consider the following difference

ﬂagm)

A
dg(t,
Iﬂtk)—g@ﬂ0|=|fg&f0@/< o

Mysu—u«cw.

Therefore, if we choose Z(t) = C(¢), then the function g(¢,\) will satisfy
the condition (2.7).

We will show that if there is such C;(T, L), which depends only from T
and L, and such that ,
Fot ) agt(;’;) < Cy(T, L), (2.9)
then the function g(¢, A) satisfy the condition (2.8). Consider A = {s <1 <
t,u <y < A}, where s,t € [0,7], A\,u € [0, L]. For definiteness we assume
that ¢ > s, u > A\. Then from the properties of multiple integrals and (2.9)
the following condition holds

lg(t,A) — g(t,u) — g(s,\) +g(s,u)| =
9?g(l,y)
ff Sl I qidy

Example 2.6. If g(t,\) = e~ 0 <+ < T,0 < v < L, then one
can easy to show (similarly as in the Example 2.5), that in this case the
condition (2.7) holds.

< C (T, L)|t — s|lu— Al
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We will prove the validity of condition (2.8)

_|fogte),  fogls)
9(0:2) = glt,0) = glos 2 (s, = || ==l — [ 25| <
A
9g(t,v) _ 9g(s,v)
< — .
\uj ov ov dv

We will estimate the integrand expression

dg(t,v)  Og(s,v)
ov ov

T o)
+ (e_(s+”)2 (t+v) —e 7 (s + v)) ‘ =

=2 ‘(t +) (e—(“f”)z - e—(3+“)2) e (st (- s)’ <

=2 ’ef(Hv)z(t +) — e (5+v)” (s + ’U)’ =

<2 ((t + v)e (t+)’ ’1 - e*((””)t(t”y)‘ e () - s|> <
<2 ((t + p)e () (s +v)* = (t+v)*| + e~ ()| — 8|) <
S2(t+v)t—s|(s+t+20)+ [t —s|) <2t —s| (2T +L)>+1).
Hence,
[ 9(t,A) = g(t,u) = g(s,A) + g(s,w) [< CoLT, L)|A = uf - [t = s,

where Cy(T, L) =2 (2(T + L)? +1).

In the following Lemma, we will be find estimates of moments, which
will be used later to assess the accuracy of the simulation.

Lemma 2.2. If for the function g(t,\) the condition (2.8) holds, then for
m=0,1,... the following relationships hold

2 1
Ak+1 mt

El | (90t = g(t.G) — 95, 0) + g(s, Ge)) dn(N) =0,
Ak
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2m

Ak41
E| [ (962 = g(t:G) = 9(s,0) + g(s,G)) dn(V) | <
Ak
o Akfﬂsm A= G ) | Zu(t) = Zu(s) [P dF (V) m
= oom oyl X !

Proof. Since for a zero-mean Gaussian random variable £ E¢ = 0, E¢2F+1 =
0,E¢2k = ;%kg',cr% and the random variables (; are independent of n(\)
then by the Fubini’s theorem and taking into account the condition (2.8

)

we obtoine (E¢, is a conditional expectation with respect to (x):

Ak41 2m
i j(Q(ta/\)*g(t’Ck)*9(57>\)+g(s,4k))dn()\) <

Ak

(2m)' Ak+1 , m
< g [ (96 2) = g(t.G) — g, ) + 9(,G)* AP (Y | <

Ak
(2m)! A1 ) , "
<o B ([ SHA-GD 120 - Zis) PaFY) | o
Ak

We obtain the estimates for supremum of norm of the stochastic process.
These estimates we will be used for research of the conditions of selecti-
ng partition L such that the constructed model will be approximated the
Gaussian process with a given accuracy and reliability.

Denote o9 = sup 7(na(t)) and o(h) = sup 7 (na(t) —na(s)).
o<t<T [t—s|<h

Theorem 2.4. Let na(t) be defined as in (2.3) and let
{820 2= L DdFQ) < oo.
L

Then stochastic process na(t) is sub-Gaussian and the following inequality
holds

N—-2
o0 < <Z S| Mt = A [) (F (A1) = F () +

k=0
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[SIE

+f32(|A—L|)dF(A)> - sup |Z(t)].
L

0<t<T

Proof. From Lemma 2.1 it follows that the conditions of Lemma 1.3 hold for
>\k+1 )\k+1

J (g(t, \)=g(t,¢r))dn(N), that's why [ (g(t, \)—g(t, Cx))dn(A) € Sub(€2)
o A
fo; all k=10,2,...., N — 1 and the followirlig inequality takes place

Akt1 Ak41
T ( Gy —g(t,Ck))dn(A)) <0 ( | (o) —g(t,Ck))dn(A)) =

>\k )\k

1
2m
m>1 | (2m)!

Metr 2m
—sup |2 g ( J (ot —g(t,cmdnm)
Ak

Using the Lemma 2.1 we obtain the following inequality

A1 2m
E ( | (gt 2) = gt Ck))dn(/\)) <

Ak

Ak41 m
< (Qm”!w)m( | s -a |>dF<A>) <

2m .m
Ak

(2m)!
2m . m,

~X

Akt [ Akt m
L0l (j SQ(IA—uI)dFk(A)> dFy(u) <

Ak Ak

h Q(Zmr)r'a' 1Z(@)PS*™ (| Mer1 — M ) (FQiegr) — F()™
Then
Ak+1
T ( f (g(t,\) —g(t,Ck))dn()\)) <
Ak

< sup [IZ(0)P™S™(| Mg — e ) (F(hgn) — FOR)™] 7 =

m>1

[N

=[Z®)[S(| M1 = Ak ) (F( A1) = F(Ax))
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Ak41

Since [ (g(t,A) — g(t,Ck))dn(N), k = 1,2, ...

Ak
then by Lemma 1.2 we obtained

(T

k=0 X
Hence,
N-2
1Z(t)*S?(| Akgr —
k=0
Namely

N—2
T(na(t)) < 1Z(1)] (Z

k=0

Therefore

N-2
oo < (Z S%(| Mk — Ak ) (F( A1)

k=0

+ T52(| A—L |)dF(>\)>
L

g(t, k) )

S2(| A1 —

,N — 1 are independent,

N—1 Ak41
s
k=0 i

Ak ) (F(Aky1) =

A) —g(t, Ck))an‘)> :

F(\g))+

+ [12@PS*(1 A~ L dF().
L

Ak ) (F(Aeg1) = F(Ak)) +

N

+ T52(| A—L )dF(A))

—F(\)) +

2

sup |Z(t)]. <
0<t<T

Corollary 2.2. Let the conditions of Theorem 2.4 hold and let the split

A={o,...,

L, /\N = 0Q, >\k+1 *Ak*

Nl’

oo

AN} of the set [0 00) be such that Ao = 0, A\, < Apt1, AN—1 =
then

o0 < <52 (NL_l) F(L) +Ljs2<| -’ |>dF<A>> s 1200
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Theorem 2.5. Let na(t) be a stochastic process defined as in (2.3) and let
oo
j55(| A—L|)dF(\) < .
L

Then the following inequality holds

N—-2
o(h) < <Z ST Akt = e DEF Ner1) = F(A))+

k=0

Nl

+js%<|A—L>dF<A>> Cswp | Zu()~ Zi(s) |
L

lt—s|<h

Proof. From Lemma 2.2 it follows that the conditions of Lemma 1.3 hold
Ak41

for AJ" (g(t, \) — g(t, ) — g(s,\) + g(s,C))dn(N), that’s why

Ak41

Ak
Ak+1
Since [ (g(t, A) — g(t, G) — 9(s,A) + 9(s,Ck))dn(A), k = 0,2, ..., N — 1 are
Ak
independent, then by Lemma 1.2 and condition (2.6) we obtain

Hence, from Lemma 2.2

Mot 2m
E( f (g(t,A) —g(t, C) —9(87/\)+g(8,Ck))dn(/\)> <

Ak

48



Ak41 "
o) e ( f ST = GDIZi(t) — Zl(s)|2dF(>‘)> S
Ak

= om ol

Akt1 [ Akt "
< 2Ry z,0) - o) | (f 55('““')”’6“)) A <

2m . m
Ak Ak
(2m)!
= om )

Then

|21(t) = Z1(s)P™ - ST (Akerr = MeD(F(Ares) = FO))™.

Ak41
7 ( IR g(t,Ck)9(57/\)+g(s,ék))dn(/\)) <

Ak

S sup [1Z:(t) = Z1 ()P ST (A1 — M) (FNn) — F(Ax)™] "

=121(t) = Z1(s)PST (1M1 = Ael) (F (k1) = F(On)).

Hence,

2 (na(t) = na(s)) <

N-2
<|Zi(t) = Za(s))? (Z SH(Aks1 = Ak (F (k1) — FOw))+
k=0
+ TS%(M — L|)dF(>\)> :
L
Namely,
N-—-2
o(h) < (Z ST (k1 = M) (F (k1) — F (M) +
k=0

o 2
+f s%<|AL|>dF<A>> sup | Z0() ~ Zu(s)l. O
L [t—s|<h

Corollary 2.3. Let the conditions of Theorem 2.5 hold and let the split
A ={)Xo,...., AN} of the set [0,00) be such that Ao = 0, A\ < Agy1, AN—1 =

La )‘N = 00, Ak-‘,—l - )\k; = ﬁ, then
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Nl

o(h) < (sf (NL_1> F(L)+ [ S3(A - L|)dF(/\)> x
L

x sup |Z1(t) — Z1(s)].

[t—s|<h
It is obvious that for any € one can find such L and N that

1
2

(Sf <NL_1> F(L) + jsm A—L |)dF()\)> <e.

Further, we investigate conditions and estimations convergence of the
model by probability in the space C(T). These conditions make it possible
to construct a model which approximates stochastic Gaussian process with
a given accuracy and reliability.

Definition 2.2. [72] Stochastic process £ (t) approaches Gaussian process
&(t) with given reliability 1 — 3,0 < 8 < 1 and accuracy ¢ > 0 in C(T), if
there exists split L, such that inequality holds

P {ggg €)= Ex(t)] > 5} <5

From the Theorem 2.4 it follows that na(t) € Sub(Q),t € T then
pseudometric p generated by the process na(t) on T is as follows

p(t,s) = 1(na(t) —na(s)),t,s €T

Definition 2.3. [19] A set @ C T is called an e-net in the set T with
respect to the pseudometric p if for any point © € T there exists at least
one point y € @ such that p(x,y) < e.

Definition 2.4. [19] If there exist a finite e-covering of a set T, then
N,(T,¢) denotes the smallest number of elements an e-covering of this set.
We put N,(T,e) = +oo if there exists no finite e-covering of the set T. The
function N,(T,¢), ¢ > 0, called the metric massiveness of the set T with
respect to the pseudometric p.

Note that N,(T,e) coincides with the number of points in a minimum
of e-covering of the set T.
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Definition 2.5. [19] Suppose that

InN,(T,¢), if N,(T,e) < +oo,

H,(T,e) = { +o00, if N,(T,e) = oo.

The function H,(T,¢€), € > 0, is called the metric entropy of the set T with
respect to the pseudometric p.

For simplicity, denote
N(E) = NP(Ta 5)3 H(é‘) = HP(T7€)7

where N,(T,¢) and H,(T,¢) are metric massiveness and metric entropy of
the set T with respect to the pseudometric p. Further, let r = (r(v),v > 1)
be a nonnegative monotone nondecreasing function such that r(exp{v}),v >
1 is convex and r(v) — 0o as v — 0.

Consider the integral

I(u) = fr(zv(e))de, u>0,
0

called the entropy integral.

Theorem 2.6. Suppose that X = (X(¢),t € T) is sub-Gaussian stochastic

process. Let eg = sup (X (t)) < oo, (T, p) is separable space and the process
teT

X is separable process on (T,p) and let IAT(GEO) < o0, then for all A > 0
holds

Eexp {Asup |X<t>|} <2000,
teT

where

50\ — (Aeo)? “yy ( 1(0=0)
Q) = oégileXp{%l —09)2} - ( 6500 > '

Furthermore, for all 6 € (0,1) and v >0

P {Sup |X(t)] > u} < 24A(u, ),
teT
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where

A(u,@) = exp {(u(l—@))z} ESY: ([:(950)> '

2e2 feo

The Theorem 2.6 is a particular case of the Theorem 4.4 from the book [19].

Denote C(h) = sup |Z1(t) — Z1(s)|. Let C(h) be such function to
|t—s|<h
which there exists an inverse function.

Theorem 2.7. Let in model {5 (t) split A be such that when § > 0,6 € (0,1)
the following relationship takes place

%XP{_W—&»Z}T(_U <Iw>> s

258 060

where g = sup T(na(t)) = 0o, na(t) = &(t) — Ea(t) and let
teT

960

~ T ~
IT(QEO) < f r (2“1)(‘/) + 1) de = Ir(ﬂso),
0

fr(ﬁso) < 00,
o] _%
where V =¢ (512 (ﬁ) FL)+ [Si(JA—L |)dF()\)> ,CED(x),2>0
L
is the function inverse to C(-). Then the model {5 (t) approzimates &(t) with
a giwen reliability 1 — 8,0 < 8 < 1 and accuracy 6 > 0 in the space C(T).

Proof. Since for the metric massiveness it is true that N(e) < 20(_7%(5) +1,
so using this fact and Theorem 2.6 we obtain that for the sub-Gaussian
process 1 (t) the following inequality holds

(0(1—-9))° y ( In(6=0)
P {0125} < 2o {-CZPT o0 (50).

where
060 980 T
I,.(0g0) = Oj r(N(e))de < f T (20(1)(5) + 1) de < 00
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From Corollary 2.3 it follows that
o(h) = sup T(na(t) —na(s)) <
[t—s|<h

1
2

<Ch)- (sf <NL_1> F(L)+ [ SH(A-L |)dF()\)>
L

One can readily show that the function inverse to estimation of o(h) is

1
2

oD(h)y=CcY | h (Sf (NL—l) F(A) + TS%(M - L)dF(/\))
L
Then

960
~ T ~
hooa < [ (g +1) de = oo

1
2

where V = ¢ <Sf (ﬁ) F(L)+ g SE(|A—L )dF()\)) . Estimate for

IA,,(GEO) one can make arbitrarily small by appropriate selection of L and

=

Namely there exists such split A and 8 € (0, 1) that the following condi-

tion holds
— 0))2 [
Yo {_(5(1 ) }w) (Ir(%o)) <5
250 960

Then by Definition 2.2 we get that the model &, (¢) approximates £(t)
with a given reliability 1 — 3,0 < # < 1 and accuracy 6 > 0 in the space

C(T). ¢

Example 2.7. Assume that r(u) = u®, o > 0 and let 5 (t) = (na(t),t € T)
€0

be a sub-Gaussian process satisfying [ N*(¢)de < co, where N (e) is metric
0

. 1
massiveness. Then (= (z) = z«,z > 0.
Hence,

w21—9)32) (1 %
P t)|> <2 _— — | N%(e)d
B e e G

1
o
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for all # € (0,1) and u > 0.

Fix50<%andput9:1—\/ — =L
Now one can easily calculate that

exp {W} (9; ?ON“(E)d5> <
<e (IN@(@@) : (;)

Hence when z > v/2 we have

Q=

R I[N
8 @
2o ]
o ko]
> —_—
~ !
| N |
L\D‘a 7 N\
) g‘g
N ~__
()
—

1
€0 o
P {Sup | na(t) 12 3350} < 2e (f N“(E)d5>
teT 0

Using the estimates for o= (h) and N(¢) we obtain

€0 T a &

0

Q
8
Qv
@
e}

o
—N
\
vo| 8§,
——

1
2

where V = ¢ (Sf (ﬁ) F(L)+ [ S2(A—L |)dF()\)>
L
Assume that C(h) = Dh?, D € R, and 0 < p < 1, p > « then

SIS

. oo
o(h) < Dh* - (sf (N_1> F(L)+ Jsf( A-L |)dF()\)>
Therefore,
oD () = (h (D (sf (NLI) F(L)+
1\ —1 G
+[s¥A-1 |)dF()\)> . (2.10)
L
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When o= (h) is defined as in (2.10), then

p {p EROIE } <
teT

< 2eat exp{x;} ( (g - <D< < )F(L)+

+j51|A L|)dF(\ ))
vl }( (6 (st

N

ot exp{_x;} (() (0 (st () P

+ Ts%q A—u )dF(A)dF(u)) ) eo 7+
L

Hence,

P {sup a(t) |> 5} <2 (5)
teT €0

Qv

Put Si(u) = C -u” and

e 1_£ L 1_%X
U2 e (1-2) o
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where v > 0, v > 2v, then

5\ & e
P<{su >0 <2 — exp<l— — p X
{te¥ a8 | } (50> p{ 25(2)}
T L 2v L2y—’y _ % .
x| ———— | D[C? () + 20201/# X
2(1(1_%) N -1 vy —2v

1—2a
XEq "+€0) ,

Q=

1, as 0 < 2v <1,

where Cy = { 22V—1 as 2v > 1

I\ %
The <D (C’Q (L>2V +2C%¢ W) 2) is minimized at
N-1 v y—2v

P (W =D¥an =)\
- V(20— 1) '
Then from the Theorem 2.7 we obtain that inequality

2exp {(5(1 —0)" } b <E(9€0)> < B,

2e2 beo

holds when N satisfied condition

Py
CT o= T\ "
o 2 ( - ﬂ)
B N

2 2 :
2 (2) ew{a(1-45)} !

1\ vGow -
o _ 2 —2 2(v—")
« [ Deet 1(1+ v ) (W)) i1,
y—v ay(y —v)

where 0 < a<1,0<p<,p>av>0v>2r,C € R, D€ R and
1, as 0 < 2v <1,
o= { 22v—1 as 2v > 1
Hence, model &4 (t) approximates process £(t) with a given reliability
1-75,0 < B <1 and accuracy § > 0 in the space C([0,T7]), if for N the last
relationship holds.
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Chapter 3

Construction of models of Gaussian stochastic
fields and homogeneous and isotropic
stochastic fields with the required accuracy
and reliability in different functional spaces.

As we noted in the previous chapter, simulation is an effective means
of studying various characteristics of phenomena in the environment. There
are many such phenomena that depend not only on some random factor
and on time. Therefore, by a stochastic process we cannot describe every
phenomenon. For these phenomena can be used a stochastic fields.

One of the most important problems of the theory of stochastic processes
and stochastic fields is the problem of modeling and approximating the
processes and fields. There are known several methods for constructing
models of stochastic processes. The most popular for stationary processes is
the method of splitting and randomization of the spectrum developed by G.
A. Mikhailov and his collaborators (see [97], [98], [99], [100]). M. I. Yadrenko
and his coauthors used different methods (see [139], [140], [141], [142], [143]).
When constructing models of stochastic processes and random fields, it is
important to know how close are approximating models and correspondi-
ng processes and fields in some metrics. A number of papers by Yu. V.
Kozachenko and his collaborators is devoted to constructing models of
stochastic fields with a given reliability and accuracy (see [55], [64], [67],
171], [35]).

In this chapter, the same method as in the previous chapter is used
to construct a model of stochastic field. We used the representation of a
homogeneous and isotropic stochastic field proposed by Yadrenko in the
book [141]. An important task in the simulation of stochastic fields is to
evaluate the probability of deviating the model of stochastic field from this
field, for example, in the uniform metric (see [67], [85]) or in the space
L,(T) (see [67], [133], [132]). In this chapter, these results are submitted in
the section 3.2 and section 3.6. We used the representation of the stochastic
field that contains Bessel functions of the first kind. We did not find the
necessary estimates for the Bessel functions of the first kind in the literature
(although they may have already been obtained somewhere); therefore, these
estimates were obtained by us and are presented in the section 3.3.

Both for the processes and for the fields we investigate the accuracy
and reliability of the constructed models, in particular in the spaces C(T')
and L,(T). Kozachenko and his students considered similar tasks in the
papers [1], [58] [64], [66], [71], [72]. The results obtained in this Chapter
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were published in the papers [132], [133] and [134].

3.1. Construction of the model of Gaussian
stochastic field

Consider the space R? with the metric p(t,s), t7 = (t1,...,tq), 8T =
(815, 5a), where p(t,s) = max|[t; — s;|. Let T be a set in the form T =

=1,

{t AL <AL= m}, where A > 0 a number. Let £ = {£{(¢),t € T} be
a zero-mean Gaussian stochastic field, covariance function of which allows
images

+oo
R(t,s) = Eg(t, \g(s,\) = [ -+ [ g(t, N)g(s, \)dF(N).

where F(X) is continuous distribution function. Let {R, 2L, ()} be a measurable
space, where 2 is Borel o-algebra, p(\) is a finite measure generated by the
function F'(A).

According to the Karhunen theorem field £(¢) can be represented as
follows

+00
&t) = [ [ gt Ndn(),

where (A1) is random measure that subordinated to the measure y such
that E(n(A1)n(Az2)) = p(A41 () A2), A1, A2 € 2. Let A be some measurable
set of the space R* and we consider such partition A = {Aq,..., Ay} of the
space, that A; (A, = @,1 # j.

As a model we consider

N
En(t) = mkg(t, C),
k=1

where i, = [ dn(A) are such Gaussian random variables that En; = 0,
Ay
En? = p(Ax) = b2 and ¢ € R? are independent random variables being

independent of 7 and taking values on Ay with cumulative distribution
function

P ed)=HoR )
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The model &y (t) is zero-mean stochastic field:

N

Eéy(t Eang k) =Y EniEg(t, &) = 0.

k=1 k=1

The covariance function of the £ (t) almost coincides with the covariance
function of stochastic feld £(¢). Namely, by the certain choice of the partition
A the covariance function of {x(t) can be made an arbitrarily close to the
covariance function of £(¢).

Let the following conditions hold for the function g(¢, A)

g(t,x) < C(t),

where Z(t) is limited on the compact, S(z),z € R is continuous, monotoni-
cally nondecreasing function.
Lemma 3.1. Stochastic field {n () is sub-Gaussian stochastic field.

Proof. Consider E (n;9(t, {x)). Since for a zero-mean Gaussian random vari-
able  we have En?™+1 = 0, En?™ = (Qm) ,027" then

E (mkg(t, ¢x))*" ' =0,

E (g (. G))>" = Bl Bg(t, ¢))>™ < o)

g1 (0 C(t £)*" < 0.

In that sup ( m)! B (meg(t, )’ ]m < 00, then it follows from Lemma

1.3 that nkg(t, ¢x) are sub-Gaussian stochastic fields. That is why {x(t) =
N
> meg(t, Cr) is sub-Gaussian stochastic field. O
k=1

Let
N
XN () = @) —En@®) =Y [ (9t X) — (¢, G dn(N)  (3.1)
E=1Ay

Lemma 3.2. The following relationships hold true

2m—+1

E [ [ (9t ) = gt ¢u) dn(N) =0,

Ag
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2m
E (f (9, A) - g(t,Ck))dn(A)) <

Ay
< g TR (jsz A~ Gul) dny >) .

Ay

Proof. Since for a zero-mean Gaussian random variable 7 it is En?"+! =0,
En’m = %027” and the random variables (;, are independent of n(A),

then by the Fubini’s theorem (E¢, - is a conditional expectation with respect

to Ck):

E (f (g(t’)‘)_g(taCk))dn()\)) -

Ay

2m

= EE, f (9, A) — g(t,Ce))dn(X) | =

Ay

Qm, ] (I lg(t, A) — g(t, Ck)| dp(X )) <

s ﬁ%E (f 5* <IA—ck|>ZQ<t>du<A>) =
Ay

72("3 ;'Zm (jSQ A = Ckl) du(A )) )

Ay,
which finishes the proof. %
Theorem 3.1. The following inequality holds

1
2

T(E(t) —En(t <ZkaUP SZm(ICk—CZI))’l’L>7 (3.2)

where b3 = p(Ag), ¢i,Cx are independent and ¢ have the same distributi-
ons as C.
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Proof. Tt follows from Lemma 1.3 that

72 (f (9(t,A) g(taCk))dﬂ(A)) <0 (f (9(t,A) g(t,Ck))dn(A)) =
Ay

Ay

m

2m
= 7snu>p1 Q(jmT)r'L'E (f (g(t,A) —g(t,¢k)) d770\)> <

Ay

Applying Lemma 3.2, we obtain

< sup | 812%(1) (E ( i 52<|A—<k>duk<x>) ) -
m>= A

= sup sz%t)(j ( J s2<|A—u>duk<A>) duk<u>) ,
m=t A \Ax

Since the terms in the sum (3.3) for different & are independent, so from
the last equality we have

T2(E(t) — En(t)) <

N " m
<22 ) b sup ( f (j 5 (A - u|>duk<x>) duk(U)) .
=1 m2L\X, \A,

Then, from the Fubini’s theorem and the Lyapunov inequality we obtain

T(§(t) —&n(t) <

N " \
<Z() | 3 sup b (j ( | 52<|A—u|>duk<x>> duk<u>) =
k=12 An \Ay

N 1\ 2
=Z(t) (Z sup b3 (EC,: (B¢, S? (I¢k — CZD)m) m) <

b1 m>=1
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2

N
(Z i (BgyEe, S°" (ICrCM)’”) <

sup
2

N 3
<Z (Zbkbup (BS2™ (I¢e — D)™ ) ’

k=1 m21
which is the desired statement. &

Remark 3.1. Tt is obviously that 3.1 makes sense only if the function S(-)
such that the right side of the inequality (3.2) is finite.

3.2. The accuracy of modeling of Gaussian fields in
LP(T)’p > 1

Definition 3.1. [67] Let {T,®B, u} be a measurable space. A stochastic
field X () approximates the field X (¢) with reliability (1—0),0 < § < 1 and
accuracy € > 0 in L,(T), if there exists a partition, such that the following
inequality holds

(IIX |pdu<>>P>e <5

Theorem 3.2. Let X = {X(t),t € T} be sub-Gaussian stochastic ﬁeld
EX(t) =0, 72(t) = 72(X(t)). Suppose that there exists an mtegralf VWdu(t) <

p = 1. Then the integral [ | X (t) |P du(t) < oo, exists with probabzlzty 1
T

and for all € satisfying € > ¢ p?, where ¢, = [ (7())” du(t) we have
T

€
P{|| X(t) ln,>c} < 2exp{ ——
2¢p

The Theorem 3.2 is a particular case of the Theorem 2.1 from the [53].

Theorem 3.3. Suppose that the partition A in the model En(t) is such,
that

eP

(T(&@t) — En(t))" dt <
Tf " max( 5 (2ln )

(SIS

;
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Then this model approximates the Gaussian stochastic field £(t) with reli-
ability 1 — 6, 0 < § <1 and accuracy € > 0 in the space L,(T).

1
1

Proof. If € > <f —&n (1) d ) p2, then according to Theorem
3.2 and Definition 3.1 we have

2

P{IIE®) — en(B)ll,, > e <2expd ——5 ¢ <6,

2¢p
ae cp = [ (T (§(t) — En(2)))" dt
T
Accordingly, the last estimate is valid when
P P

[ (r(e(t) — en())) dt < -

T max (p§ (21n3)2)
The proof is completed. &

Remark 3.2. Using Theorem 3.1 and Theorem 3.3 it is clear that the model
&n(t) will be approximate field £(t) with reliability 1 — 4, 0 < § < 1 and
accuracy € > 0 in the space L,(T) if the following relationship holds

(c:p

(Zbksup (BS>™ (¢ — ¢i) ™ ) [zt <

m>1 T max( 5 (21n )P)

Example 3.1. Consider the space R2. Let T be a parametric set in the
following form T = {t:— < A,i=1,2}, where A > 0 is some
number. Consider the Gau551an stochastlc field with the following covariance
function
+00 00
R(t,s) = f f cos(t, A) cos(s, N\YdF(N),

— 00 —0O0

where F'(A) is continuous distribution function, p(A) is finite measure generated

by the function F(X).
400 +00
Then &(¢) = [ [ cos(t,A)dn(A) is a real-valued Gaussian centered
—0o0 —0O0

stochastic field, where n( A1) is random measure subordinated to the measure
u such that E(n(A41)n(A2)) = p(A1 ) Asz), A1, Az € 2.
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Let A = {A,...,An241} be a partition of the space R?, such that

Anzyp = {|M|>L or |X2| > L},L > 1, and A;,i = 1,N2 is a partition

of the square Ay2,; on N? squares with the length of sides in % and

A;NA; = @,i# j. Then the model of this field can be represented in the
following form

N24+1

En(t) = Y micoslt, Cr),
k=1

where 1, = [ dn(A) are Gaussian random variables such that En; = 0,
Ay

En? = u(Ag) - b2, and ¢ € R? are independent random variables being
independent of 7y, and and taking values on Ay with cumulative distribution
function

H(ANAR)
P{(,c A} = ——= = ux(A).
{ } (A7) (4)
It’s easy to check that the model is centered field. Now we estimate the
following expression

£\ — A ?
281n<7 5 u>sin<7 2—|—u> <

5 (&, A —u)

:4 1 —_— <
sin 5

|cos(t, A) — cos(t, u)|* =

A —u |

< |2sin

_ e A= e
< _

520 222 A — ]|,

where 0 < a < 1.
Applying Lemma 3.2 for all Ag, k =1, N2 and having in mind that

Z(t) = 207 ¢l|*, S () = [IA|* -

we arrive at the following inequalities

2m-+1

E f (cos(t, A) — cos(t, Ck)) dn(X) =0,
Ag
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2m

E f(cos(t,)\>—cos(t,(k>)d77()\) <
Ay
(2m)! am(l—a) ||4]2mo 20
2 el [ 1N =l duA) | dpan(w),
Ak A}C

X

where 0 < a < 1.
By the Theorem 3.1 for the first N2 terms we get

-2 j (cos(t, A) — cos(t, Cx)) dn(A) | <
Ap

<2 g | | fIA -l ) | dpe)
mz Ak Ak

And for k£ = N? 4 1 we obtain the following condition

bazsq j f (cos(t, N) — cos(t, Ck)) dunzi1(A) | dunziq(u) <
AN2+1 AN2+1
m 1
<4 j j dnes N | dp(uw) | <A4p(Ayes).
AN2+1 AN2+1

Let the measure u of the space be less than one, then
N2 27, 4o
— 2
P60t~ () < 207 e S0 () (D) <
k=1

B N - 2L, da
<20 e B (3 ) (@) <
(3.3)

t]| - 402\ *
<4(H2|NQ) +4p (An241).
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(NS

2
[rew -evwpyae< [ <4 (Hth@L
T

ks

vl

We will choose such L that

p(Anzyr) < :
M 8~(2A)%max (p,2In2)

where 0 < d < 1,e > 0.
Hence, by Theorem 3.3 the inequality

Tf (r(6(8) — En(®)" dt < — GE @)

follows, when N satisfies
N } max(Zl, Zg),

where

3pa+4p+4 pa+2 1 3pa+3p+4 pa+2
L-A2s (In2)% e L. A%ee paa
Zl = 1 ( ) aZZ = 1 .
€ 2a £2a
Thus the model &y (t) approximate field £(¢) with reliability 1 — d, 0 <
0 < 1 and accuracy € > 0 in the space L,(T) under previous condition.

Example 3.2. Let the field and its model are the same as in Example 3.1.
Then from the inequality (3.3), we have

Y N o 2L 4o
T2 (E() — En(t) < 2207 El* 1 (Byaia) (N> +4p (Anaga)-
From this evaluation and Theorem 3.3 it follows that the model &y (¢)
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approximate field £(¢) with reliability 1—6, 0 < § < 1 and accuracy € > 0 in
the space L,(T), if for N the following inequality holds N > max(Zs, Z4),

where
1
2

2B A L2 (0 2)F (u (Byep)) ™

(2 - 8(24) 7 (Aya 1) n2) ™

1
2

S A L ( ()

(2= 4 (Anas) ) ™

Zy =

Let u([-A, M) X [“do, X)) = (1—e ™) (1—e2), p=2,a=1,A=1,
4 =0,01 and € = 0,06 then we obtained that N(6,075) = 161, 4968.
So, if we choose the minimum partition NV = 162, then we can constructed

the model £x(t) of Gaussian stochastic field £(t).

d
Figure 3.1. Model of Gaussian stochastic field in the space L2(T).
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3.3. Estimates of Bessel functions of the first kind

In this section, we found new estimates for Bessel functions of the first ki-
nd. Also we considered differences Bessel functions with different arguments.
The estimates for the difference between two and four functions were obtai-
ned.

It is known that

1 s
Ji(u) = - jcos(kxp —usinp)dp, k =1,00
0

is the integral representation of the Bessel functions of the first kind (see [6]).
Lemma 3.3. Forall0 < a <1,

1

Je(w) |< 2V | w |* 7o —.
ka

Proof. We have

cos(ke) cos(usin p)dyp +

=
Sy

3|

[Tk (w)] =

j cos(ky — usin @)dp
0

1 1
+ | sin(kyp) sin(usin p)dp| = - |I; + L] < - (|L|+|12]).

O

Since the integrand in the integral I; is an even and periodic function
with period 27, we can transform I as follows

I = | cos(kep) cos(usinp)dp = cos(ky) cos(usin p)dp =

cos (k (<p+ %)) cos (usin (<p+ %)) dp —

N |
|
53—

cos(ky + m) %

N = Oy

|
53—
N
|
53—

T

X COS (usin (gp + %)) dop = —% f cos(kyp) cos (u sin (4,0 + %)) de.

—T
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Then the integral I; is written as follows

I = —% f cos(kyp) cos (ubln (gp + )) do + — 1 j cos(kyp) cos(usin ¢)dy

—T

We are going to obtain a bound for |I;|. Indeed,

—i jr cos(kep) cos (u sin (gp + )) f s(ky) cos(usinp)dp| <

1] =

i j; ‘cos(kgo) (cos(u sin ) — cos (u sin (<p + E))) ’ dp

1
= 5 J leostio)
<9sin <u(sin(<p + %) — sin<p)> sin (u(sin(g& + %) +sing ) ‘

:;H:i

“dom i apn g <ol (2

For the integral I,

™
X |sin —

1
5 ) sin (k) sin (usin p) dp =

i+ ) i+ )=

X sin (usm (<p+ k))dgo— —5 ( sm(k<p)51n (usm ((p—i— k))dga

I, = | sin(kyp) sin(usin )dp =

[
35—
m.

sin (ke — 7)) x

| = Oy

L
q%:\

As in the case of I, the integral I5 is transformed to the following form

I, = —i f sin(kyp) sin (u sin ((p + %)) do + i fﬂ sin (k) sin(u sin ¢)dep.

—T
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Then |I5| admits the following bound

2k
whence
1 a T a (T -
el =1l (vl (gp) +m el (55) ) =
« « « 1
_21 |U| 'k-ia’
where 0 < o < 1. o

Lemma 3.4. Forall0 < a <1
1 A «
| Ji(tN) — Jg(tu) |< gl [ A —u | 7e- T (1 + 21—u|> .

Proof. Using the integrals I; and Is evaluated in the proof of Lemma 3.3,
we get

1

- (—le f cos(kyp) cos (t)\ sin (<p + %)) de +

—T

[T (tA) — Jp(tu)| =

+
e

cos(kyp) cos(tAsin @)dp +

el

A:}Hﬂ

cos(k<p) cos (tu sin ((p + %)) dp—

i fsm k) sin (t)\sm (cp+ k:)> de +

—T

N

cos(kyp) cos(tusin ¢ d<p> +

_|_
N
—

sin(ke) sin(tA sin@)dp + 1 f sin(kyp) sin (tu sin (80 + k)) dep=

1=

d—x l;%a R

|S1+52|< (|S1|+|52|).

am

sin(k) sin(tu sin <p)d<p> ‘



Then we find a bound for |5 |

s

cos(kyp) cos (t)\ sin (<p + E)) dp + % f cos(kep) cos(tAsin p)dy +

|S1| = ’

-
[
53—

* k

AN
\
53—

cos(ky) cos (tu sin (cp + I)) dp — i jﬂ cos(ky) cos(tu sin p)dy |<

3

N

lcos(lp)| |(cos(t sin p) — cos(tusin ) — (cos (txsin (o + 7)) -

1
4. k

3

t(u+ A)sing "
2

sin

 con tasin (o + 7)) do = § | costin) |-

tu=Nsing o HutNsin(p+F) o Hu—N)sin(p + F)

X sin > 5 sin 5 dp =
1 r ‘ L tHu+N)sing (. t(u—N)sinp
= i_f | cos(ke)] [sin 5 sin 5 —

t(u — ) sin(p + Z)) sin t(u — N)sin(p + ) (sin tu+N)sing

—sin
2 2 2
t ) si s 7“ ; \) si
—sin Chs )Sm(@—i_k))’d@fhos(k%@” Sinwx
2 J 2
t(u—A)(sing +sin(p+ 7)) . tlu—A)(sing —sin(p + 7))
X COS 1 sin 1 +
t(u+ A)(sinp +sin(p+ 7)) . t(u+ N)(sinp —sin(p + 7))
—+ cos sin X
4 4
« sin t(u — A)sin(p + ) do < f sin t(u — A)(sin g —sin(p + 7)) N
2 J 4
+ lsin t(u — A)sin(p + §) “n t(u+ A)(sinp — sin(p + F)) dp <
2 4
<27r<ta|/\_;|a (E) e ur e () )Z

_ t\“ o [T\ A4 u |
_27r(2> | A —u | (Qk) <1+ 5o )

Similarly, we obtain a bound for |Ss]
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|S2| =

72

s

( sin(kep) sin ( tAsin (@ + T do+ - L sin(kep) sin(tAsin p)dp +
o k 4

] =

+ sin(ky) sin (tu sin (@ + )) j sin(ke) sin(tusin ) dp |<

—Tr

=

a'%:\ :l‘;m

< | sin(ke)]| - ‘(sin(t)\ sin ) — sin(tusin ¢)) — (sin (t)\ sin (gp + %)) _

— sin (tusm ( ))) ’ dp = ;i | sin(ke)| - |cos

tA — t(A + u) si 4z O\ — u) si 4z
ot HAZ WG _ oo AT WINPT ) g 1A w)sinip )

1o tA+u)sing (. t(A—wu)sing

= 2;£ | sin(kep)| 5 (sm 5

t(\ — i us t\ — o s .

( u) 82111(@ + k)) + sin ( w) bzm(go +7) (cos t(A + 1;) sing

t(A i z i
— cos ( +U)S2m(<p+k))‘d@<j|sin(/€@)|(cost()\—i_;)sm<’px

=

t(A+u)sing "
2

dy =

COSs

—sin

X €Oos sin
4 4

. t(A+u)(sin(p + F) —sing) . t(A+u)(sing +sin(p + 7))
sin sin X

4 4
t(A—u) S2in(<,0 +7) ) do < _f: ( t(A — u)(sin <p4— sin(p + 7)) ’
t(A—wu)sin(p+ ) . t(A+u)(sin(p + ) —sin<p)D do <

t(\— )(sm<p+sm(<p+%)) ) t(/\—u)(singa—sin(ga—k;;))’_’_

_|_

sin

X sin

+

sin sin

2 1
on (ta|A—u|a ()", tA—ul" e At (Jg)a) _

2a 20( . 2(1

o ()" o o A +u |
27T(2> |)\—u| (ﬁ) (1+2O‘>



Then
1T (EN) — Ju(tu)| < 2 (;)a Al (2) (1 N W) N
+2<;>a|)\—u“ (27;)& (1+W>=
e (T (PR
Lemma 3.5. Forall0<a<1land0<pB <1

1
| T (tX) — Ji(s)\)] < 4177 T (A¥]s — ¢|* + NHBs — tP|s + t*).

Proof. Substituting the expressions for the integrals I; and Iy from the
proof of the Lemma 3.3, we have

1

- <—i f cos(kyp) cos (t)\ sin (<p + %)) dp+

—T

[T (tA) — Jr(sA)| =

+
N

A i\Ha A {—x

cos(kyp) cos(tAsin p)dyp + cos(kp) cos (5)‘ sin (@ + %)) dip=

o~ =

> =

:;%ﬂ

sin(ky) sin (t)\ sin (<p + %)) do+

1
cos(ky) cos(sAsin p)d ) + 1

sin(ke) sin(¢tA sin ¢)dp +

_|_
N

4 /\ Q‘Hﬂ

sm(kgo) sin (s)\ sin (gp + %)) dp—

»Jk\’—‘

—_

| =

sin(kyp) sin(sAsingp)dg@) |= 7T|S'1 + So| < = (|S1] +152]) -

1
T

Now we estimate | S|

! ( i 3 . m
[Si| = 1 jﬂ cos(kyp) {(cos(t)\ sin ) — cos(sAsiny)) — (cos (tA sin (gp + E>) _
i il L p A(s +t)singp
- — <= i Als +1)sing
cos (sasin (+ 7)) ) [ de] < 3 [ contho)] - fsin Zmg =
. s A t . 1 A —t . 1
g M= f)sing A+ )sin(e+ §) L As —#)sin(p + F)

do —
2 2 n 2 g

73



sin

1 s
=3 J leostie)]
A(s — t) si s A(s —t) si i i

(s )S;n(w+k))+sm (s )S;n(soJrk)(smA(er;)smso_

MsHt)sing
2

A(s +;) sin (sin A(s — ;) sing

—sin

A t) si us A
_sin (s+ )S;n(‘P‘F k))‘d¢:I|COS(k§0)'

AMs—t)(sinp+sin(e+ F)) . A(s—t)(sinp —sin(e + F))
X COS 1 sin 1 +

A(s+t)(sing +sin(p + 7)) . A(s+1t)(sing —sin(p + 7))

—+ cos 1 sin 1 X

d@<f<-

sin

A(s —t)sin(p + ) A(s = t)(sing —sin(p + 7))

X sin 5 . sin 1 ‘—1—
A(s — t) si s A t)(sin ¢ — si s
+ lsin (s —t)sin(p + ) “in (s+1t)(sing —sin(p + T)) dp <
2 4
<o A%s —t]* () N Mls —tPA%]s + ¢« (£)°
= 20 28 . 9a '

A bound for |Ss| is obtained similarly.

us

j sin(kep) [(sin(t)\ sin @) — sin(sAsin )) — (Sin (t)\ sin ((p + %)) _

—T

— sin (sAsin (gaJr %)))} dcp’ < % f | sin(kep)] -

—1T

At — s)sing At+s)sin(e+ %) . At —s)sin(e+ )
—y s 5 sin 5

L At i At — s) si
= 2 [ Isinhy) <+S>SIW<Sm<S>Sw

2 2
A(t — s)si z Mt — ) si s ;
( gmm¢+w)+ﬁn< snmw+k>GﬁAa+@mw

|S2| =

-

At i
COSWX

X sin

dp =

COs

—sin

2 2 2
At i z ™ .
— cos ( —|—s)s;n(<p+ k>)‘dgp§ f |sin(ky)| - <(zos)\(t—|_z)81n('0><

T
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A(t —s)(sing +sin(e + 7)) . At —s)(sing —sin(p + T))

X COS 1 sin 1 ‘+
AL+ s)(sing +sin(p+ 7)) . Al + s)(sin(p + 7) —sing)
+ |sin sin X
4 4
« sin At —s)sin(p + F) dp < f ‘i A(t = s)(sing —sin(p + 1)) N
2 J 1
+lsin At — s)sin(p + 7) “in A(t + s)(sin(p + ) —singp) dp <
2 4
con (MG | Nl =t A 1117 (5)”
S 9a 98 . 90 '
Then
1 s — o (&)Y Ns —tPrs +t]* (£)°
_ < =
|Jk(t>‘) Jk(SA)| ~ T [2W ( 2a + 25 . 204 +
o (A )" Wl e (5)°) |
20 26 . 2 N
1
:417°‘7T°‘k—Cy ()\o‘|s—t|°‘+)\O‘+5|s—t|ﬁ|s+t\°‘). &

Lemma 3.6. For all0 < o <1 holds

Tk (EN) — Ji(tu) — J(sA) + Ji(su)] < 2- 4172\ — u)]s — ¢ (l)a x

2k
o (14 PEultls =t st #2u%) |t sPrut A 4 uf
4o 2a 4o . 9o
Proof. Since
Ji(tX) = 12 jﬂ cos(ky) cos (t)\sin (ap + I)) dp + 1 f cos(ky) x
0 477T k 477T

X cos(tAsin p)dyp — i f sin(k) sin (t)\ sin (go + %)) do+

—T
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1 ™
—1—1 j sin(kep) sin(tA sin go)dgo) ,

—T

we conclude that

| Tk (tA) — Ji(tu) — Jk(sA) + Ji(su)| =

3|~
Py

f cos(kyp) (cos(tAsinp) —

— cos (t/\ sin (<p + %)) — cos(tusin @) + cos (tusin (gp + %)) -

— cos(sAsin ) + cos (s)\ sin ( )) + cos(susin p)—

— cos (su sin ( + %))) dp + — f sin(ke) (sin(tA sin ) —

— sin (t)\sin (gp—k%)) n(tusin p) + sin (tusm ((p—i— k))
— sin(sAsin ¢) + sin (s)\ sin ((p + E)) + sin(susin p)—

— sin (susin (goJr %))) dga’ = %|K1 + Ks| < %(|K1| + |K3).

Then we find a bound for | K|

™

1 . . . m
|Kq| = 1 jﬂ cos(kyp) {(cos(t)\ sin @) — cos(sAsing)) — (cos (t)\ sin (90 + E)) -
. m . .
— cos (s)\ sin (90 + E>>) — (cos(tusin @) — cos(susin¢))+
: 0 . T
+ (cos (tu sin (<p + E)) — cos (susm (go + E)))} dcp‘ . |cos(kg0)\
. N At y x
« |osin )\(t—i—s)smgosin A(s —t)sing odin ( —l—s)bln(go—l- k)x
2 2 2
(s — £)si x . o
< sin (s—t)sin(p+ %) 5 sin u(t + s)sing “in u(s —t)sing
2 2 2
t i z — 1) si z 1 ¢
+2sin u(t + s) s;n(SDJr 7) sin u(s )s;n(@+ k) dip = . j | cos(ke)|
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X sin

—sin

X

+ sin

— sin

—sin

sin

sin

“(s_t)Sin%@) - (sin

At +s)sin(p+7) . As—t)sin(p+ T)

S11
2 2 2
¢ . s — t)si us 1 B
u(t +s) s;n(<ﬂ+ ) sin u(s )s;n(<P+ k)) ‘ dyp = 3 f | cos(ke)|x

2

At +s)sing (Sin Als —1)sing

5 — Sin 9

u(s —t)sing (sm At + s) sing

2

2
A(s —t) sm(go-i— )

Alt+s) smg0+ (

(S—tsmtp-i- > s—tsm(gp—i- )(
— sin sin

(t+s sin ga-i—

X COs

X COs

X COS

— 2si

X sin

X COs

—sin

At (A —t)
(g s

X COSs

(A4 u)(s—t)sing sin

> dp =5 f | cos(ke)| -

—T

u(t + s)sincp)
n——F—— -

At 4+ s)sin(p +

%)

2

2sin

()\—u)(s —t)sing + 2sin

4
(A +u)(t+ s)sine sin

4
(A —u)(t+s)sing

— 2sin

4
(A +u)(s —t)sin(p +

4

2

AMtts)sing

2

u(s —t)sing o

2

A(t+ s)sin(¢ + ) »

2

5 (A —u(s—t)sin(p+F)

4

u(s —t)sin(p + 7)
cos

Sin

4

n 2

(N —u)(t+ s)sin(p +

%)

4

4

dp = f | cos(kep)] - |sin

CRUEULIT

(A +u)(s —t)sing (bm

4
(A — )(S—t sin(p + ¥

+

A+u)t+s)sinfe+5)

Al +s)sing

2

u)(s —t)sin(p + Z )x

4

— sin

A+ u)(s—t)sin(p +

A(t+ s)sin(p + ) "

4

s —1)s
k)> + sin uls = ¢) m@CO

2

2

4

7

. ()\+u)(t+8)sln<ﬂx



4 Sin 1

(A —u)(t+s)sin(e + ) (sin u(s —t)singp A+ u)(t+s)sing

x (sin A-w)(t+s)sing <A—u)<t+s>sm(w+z>)+

+ sin oS
4

2 4
u@—ﬂﬂMw+z>ng+ma+$QMw+zv

dp =

—sin

2 4

2sin At +s)sing cos (A—u)(s —t)(sinp +sin(p + 7)) y

2 8

— [ Jeostio)l -

—T

« sin A —u)(s — t)(Sigcp —sin(p + 7)) cos (A + u)(54— £) Sin<p+
(A —u)(s—t)sin(p + ) [Sin At + s)sing (cos A+u)(s—1t) sing
4 5 .
(A +u)(s —t)sin(p + T)
—cos 1 ) + cos I k

Si At i s o
NERGELLEERRGL RS ) IPPRIEULIES

+ sin

(A+u)(s —t)sin(p + T) )

sin
2

2 2
(A +u)(t+ s)sing cos (A —u)(t+ s)(sinp +sin(p + 7)) «
4 8
(A —u)(t+ s)(sing —sin(¢ + T)) + e (A —=u)(t+ s)sin(p + F)
8 4
u(s —t)sing <cos A+u)(t+s)sing
2 4
~ eos (A +u)(t + s)sin(p + Z)) +cos (A +u)(t +s)sin(p+ )
4 4

X COS

X sin o

X {sin

X

— 1 — #)si T T
X (sinu(sé)sm‘p — sin u(s )s;n(<f9+ k)):Hd(p — f | cos(k)| x

At + ) sin (A —u)(s —t)(sin p + sin(p + %))X

X |2sin 5 cos <
X sin (Ao -8 COSZESO + g5)sin(—g¢) cos (A + U)(S4_ t) Sin‘P+
b2 Qo Dole b ) g, O3l - g+l + 1),
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X sin A+ u)(s— t)(sir81(<p + %) —singp) “in At + Z) SingpJr

+ 2sin Q-ue _i) (e + ) cos A+ u)le _i) sin(e + ) X

At +s)(sing+sin(p+ F)) . At +s)(sing —sin(p + F))
X 0S8 1 sin . n
u(s f;) sin ¢ cos A—u)(t+ 8)(5118190 +sin(p + T)) y

« sin A= WEFS) Cosi‘P +ap)sin(—gp) (A u)(t4+ s)sing

(A —u)(t+s)sin(p + ) “in (A +u)(t + s)(sing +sin(p + T)) y
4 8
u(s —t)sinp . (A+u)(t+s)(sin(ep+ %) —sinap)+

D) S 8

4 osin AW i) sin(p +3) A+t + Z) sin(p + )

—t 1 < us —t : oo s
X cos u(s — t)(sin <p4—|— sin(p + 7)) “in u(s — t)(sin <p4 sin(e + 7)) ’ dp <

+ 2sin

+ 2sin

X sin

At + s)sing (A—u)(s —t)(sinp +sin(p + 7))
5 cos < v,

Sin

<2 f | cos(k)| - [ i

(A —u)(s —t)cos(p + F¢) sin(—x) ()\+u)(s—t)sing0’+

X sin 1 cos 1
. (A=u)(s —t)sin(e+F) . (A+u)(s—t)(sinp+sin(p+ 7))
+ |sin Sin X
4 8
i A —t ) sin =
« sin At + s)sinp sin (A+u)(s —t)cos(¢ + 57 ) sin 75 N
2 4
A— —t)si z A —t)si s
Ly Ol =5+ ) (At Dsinle+F)
4 4
At i 1 jus M\t T i T
oo M) g +sinGot ) A+ s)coslo+ ) sin(—)|
4 2
4+ lsin u(s —t)sing cos (A —u)(t+ s)(sinp +sin(p + 7)) y
2 8
A—u)(t S Z)sin(—Z :
« sin A—u)(t+s) cosigp + 95)sin(—5¢) cos A+ u)(t4—|— s)sin g ’ N

79



A—u)(t i z —t)si
4+ lsin (A —u)(t+s)sin(e + ) sin u(s —t) sing
4 2
A t i i z A t Z)sin X
iy AW g sintp+ ) () eonlot F)oin g |
8 4
. (A=u)(t+s)sin(p+7F)  (Adu)(t+s)sin(p+ T)
+ |sin cos X
4 4
X cos u(s —t)(singp + sin(p + 7)) “in u(s —t) cos(p + 55 ) sin(—55) } dp <
4 2
IA—u|¥s —t|* rmye A —u|Ys — PN+ ul* @
<in (5 — (5) (35)
”( 10 o) T 1% o) T
n A — u|¥s — t|¥|t + s|* A\ (1)0‘ n A — u|®|s — ¢]¥|t + s|u® (1)0‘
4o . 2@ 2k 4o . 2o 2k
n A —u|¥|s — t|¥t + s|>%u® |\ + u|® (l)a [A — u|¥|t + s]¥|s — t|*u” y
420 90 ok 4o 20
T\ _ T\« [A+ ul®|s —¢|*
e _ 41 « _ al, 4l (7) 1 LNl I S
X <2k) ) TN —u|%s — t] oF ( + 1 +
[t 4+ 5|\ 4+ 2u®) |t + s|*%u®|\ + u|®
* 90 * g0 20 '
Similarly, we obtain a bound for |Ks|
1| ¢ . . . . . . @
|Ks| = 1 j sin(kep) [(Sln(t)\ sin ) — sin(sAsin p)) — (sm (t)\ sin ((p + E)) -

—sin (s)\ sin (gp + %))) — (sin(tusin @) — sin(susin ¢)) +

+ (sin (tusin (cp—!— %)) — sin (susin (<p+ %)))} d(p’ < % fﬂ | sin(kep)|x

o oeos AEES)sing At —s)sing A+ s)sin(e+F)
2 2 5
At — s) si d . o
% gin (t—s)sin(e+ ) 9 cos u(t + s)siny sin u(t —s) sing
2 D) 5
t+ i1 z t— 3] + 1 T
. e T (O
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At i Alt — i t i
X‘(COS ( —|—s)smgpsin (t—s)sing u( +s)81n<p><

5 5 cos 5
— §) si At i z A(t — s)si z
« sin ut —s)sing cos (t+s)sin(e + ) “in (t—s)sin(p+3)
2 2 2
t i z t — s)si z 1
— cos ut+s) s;n(w 1) sin u s)s;n(go * k)> ’ de = i_f | sin(kep)|x
At : N N
o lcos (t+ s)sinp sin At —s)singp sin u(t — 8)singp n
2 2 2
+ sin u(t — s)siny cos Alt+s)sing cos u(t +s)singp)
2 2 2
At +s)sin(e+ %) (. At —s)sin(e + T)
— o8 sin —
2 2
. u(t—s)sin(p + ) . u(t—s)sin(p + )
—sin — sin X
2 2
At i z t i z
y <COS ( +8)S;n(<p+ B U +8)S;n(<p+ k))‘dga

)\(t+s)singoc (A+u)(t—s)sin<px

2
cos > 0s 1

1.
=5 | Isin(ky)]

(A—u)(t—s)sing 4 9sin u(t — s)singp ‘i A+ u)(t+ s) sing
4 2 1
(u—A)(t+s)sinp At +s)sin(p+ ) y

X sin

X sin 1 — 2cos 5
A+u)(t—s)sin(e+ ) . (A—=wu)(t—s)sin(p+ T)
X cos 1 sin 1 _
ult —s)sin(p+ §) (A Fu)(t+s)sinp + F)
— 2sin sin X
2 4
—A)(t i z ~ :
X sin (w= Nt +s)sin(e + ) dp = f | sin(kep)| |cos Mt +5)sinp SIY
1 J 2
« cos A+ u)(t — s)sinp sin (/\—u)(tfs)smga_
4 4
A —u)(t — s)si z N — w)(t — s)si ™
o Bt 1Y g, (sl D),
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9 4 (¢0)] 5 X

i — 5) si At i x
" (cos )\(t—i—s)smcpcos A+u)(t —s)sing (t+s)sin(e + )

A t — s)si s — §)si

X cos( +u)(t = 5) sin(p + k)> + sin 7u(t ) Sm(px

4 2
« sin A+ u)(t+s)sing <sin (u=A)(t+s)sinp

4 4
(¢ : ™ (¢ : ™

N ) |, (sl )

4 4

R . f o s x

" (sin u(t ;) sin ¢ sin (A +u)(t4+ s)sin —sin u(t —s) s;n(cp—&— ) y

(A +u)(t+ Z) sin(p + 2)) ‘ dop :_f: | sin(ke)|

X COS (A + u)(t; 5)sin @ cos (A~ u)lt - 3)(Si;1<p +sin(¢ + 7)) «

(A—u)(t —s)sin(p + T) "

At + .s)sin<,0><

2 Q
COS D)

X sin

(A —u)(t — 5)(sin g —sin(p + F))

X sin + sin

8 1
e R
4 4
i A t — s)si s y
X COS Mt +s)sing + cos (A+u)(t —s)sin(p + 1) cos At + s) sing
2 4 >
At i ™ N _
— cos (t + s)sin(p + k))] 4 2in u(t — s) sing A+ u)(t+s) sing
2 9 1
7)\ t o . T
X COS (u = A)( +5)(blgap+sm((p+ k))x
coin Ui~ 4 ) (=N H il D),
J(m Qe g, O s dunter )Y,
4 1
« sin u(t — s)singp L sin (A+u)(t+s)sin(e + T) (Sin u(t —s) sing
2 4 5
t — s)si s s )
—sin u( s)b;n(<P+ k)>:| ’dgo: f | sin(ky)| - QCOSWX

(A +u)(t —s)sing cos (A —u)(t — s)(sing +sin(p + 7)) "
4 8

X COs
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A —u)(t —s) cosiso ) sin(—gp) |, MW= z) sin(e + )
w gig AT W= s)(sing +sin(p + F)) At +s)sing

A+u)(t - s)(sirzl(cp + ) sing) oo (A2— u)(t — Z) sin(p + )
A+u)t —s)sin(p+§) . At +s)(sing +sin(e+ )
A@+@®m;£$M¢+ZD+Q$nmt—§ﬁnwx
(A+WU+®$H¢wJU*M@+$@m¢+$M¢+%»X
W—M@iﬁaiw+ﬂﬁmFﬂ)+imw—kw+?$Mw+Dx
wgig W= s)sing A+ w)(t+s)(sing +sin(p+F))

A+ u2)(t + 3)(Sir81g0 —sin(p + 7,;))8+ 9 sin (u—N)(t+ Z) sin(¢ + 7) y
A+u)(t+s)sin(p+ )  ut—s)(sing+sin(p+ 7))

X sin CcoS X
4 4

ua_@@mg;$Mw+Z”p¢<;£wm@wr[

X sin

X sin

X COS

X sin

X sin

X sin

X sin

Mtts)sing
2

X sin cos

(A +u)(t — s)sinp cos (A —u)(t —s)(sing +sin(¢ + 7)) "
4 8
(= w)(t— ) coslo + ) sin(— )
4
A(t + s)sing “in (A +u)(t —s)(sing +sin(p + 7)) y
8

X COs

“in (A —u)(t—s)sin(p+ ) y

4

X sin

+

X COs

(A4 u)(t — s) cos(p + 55) sin g7 + lsin (A—wu)(t —s)sin(p+ ) y

4 4

(A +u)(t —s)sin(p+ %) At +s)(sinp +sin(p + 7))
X cos 1 sin 1 X
A(t + s) cos(p + 55 ) sin g wx
2 2
()\—I—u)(t—l—s)singpc (u = A)(t + s)(sing +sin(¢ + 1))

4 0S ) X

X sin

X sin + [sin

X sin
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« sin (u— A)(t+ s) cos(¢ + 57) sin(—35) + lsin (u—A)(t+ s)sin(p + T) y
4 4
. u(t—s)sing (A +u)(t+ s)(sing +sin(p + 7))
X sin 5 cos S X
« sin (A4 u)(t + s) cos(p + 55) sin(—g5) + sin (u—A)(t+s)sin(p + T) y
4 4
. (At u)(t+s)sin(p+ %) u(t — s)(sin g + sin(p + 7))
X sin cos X
4 4
t—s)cos(p+ =) sin(—= A — ulls — £l o
s sin A= %) b((p2 2) S 5 } dp < 4 <”|40|Ys| (%)
il Ay Al Ay
N 12 T 1o 20 %) T
A — u|®|s — €|t + s|*u” ( ™ )a A —u|¥|s — t|¥|t + s|>%u® |\ + u|®
* 4090 %) * 420 g0 8
T\ |>\_u|a‘t+s|a‘s_t|aua TN\ l1—« « «
T\ N4 ul®s —t|* [t 4 5[ AY 4+ 2u®) |t + 524U\ + ul®
x <2k) ( 1o M 90 * fo - 20

Then, we obtain

| Te(EN) = Ji(tw) — Ji(s\) + Ju(su)] < 2- 4172\ — u®]s — t| (%) X

A+ ul%s — | t+ s|“(A* + 2u” t+ s|2uI\ + ul®
(o el o0 20 | e sfouth g,

3.4. Construction of the model of homogeneous and
isotropic stochastic field

Definition 3.2. [141] A stochastic field X = {X(t),t € R?} is called
homogeneous in the wide sense in R? if EX (¢) = const,t € R? and

EX ()X (s) = B(t — s) = Jei(’\*t‘s)dF()\),t, s € R2.
RZ

Definition 3.3. [141] Let SO(2) be the group of all rotations about the
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origin of the space R%. A homogeneous stochastic field X (¢),t € R? is called
isotropic if

EX(t)X(s) = EX(gt) X (gs),
for all elements g of the group SO(2) and for all t, s € R2.

Let X = {X(¢,2),t € R,z € [0,27]} be a mean square continuous real
Gaussian homogeneous and isotropic stochastic field on R2. The following
representation is obtained similarly to [141] where complex valued fields are
considered:

X(t Zcos k) ka (EN)dny e (N\)+
k=1

+ Zsm (kx) IJk (N dn2k(A),  (3.4)

k=1

where n; x(A),7 = 1,2,k = 1,00 are independent Gaussian processes wi-
th independent increments, En; x(A) = 0, E(n; x(b) — nix(c))? = F(b) —

F(c),b > ¢, F(\) is the spectral function of the field. Let Jj,(u) = £ [ cos(ko—
0

usin ¢)de be the integral representation of the Bessel functions of the first
kind.
Consider a partition L = {Ag, ..., Axy} of the set [0,00) such that A\g =
0, M < Ag1, A1 =A Ay =0 and C = max Al}\“ < 00.
0<ISN—2 M
The process

M N-1 M N-1
= ZCOS(/{CC) Z 7717]@71Jk(t<1) -+ Zsin(kx Z 172 k, le tCl
k=1 =0 k=1 =0

is viewed as a model of the field X (¢, z) where 7; 1, 1,7 = 1, 2 are independent
Gaussian random variables,

A1

Mikl = f dn; 1 (N)
Al

are such that En; ., = 0, En?, ;= F(\iy1) — F(\) =07, ¢,1=0,...,N -2
are independent random variables being independent of 7; ;; and assuming
values in the intervals [\, \j+1], (y—1 = A, b7 > 0 are such that

FQ) = F(n)

Fi(A) = P{¢ <)\}:m-
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If bj = 0 then {; = 0 with probability 1. For the sake of simplicity assume
that by >0,0=0,1,...,N — 1.
Thus X (t,z) is written as follows

M N—1 Ai41
x) = Zcos(kx Z j Ji(t¢)dny k(AN)+
k=1 1=0 X\
N—1 Ai41
+Zsin(kx) 3 f Ju(tC)dnai(N).  (3.5)
k=1 1=0 X\
Note that X (¢, ) admits the following representation
oo N—1 Ai41
:Zcos(kx Z j Ji(EN)dn 5 (A)+
k=1 1=0 X\
oo N—-1 Ai41
+ sin(ka) Y f Je(tEN)dnak(A).  (3.6)
k=1 1=0 X

Consider the deviation X (t,2) — X (t,z) and put

xm(t,x) = X (¢, x) —X(Lx) =

N—1 A1
(Z cos(kx) Z f (Je(tX) — Jr(tGr))dm k(M) +

+ Z cos(kx) ij (tA)dm k()\)> +

k=M-+1
N—1 Ai41
Zsin(km S GrEN) = Je(t))dnes (V) +
k=1 =0 X,
+ Z sin(kx)JJk(tA)dnz,k()\O =
k=M+1 0

= xma(t,z) +xma2t,x). (3.7)
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Denote the two terms on the right hand side of (ref313) by xas1(¢, )
and xa,2(t, ). Then

7O (82)) < 7O (8 2)) + 7(xar2 (¢ 2))- (3.8)

According to the Lemma 1.2 the following inequality holds

N—1 Ai41
(XM1 (t, ) (Z cos(kx) Z f (Je(tA) — Ji(t¢))dm k(

=0 X\

=0 X

(X]\/[2 (t,x) (Zsm (kx) Z f (J(tX) — Ji(tG))dna, k(A )

+ 72 i sin(kx) ka (tA)dna 1. (A

k=M+1
Lemma 3.7. For all % <a<l1
M N—1 Ai41
21> cos(ka) - j TR(t) — Je(tC))dne (V) | <
k=1 1=0 X,
N-2
M 1 2(1—a) 200120 2a

o Ait1
x (b% + (t(l;C)f i Aza‘dF()\)) + 4MP(F(+00) — F(A)),

M N—1 A1
72 (Z sin(kz) (Je(t) — Jk(tCl))dW,k()\)) <
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N—-2

1 2(1—a), 2042c 2a

o A4l
|02+ (M>2 f N¥AF(N) | 4+ 4M?(F(4+00) — F(A)),

2
Al
A
where C' = max =t
0<IKN—2 M

Proof. Since
(a1 4+ ag 4 ... + a,)? <n(a? + a2 + ... + d?),

for all real a1, as, ..., a,, we derive from Lemmas 1.2 and 1.3 that

M N—1 Ai41
Zcos(k‘x) Z (Ju(tA) — Ju(tQ))dm k(M) | <
k=1 =0 X\
M N-1 Alf1
<MY N = Jea)dm (V) | <
k=1 1=0 Y
M N-1 A1
MZ Z 6? J (Je(tA) = Jk(tQ))dm k() | =
=1 I= ¢
M N-1 m g1 2m]
MZ Ss u>pl T B ([ RN = Je(e)dm ()
=1 =0 z Al

Since B¢ = 0, BEE2FH1 = 0, BE2F = (Qk),a% for a centered Gaussian
random variable £ and since the random variables {; do not depend on
7i.k(A), 4 = 1,2, by Fubini’s theorem, Cauchy-Bunyakovskiy inequality, and
Lemma 3.4 we obtained

2m
A4l

B [ (N = J(t)dm i) | =
AL
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Ao 2m
= EEq ( j (S (tA) = Jk(tCl))dm,k(A)) <

AL

< (2
2m . m'
A4l
(Qm)' 11—«
Sgea®| (TR

_ (2m)!
2m . m!

Alt1

j|Jk (tA) Jk(tg)|2dF()\)) <

— gl (T)a (1 n LM; <l|a)>2 dF(/\))

2ma
. 42m(17a)t2ma7_r2ma (1> %
k

)‘H—l 9 m
YA @
E (f A =G> (H'im) dF(A)) =
>\l 2

(2m)!
2m .l

Mar [ g
(e

Al

(2m)!
= oom oyl

X N
(2m)!

T om ol

Al
X ( j <1+
Al

(2m)!
= oom oyl

. 42m(17a)t2maﬂ_2ma (
g1 [ A
X j j (1 +

42m(1 a)t2mo¢ 2ma (

. 42m(17a)t2ma,n_2ma (

|

k

(14 W)Qdm))m AFy(w) <

1

2ma
42m(1 a)tQma 2mao (1> %

k

2ma
) A1 — NP7 x

m

5a dFi(u) <

1 2ma
k) Aip1 — NP7 x

£eAR L 4 Ao ®
| V) <

1 2ma
k) Aip1 — NP7 x

m

A1 200\ 2 2c
N1+ C

| (2 +2- éza)> dF(/\))

Al
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2ma
= gy 7T ] P = AP
2a Al41

x <2b12+2. (t(l;rc)) f )\MdF(/\)) :

AL

Here the symbol E;, denotes the conditional expectation with respect to (;

Note that

(j (j | Tk (EX) — Ji( tu)|2dF(>\)> dFl(u)> L

= (I <T % (j cos(ky — tAsinp)dp—

A

- jcos(kcp — tusin gp)dgo) dF()\)) dF, (u)) <
0

s

< (T (T <717 j |cos(ke — tAsing)—
A 0

A
1

— cos(ke — tusin p)| de)> dF(/\))m aF ()" =

t()\—i—u)singp)x

= (T (T <71r f 2sin(ky — 5
A A 0
xsin(W)’dgo)QdF()\)> dFl(u)> <

(j (de ) dEy( ))m = A(F(+00) — F(A)).

Whence
M N—1 Ai4+1

2 Zcos(kx)z j (Ji(tA) = Tk (tQ))dm k(A) | <
k=1 =0 X,
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N—

=

M
< 42(1 a t2a 2a MZ
k=1 1=0

E
N
Q

1
m

i [ £+ w2
xsup ([ [ n—u <1+) dF(N) | dF(w) | <

m>=1 N

M 1 N-2
<2- 42(17a)t20¢7r2a . MZ kﬁ . Z |Al+1 _ Al|2a><
k=1 =0

200 Ai+1 M
« 52+ (’5(1;(7)> j N2 dF(A) | +4M > (F(+00) — F(A)).
Al

m

The sum Z 3= With < a < 1 can be estimated as follows

Moy M ok 1 M 1 pl—2a | M
Zﬁ<1+ZJ‘x2ad$:1+fﬁd$:1+1_2al -
k=1 k=2k—1 1
_ 2a
S 2a—-1 (20— 1)M2a-1"
Then
M N—1 Ai41
Zcos(kx) Z f (Ji(tA) = Tk (tQ))dm k(A) | <
k=1 =0 X,

M 1 e
S <2a - Mm_l) 2. 42070220 NN L — AP
=0

200 A1
< |82+ (’5(1;0)) [ xR | +4M2(F(+00) — F(A)).
A

The second inequality is proved similarly. &

(oo}

Lemma 3.8. Let the integral [ A**dF()\) < oo converge for 3 < a < 1.
0

Then

T2< Z cos(kx)ij(t)\)dnLk(/\)) <
0

k=M+1
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1 %)
2(1—o) 2, 2 2c
< 92(1-a)y2a o DRt <0f)\ dF(A)>,

72 ( Z sin(km)ka(t)\)dng,k(AO <
k 0

1 oo
2(1—- 2 2 2
S e A{%zl(j)‘adF()‘)>-
0

Proof. Indeed,

7'2( i cos(kx)ka(t)\)dnLk()\)> <
0

k=M+1
< Y (j Jk<tx>dm,k<x>>< > o ( | Jk<tx>dm,k<A>>=
k=M+1 0 k=M+1 0
oo mom oo 2m %
= Z sup [2(2771)!!E<fjk(t>‘)d771,k(>‘)> ] :
k=M+1"7 0

Applying Lemma 3.3,
00 2m (2 )' 00 m
m): 2
E(Oj Jk(tA)dm,k(A)> <o <Oj | Ju(tA) | dF(A)) <

< Q(jmg;, (T (2l—a E2N kla>QdF(A)> =

o2m)!  22m(l—a)2ma 2ma 0 m
_ ( m) . 0 f)\Qo‘dF(/\) ,

S 2m ) k2ma )
whence
o0 o0
7'2( Z cos(kz) ka(t)\)dnLk(/\)) <

k=M-+1 0

3 oo 1 (oo}

<impepze S oo (jA%dF(A))
k=M+1 0
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oo
The tail Y k% with % < a < 1 can be estimated as follows

k=M+1
0o oo k o) 00
1 1 1 2o 1
— < ——dr = | —dzx = = .
Z k2a Z j IZO‘ x J x2o¢ x 1 -2« (20& _ 1)M2o¢71
k=M+1 E=M+1k—1 M M
Thus
72 ( Z cos(kx) ka(t/\)dm,k()\)> <
k=M+1 0

1
2(1—a) 20, 2 2c
< 92(1-a) 20 B D) <Of,\ dF(A)) .

The second inequality is proved similarly. &
Theorem 3.4. Let X (t,x) and X (t,z) be defined by (3.4) and (3.5) respecti-
vely. Assume that the integral }O)\QadF()\) < 0o with % < a < 1 converges.
Then ’

X AM 1
2 2(1—a)2a, 2a
T (X(t2) = X(t,2) < o — (204%_1) 9 . 42(1—a)2ap2a
N—-2 200 Ai+1
N t(1+C) N
S [Ar — AP | 0F + (2) [ x2eary | +

1=0 by

— (03 (0% 4 T (0%
+16M2(F(+00)—F(A))+220—@)g2eq2 o DT (j A2 dF(A)),
0

where C = max /\‘)\“.

0<i<N—2 M
Proof. The proof of Theorem 3.4 follows from relations (3.7) and (3.8) in
view of Lemmas 3.7 and 3.8. O

3.5. Accuracy and reliability of models for stochastic
fields in the space L,(T),p > 1.

o)
Theorem 3.5. Let 3+ < o < 1 and let [ \**dF(X\) < co. Assume that a
0

partition L used to construct a model X (t,z), t € [0,T],z € [0,2x], accordi-
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ng to (3.5) is such that

Ep

I'< 7 )
max ((2111%)5 ,p%)

where

[e3 3 5 3
I Tpra+l 2prM2 9 # 2 2%+1 ) 4p(1_a) pa+1
pa+1\ (200 —1)% &7 et " g
P
2

N—2
4
X (Z A1 — )\z|2ab12> +Dp2p(1*°‘)+17rpa+1 <( )
1=0

20 — 1) M2a-1

[e'e} % b P
T2patl 9P D3N3 1 3
x <fA2adF(A)> + r_ (2 ) x
2

(NS}

X

. e
o 2pa+1 (20 —1) M2t

(NS}

o — A1

) 1 pa [N—2

x 25 +1yp(1=0) zpatl (7;C> > i = A j AR |+
=0

AL

+ T - 227 e D2MP(F(+00) — F(A))%

3

1 fo< B <1
and where C = max ’\1)\“7 D, = 2 f. p 207
0<I<KN—2 M 2274, zf§ > 1

Then the model X (t,x) approzimates the Gaussian field X (t,z) with
reliability 1 — 6,0 < 6 < 1, and accuracy € > 0 in the space L,(T),p > 1.

Proof. If

1
T 27 P
N P
e> (jj (T(X(t,x) - X(t,x))) dxdt) pt,
00

then Theorem 3.2 and Definition 3.1 imply that

~ 52
P{|| X(t,z) — X(t,x) ||Lp>g} <2exp{ — s,

z
P
2¢)

N

where ¢, =

oy

i . P
J(T(X(t,x)—x(t,x))) dadt.
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The latter inequality holds if

OjTZf(T(X(m) _ X, m)))p drdt < (2;2)

Since

with the constant

Theorem 3.4 implies that

(7 (x(t2) - X(t,x)))p <
N—-2

8M 1 2(1—a) 2, 2a 2a
< [20{—1 (20[— M2a_1>4 )t s 12_; |)\l+1_)\l| X

i (D) [ wearn |+ oar o) - )+

AL
4 . 92(1—a)2a 2a o0 9e
+ B T (OjA dF(\)

N-2
8M 1 2(1—a) 20, 2a 2c
Dp(za_l(za—M2a_1> L 42Ae)2ag ;IAM—M x

(NS

<

p
2

200 A1
y blz+(t(12+0)> [ XdF () | 4 16M7(F(+o0) — F(A) |+
Al

P
2

4 : (=
11—« e le% 2«
+ D,2ri—e) e <2a—1)1\42‘“) (jA dF(x\)) <
0
8M
< D?
p <<2a 1)

N—2 A1
2ce 2 t(l + C) 2ce 2a
— _ F
x (?_0: | Aie1 — A | (bl + () JZ A2dE() | |+

2

) : gp(l—a)ppa pa

v~

1
@ = M2a—1

vl
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96

<

N-—
x Z A=A 2 [ AdF()
=0

+4P MP (F(400) — F(A))%) + D, 2r(i=e)gpaspa ( i

(20 — 1)M20—1

% : 97D, M3 1\?
<0j (20— 1)z M

t(1 pe
« 2 4p(1 a tpa,n_pa (Z |)\l+1 )\l| ab2> + ( ( +C)>

2
N-2 A1 5
S P = AP [ XARO) || 4+ 4P MP(F(+00) — F(A)®
=0 Al

+ D,2°(=9) gy (W) ’ (T}?%F(A)) ’

0
27 D3 M

=0

4 g e} g
11—« oY 2a «
0

2 D3M %
p . a
(2a0— 1)z <

P N-2
2 1 2
2a-1)8 <2“ Mz_l) 2% 4rU1=e)ppe <§ A — A “b2>

1 2 1+ C\P
- £ oyp(l—a) pa [ =T~

Mza—l) 2% -4 m” < 9 >
Al41 3

2 2
t=P¥+4P DI MP (F (400)—F(A))
Al

Therefore

2

ff (T(X(tyx) —X(t,w)))pdxdt <
00

a—+1 3 z z
< Tpo+ 2PDpM2 o0y # p) 0B+ gp(1—a) patl,,
pa+1\(2a—1)% M2a-1

=0

p
2

N-2 \ ;
x (Z | Aig1 — A PP b?) + Dy2r(i=e)tigpatl ( ) y

(2a — 1) M2a-1

p

-

+

vl

+

(NS}



o0 g ya P
T2pa+1 2P D3N 2 1 2,
A22dF (A p 20 — ——— | 23t!
- (j ”) +2w+1<2a1>‘5<“ M) S

P
2

- _ Al41
1+C p N—-2
4p(1—a) rpa+1 < 5 > Z | Ais1 — A |2a . j )\zadF()\) +
1=0 N

[N

+ T -2 a D2 MP(F(+o00) — F(A)2 =1. &

Corollary 3.1. Let a partition L = {)Xg, ..., A\n} of the set [0,00) be such
that \i < Aip1 and My1 — Ny = 2. Then Theorem 3.5 holds with

P

I= (NfI)m A+ (MQlal)Q - B+ (F(400) — F(A))

where

(NS}

-H

)

p

20— 1
Tpot-i-l b A 2 T2pa+1
(2 [rzear(y | S,
pa+1 2 0 2pa + 1

P
2D R ©pratl

B = p = 2p(1—(¥)+171_pa+1 J\)\20/dF()\> . ;

(2a—1)z 5 pa+1

H=2*".D2. 7. MP.-T.

3.6. Accuracy and reliability of models for stochastic
fields in the space C(T)

Let X = {X(t,z),t € R,z € [0,27]} be a mean square continuous real
Gaussian homogeneous and isotropic stochastic field on R?. Images of the

field and its model X (¢,2) are provided in Section 5, by (3.4) and (3.5)
respectively.

Also we consider xa(t,z) = X (t,2) — X (t,z) that is defined in Section
3 by equality (3.7).
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Consider the difference

xam(t,xz) — xar(s,y) = (Xara(t, ) — xar1(5,9)) + (Xar2(t, ) — xar2(5,9)) -
It is clear that

N—1 Ai41
X1 (t @) — xar1(s,9) ZCOb (kz) ) f (i (tA) = Ji(tC))dm k(M) +
=0 X\
M N—1 Ai41
+ Z cos(kx) ka tN)dm k(A) — Zcos(k’y) f (Ji(sN\)—
k=M+1 k=1 =0 X,
= Je(sQ))dm k() = > cos(ky) [ Ji(sN)dmk(N) =
k=M+1 0

M N—1 Ai41
=3 <cos (kz) > f (Ju(tX) — Ju(tQ))dn1i(\) — cos(ky) x

k=1 =0 X,
N—1 Ai41 o)

X j (Jr(sA) — Jr(sC))dm k() | + Z (cos(kx)x
1=0 X E=M+1

8

X [ I\ iy (A) — cos(ky) [ Jk(sx)dm,k(AO =

M N 1 A1
= cos( [ (TN = JltG) = Ti(sX) + Ji(5G))dm (V) +
k= Al

—

2
,_.
kg
F

1

+(cos(kz) — cos(ky)) Z (Jr(sA) — Jk(sQ))dm,k()\)) +

= Al

(cos (k) [(Je(tA) = Ji(sA))dmn (V) +
k=M+1 0

+(cos(kx) — cos(ky)) f Jk(s)\)dm,k(/\)> .
0

for all t,s € [0,T] and z,y € [0, 27].
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Similarly

N—1 Ai41
Xwm,2(t ) — xr2(s, ) Zsm (kz) Z f (Ji(tA) — i (tGr))dne ik (N)+
k=1 1=0 X
00 M N—-1Ai+1
+ Z sin(kx kat)\d’l]Qk )—Zsinky Z f (Je(sA)—
k=M+1 k=1 =0 X
00 o] M
= Je(sC))dm (V) = > sin(ky) [ Je(sA)dnak(N) = Y (sin(kz) x
k=M+1 0 k=1
N—1 Ai+1 N—1 Ai41
X (Je(tA) — Ji(tG1))dna,i (N) — sin(ky) Z f (Ji(sA)—
1=0 X 1=0 X
= J(sQ) dmpk(N) + Y <sin(kx)JJk(t)\)dng7k()\)—sm(ky)
k=M+1

x [ Jk(sA)dm(A)) =3 (sin(k::v)

j (Jr(tN) = Ji(tC) — Ji(sA)+
X

+ Ji(s€))dn2 k(X)) +(sin(kz) — sin(ky)) j (Je(sA) — Jk(sQ))dnz,k()\)> +
1=0 X

<sm (kx) f Je(EX) — Tk (sN)dne, . (N)+
k=M+1 0

+(sin(kz) — sin(ky)) f Jk(s)\)dngyk()\)> .
0

Then

T(xm(t,z) — xm(s,y)) <
<71t ) — xara (s, ) + 7(x2(t ©) — xar2(s,9)),

and
N—1 Ai41
2 (xm1(tz) — xar1(5,9)) ZCOS (kz) Z j (J(tX) — J(tG)—
k=1 1=0 X,
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M

— Jk(sA) + Ji(sQ)) dni i (N)) + 472 (Z(cos(kx) — cos(ky)) x

k=1

2

—1 A4

f Jie(sA) — Jk(sG)) dm k(M) +
0 N

+ 472 ( cos(kx) f J(tA) — Je(sN))dm k(A)) +
k=M+1 0

X

(]

l

NE

+ 472 ( Z (cos(kz) — cos(ky)) f Jk(s)\)dnl,k()\)> ,
0

k=M+1
whence
N—1 Ai41
2 (xm2(t, ) —xar2(s,y)) < 472 Zsm (kx) Z f (Je(tN) — T () —
k=1 =0 X,
M
— Ji(8A) + Jr(sG))dna k(M) + 472 <Z(sin(kx) —sin(ky))x
k=1
N—1 Ai41
X 30| (IlsA) = J(sC))dm i (N | +
1=0 X,
+ 472 ( Z sin(kx) I(Jk(t)\) Jk(s)\))dng,k()\)> +
k=M+1 0
( (sin(kx) — s1n(ky))ka(sA)dn2,k(A)> .
k=M+1 0
Let 0p = sup Mm(t,z)) and o(h) = sup 7T(xm(t,x) — xm(s,9)).
0<t<T [t—s|<h
|z—y|<h

Theorem 3.6. Let X (t,x) and X (t,x) be defined by (3.4) and (3.5) respecti-
vely. Assume that % <a<land f)\QadF(/\) < 00. Then
0
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N-2
2M 1 2(1—a)2a, 2a § 2a
0'0<<2a_1<20[—]\42a_1)24( T ‘)\l+1_)\l| X

1=0
a A1
T(1+C)\?
x ( (100 Azadm)) (P10 A
Al
5 oo 3
2(l—« 200, _2a 2
L o2(-a) e WB[A dF(z\)) :
where C = ma )‘;“.
O<l<N 2 M

Proof. Since

[r(xara (8, 2)) + T(xar2(t, 2))]° <
2072 (xara(t, ) + 72 (Xar2(t, )],

72 (xu(t, @) <
<

Lemmas 3.7 and 3.8 imply that

N—1 Ai41

2 (xm(t, ) [ (Z cos(kx) Z j Ji(EX) — T tQ))dm,k()\)) +
k=1

=0 X\

N—1 Ai41

M
2 (Z sin(ka? Z j Ji(tA) — Ji t(:l))dng,k()\)> +
k=1

=0 X

+ 72 ( Z cos(kx) j Jk(tz\)dm,k()\)> +

k=M+1 0

+ 72 < i sin(kx)ij(t)\)dngk()\))] <
0

k=M+1

M
1
<2 lQ . 42(17“)t2a7r2°‘MZ T2 (cos?(kz) + sin®(kz)) x
k=1

N-2 200 A1
. t(1+C o
x> = Al (b% + <(2)> IS dF(A)) +

1=0 by
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M
+4M Y (cos?(kx) + sin®(kx)) (F(+00) — F(A)) 4 22017 g2em2e
k=1

X Z k?% (cos?(kz) + sin®(kz)) x (I )\QadF()\)>
0

k=M+1

<

N—-2

2M 1
S2a-1 <20‘ B Mzou) 2207020 Y s = NP
=0

200 A1
X <b§+ <M> j AQO‘dF(/\)) + 8M?(F(+00) — F(A))+

2
Al

+ 22(1704)t2oz7r2a

2 T 2
Ga e | M)

This yields

1
oo= sup T(xm(t,z)) < 5 — 1 <2a - J\M—l) 9. 42(1—a)p2a 200y

0<t<T

N-2 200 A1
o T(1+C o
X > g — A (bf + <(2)> f A2 dF(/\)) +

1=0 N

{QM

Nl

2

+8M2(F(+00) — F(A)) + 22<1*Q>T2%2am f A2 dF(N)
0

Corollary 3.2. Let a partition L = {Xo, ..., AN} of the set [0,00) be such

that \; < N41 and A\jp1 — A\ = ﬁ If all assumptions of Theorem 3.6

hold, then

42(1—a)+1T2a7r2aM 1 A 2a
< 20 —
70 20— 1 (O‘ M2a1> (N—1> .

2a A
x (F(A) + <3T) jA?%F(A)) + 8M2(F(+00) — F(A))+
0

2

N

92(1—a)+1lp2a2a R )
T | o)
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Lemma 3.9. Let £ <a <1 and f N22dF(\) < co. Then

M N—1 A1
2 (Z cos(kx) Z f Je(tN) — Ji(tQ) — Jr(sA) + Jk(SQ))dm,k()\)) <
k=1 1=0 X,

2c

oo (5" 2 (St ) 3 a
e

x(b?+ (W) +(|t+28|) (1+20%)+

2 207 Al41
+ <HS| /\l“(lJrC)) [ xeary |+
Al
M

8
+18:4372%| 5 — t\QQMZCOS kx) <I|)\ APYdE(N) + 22*A%*(F (+oo)—F(A))>,
k=1

M N—1 A1
72 <Z sin(kx) j (Je(EX) — Ji(t¢) — Je(sA) + Jk(SCl))dng’k(A)> <
A

N—-2

2a M 1
< 42(2—0¢)|5 — t|2°‘ <%> M (Z Sin2(k.’£) : l€2°‘> Z i1 — )\l‘gax
k=1

1=0
X <b12 +

(B0 (Y oy

2 1 2a7 A1
+<t+s| Algl( +O)> jAQadF(A) N
Al

M oo
184372512 M Y ~ sin® (ka) <f A — APYdF(\) 4 22“A?Y(F(+00) — F(A))) :
k=1 A

A
where C' = max =t
0<IKN—2 M

Proof. Since
(a1 +ag + ... +a,)? <na? + a3+ ... +ad2),
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for all real aq, as, ..., a, we derive from Lemmas 1.2 and 1.3 that

M N—1 Ai41
S cos(ka) S j (JR(tX) = Je(tC) — Je(sA) + Jr(sC))dm e (V) | <
k=1 =0 X
N-1 Al+1
MZCOS kr) 3 72 f (Ji(tX) = Je(tC) = Je(sA) + Jr(sC))dm s (V) | <
1=0 i
N-1 Al+1
MY cos?(kz) 3 62 f (J(tA) = Je(tC) = Ji(sA) + Je(sC))dn1e(N) | =
1 1=0 i
M N 1 .m)!
MZC sup [ X
k=1 1=0 m>1

At 2m %
xE ( f (Ji(A) = k() — Jr(sA) + Jk(SCl))dﬁLk()‘)) :
AL

Since E¢ = 0, E¢?F+1 = 0, E¢%F = gzklz: 0% for a centered Gaussian
random variable £ and since the random variables {; do not depend on

7 k(N\),7 = 1,2, by Fubini’s theorem, Cauchy—Bunyakovskiy inequality and
Lemma 3.6 with [ < N — 2 imply that

At 2m
E ( f (Jk(tN) = Jr(tG) — Jr(sA) + Jk(SCl))dm,k()\)) <
Al

Al41 m
2m)!
< QEW .;,E [ 1IN = T(tQ) = Je(sX) + Ju(sQ)PAF (V) | <
Y
(2m)! e 2(1—a) 20 2a (T )
< g B[ (4 20—t () X
L

) (1+A+<l|4a|s—t| | lra O 240
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It + 52N+ ¢l o (2m)
+ 4o . Qa dF()‘)) = om m'4 X

A1
_ 2ma |A—|—Cl|a|5—t|a
42m(1 o) (1) _ 2maE _ pret 1
x on) st JA e R
l

I+ S| +2C0) [+ s2C A + Gl " (2m)
F — 4m
+ 5 + o dF()\) SRR

A1 [ N
2ma A Alg — t|*
><42m(170¢)(7-‘—> |S_t‘2ma j j |)\_u2a<1_’_| +u| ‘8 | +
A

2k 4o
Al
[t + s|Y(AY +2u®) |t + s|?*u|\ + ul|® 2 "
< Q(m .T)n'4m . 42m(1 ) (ﬁ) ‘S _ t|2 ) |)\l+1 _ )\l‘Q 2
)\l+1 >\l+1 «@ «
AT+ %) s =t Jt+seAr(1+2(%)7)
X 1+ AL + — 4
A 2
« 2 m
‘t + S|2auaAa (1 + %) < (2m)' m  2m(l—a)
+ 1o oa dF()\) dF;(u) < o m!4 -4 X
T 2ma At A% (1 + Al)\+1 )O( |s — ¢
ma ma L
x (ﬂ) s — 2™ Ny — Af? [ {1+ o +
Al

m

sl (142 (32) ) e sPoag e (14 2

dF (A <
+ 20 + 4o . 20 ()
(27’77,)' m  2m(1—a) (T 2ma 2mao 2mao
< g™ 4 (ﬁ) s — ¢2™ Ay — A2 x
At 2 2 2 2012 2
A1 4 C)* s —t]*™ |t + s/**X**(1 +2C*)
x 4 j (1+ 4204 + 22a +
Al
|t + s[1ONF N2(1 + €)% " (2m)! (e [ T\ 2
dAF(\)) = gm.g2m(1-a) (7)
* 120 0 *) 2 ml )
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A
_ 1 2a0 Al+1
% |8 — 2 Apyy — Ag2meam |52 + (sﬂim) [ x2ear()+
Al
Al41

|t+$| 2 )2 2a
) 2o jA dF(N\)+
Al

2 20 Ai+1

Al

Consider the case of | = N — 1. Applying the inequality [sinz| < z®
1 < a <1 to those terms in |K;| and |K»| that do not contain [ 4 u| and
|t + s| and bounding the rest ones with sin and cos by 1 we obtain

E (I(Jk(t)‘) = Ji(tG) — Jk(sA) + Jk(SCl))dnl,k()‘)> <

A

om)! [T :
< LR (tN) = Ju(th) = Ju(sN) + R (sM) PO | <
2m . ml 1
om)l [T A= A=t AYs — 17\ "
< Q(m@,ﬂ (64f (3 |40!s S |82a | > dF(A)) B
: A
_ (Qm)' 4(3_2a)m9m|8 _ t|2mo¢ T(‘)\ _ A|Ot + 2aA04)2 dF(/\) m <
2m . m' A b
< M4(372a)m18m|5 o t|2mo¢ T('A 7 A|2a + QZQAQQ) dF()\) m =
= 2m . m' A
!
_ M4(3720&)m18m|3 — t|2m“><
2m .m!
x (j A — APYdF(\) + f22“A2“dF(A)> =
A A
_ m4(372a>m18m|s — t|?mex
2m . m!

X (T'A — APYdF(\) + 22 A?*(F(+00) — F(A))) .
A
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Thus

M N—1 A1
2 (Z cos(kx) Z j (Je(tA) — J(tG) — Jr(s)) + Jk(sCl))dnLk()\)) <
=1 =0 X,

k=1

x (b? + ((W)Qa + <t;s|>2a (1+20%)+

2 1 20\ M
+<t+$| /\l+1< —|—C)) >f)\2adF()\) +18-43_2a‘8—t|20‘><

8
Al
>< (

(3

M N—2
T\ 2
<M E cos?(kx) [42(2_a)|s — t[2 (ﬂ) E A1 — N[ x
1=0

= 42C7) |5 —¢]2* M x

(|s—t|$+0)>2“

>H8

A — APP¥dEF()\) + 22*A%*(F(400) — F(A)))

N-2

>2QZ (COZM ) POPREO (b% +
=

=0

2a 2 2a7 Ai+1
+ <t;5|> (14 2C%) + <t+5| Algl(HC)) j )\Qo‘dF(/\)) +
Al

M
+ 18- 437295 —t|** M Z cos? (kx) x
k=1

X (T'A — AP*dF(\) + 22 A?Y(F(4+00) — F(A))) RS
A

The proof of the second inequality is the same.

Lemma 3.10. Let the integral [ \**dF(X) converge for all 5 < o < 1.
0
Then

M N—1 A1
72 (Z(cos(k:w — cos(ky)) Z j Je(sA) — Tk (sG))dm kx(A) | <

k=1 =0 X\
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1
<2-420- a)s2a7r2aMZ cos(kx) — cos(ky))? T2 Z A1 — M x

k=1 1=0
s+ )\
x | b7 + NedE() | +
[+ (439)" ]
M
+4M Z(cos(km) — cos(ky))?(F(+00) — F(A)),
k=1

M N—1 Ai41
72 Z(sm (kx) — sin(ky)) Z f (Ji(sA) — Jr(sG))dn2.x(N) | <

k=1 =0 X
M | N2
< 2.4%0-a) g2 2O‘MZ sin(kz) — sin(ky))? = Z N1 — N[ x
k=1 1=0
C 2a Ai41
| b2+ <‘9(1+)> [ xzear(y |+
2 e
M
+4M Z(sin(km) —sin(ky))?(F(+o00) — F(A)).
k=1

Proof. Lemmas 1.2 and 1.3 imply

M N—1 Ai41
72 Z(cos(ij — cos(ky)) Z f (Jr(sA) — Jr(sG))dm k(N | <

k=1 =0 X

M N-—1 Al41
< MZ(cos(k‘x) — cos(ky))? 72 ( f (Ji(sA) — Ji(s¢))dm x( )

k=1 1=0 by
M N-1 Al41
MZ cos(kx) — cos(ky)) 2 Z 62 f Je(sA) — T (s€))dm x(
=1 1= )\l

M
Z cos(kx) — cos(ky))?
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3|

2m
N—-1 Alt1

3 s | 2 ([ (o) = el )
1=0 m>1 ' Y

We use Lemma 3.4 and a reasoning similar to that in the proof of Lemma
3.7 we estimate the expression

om ! At o
-m!
> B (Ji(sA) = Ji(sG))dm e (A)
(2m)! ){ '
With this estimate, we obtain
M N—1 Ai41
72 Z(Cos(kx) — cos(ky)) Z j Ji(8A) — Tk (sG))dm k(A) | <
k=1 =0 X\
M | N-2
<2420 g2 ZQMZ cos(kx) — cos(ky))? o Z N1 — A2 x
k=1 1=0
200 A1
2 (1 + O) 20
| b2+ (2 [ xzearx
Al
M
+4M Y " (cos(kx) — cos(ky))? (F(+00) — F(A)).
k=1
The second inequality is proved similarly. &

Lemma 3.11. Let the integral [ A\*dF()\) converge for v > % Then
0

Tz< i cos(k:z:)f(Jk(t)\)Jk(sA))dnl,k(A)> <

k=M+1 0

< 2. 42(1—a)772a _ i (COS (kx) kia) y
(ln (1 + Isitl)) k=M-+1

« (((i)%:f)\zadF(/\) + <g)2§ s+ 120 ;IO)\Q”dF()\)> ,
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=M+1 0

72< i sin(kz) j (Ji(tA) — Jk(s)\))dngyk()\)> <
k

9. 42(1-a) L 2a © 1
S 25 Z (Sm (kz) - k.2a> X
(ln (1 + ‘Sit‘)) k=M-+1

X ((Z)%I)\zadF()\) + (g)% |s + ]2 OTAQ”dF(/\)> :

where%gl,§<a<1,5>0(md0<5<1

Proof. Lemmas 1.2 and 1.3 imply that

Tz< i cos(kz)j(Jk(tA)Jk(sx))dm,k(x)> <
0

k=M+1
< Y cos? (f (Ji(tA) = J(sA))dny. k(A)) <
0

k=M+1

< i cos? (kx)6> (j(Jk(tA)—Jk(sm)dm,k@)) =
k=M+1 0

1
2m’| m
o0 2m . ! oo
= Y cos?(ka) sup | St | [(k(tN) = Je(sA))dn k(M) .
k=M-+1 m>1 | (2m)! 0
Given h > 0 and 0 < v < 1 we obtain

1 1 1\” 1 1\~ 1
m(14+-)=2m(1 <“m(1+(2) )<
“(M) vn<+h> 7n<+(h>> Ry

1 4 1 —
whence h’ygm.ThuS h? QW,5>O If"}/(;—OL, then
1
o < . (3.9)
a\9d o
(5) (n(1+3))

We conclude from Lemma 3.5 and inequality (3.9) that
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E ( [ - Jk<sA>>dm,k<A>> <
0

< ;j@:;, < [ (rtr) - Jk(s/\))dF(/\)> <
" \o

m

2
1
(41a7r0‘k()\°‘3 e AHBYs —t)f L |s + t|a)) dF(A)) <

(03

. _m)! (
2m .m!

o;ﬁg

(Qm)' 2. 42m(1—o¢)ﬂ_2ma
= 2m . ml L2ma

x <|s—t|2"‘f/\2"dF()\)+|s—t|2ﬁ~|s+t|2aj)\2(a+5)dF()\)> <
0 0
(Qm)' 2. 42m(17a)7r2ma 1

X
V| 2ma 2mdé
2 m! k (ln(1+ |Sit|)>

(&) P (3) s o)

0 0

X

1
We introduce the numbers o and 3 as follows o = 5 + 3, f = 2
Where%<a<1,0<6<1and1/>%.Then

72< f: cos(kx)j(Jk(tA)—Jk(sx))dm,k(x)> <
k

=M+1 0

2. 42(1—a) 2c e 1
< . 26 Z (COSQ(]C$> . k2‘1) X
(ln (1 + ﬁ)) k=M+1

X ((Z)%IV%F(A) + (g)% |s +t%* ;IOA2”dF(>\)> .

The proof of the second inequality is the same. &

Lemma 3.12. Let the integral [ A**dF(\) < oo converge for % <a<l
0
Then

111



72 < Z (cos(kx) — cos(ky)) j Jk(s)\)dm’k(/\)> <
0

k=M+1
<22 g2an2a N (cos(ka) — cos(ky))? - o jvadF A),
k=M+1
oo oo
72 ( Z (sin(kx) — sin(ky)) ka (sA)dngz,x( )) <
k=M+1 0
«@ (o7 « 1 i (0%
g 22(1ma) 2an2 Z (sin(kx) — sin(ky))? - = j/\2 dF(X).
k=M+1 0
Proof. Lemma 3.12 follows from Lemma 3.8. &

Theorem 3.7. Let X (t,x) and X (t,x) be defined by (3.4) and (3.5), respecti-
vely, and

o(h) = sup T(xm(t,x) — xn(s,¥)),
lt—s|<h
|z—y|<h

where x 1 (t, x) is defined by (3.7). Assume that [ X*dF()\) < oo forv > 1.
0
Then

o(h) < (1(1))5 [2-42@—“) <i>26 (g>2a 2;\{1 (Za - M;a1> x

N— 2a
T(1+C
x \Am — AP (b% + <<(I)) +T2(1420%)+
=0

. (T?A(l * c*))”*) Alfl)?“dF()\)) o4t g <5>25 Y

2 «
Al
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X <j A — APP*dF(N) + 22“A**(F(+00) — F(A))> 4 qA-2ap2ap2a )
A

Mo k2 4 ed 20 N—2 T(1+C 200 Al1
XZ—(H( kme)) PREVIRES Ve b%+(<; )> fAQadF(A) +

k=1 =0 A
M
26 43—2aﬂ.2(x
16 M (F(+ 1 k2 B ———
+ ( ( kZ=1 n + e + (2a _ 1)M2a71 X

X <<Z>26IA2adF(A) + (27)% (g>25:foA2”dF(A)> +

o) 0o 1 k}2 F) 267 2
+ 22(2—01)T2ozﬂ_20¢ f )\QadF(A) Z ( n ( k::;e )) ‘| ,
0 k=M+1

where C' = max )‘i\“,%<a<1,%<1,6>0and0<ﬁ<1
0<IKN—2 M

Proof. Lemmas 3.9 - 3.12 imply

(et x) — xn(s,9)) < [T(xara(t, ) — xara(s,y))+
+7(xar2(t @) — Xar2(5,9))] < 27%(xar1 (@) — xar1 (s, )+

o o (T 2a
+ 272 (Xm2(t, x) — Xm,2(5,y)) < 2- 4225 _ t)2e (5) M x

M N-2 2c
1 o s—tl(14+C)
x> e 2 A - NP <le + <4>
k=1 =0
200 2 207 Ai+1
t t A 1
+< ;S|> (1+2C“)+< el +C)> i AQadF(/\)) +
Al

+9- 44725 g2 M2 (T'A — AP*dF(\) + 22A?Y(F(400) — F(A))> +
! M
4 4372 g2aplo Ny (Z ((cos(kz) — cos(ky))*+

k=1

1
+ (sin(kx) — sin(ky))? k2a> Z N1 — N> x

113



2a A1
« 02+ (5(1;(])) [ AZ2dF() | +8M(F(+00) — F(A))x
A

M
X Z cos(kz) — cos(ky))? + (sin(kx) — sin(ky))?) +
k=1

43—2047.‘_204 & 1
+ 25 Z <k2a) X
(ln (1 + —‘Sit‘)) k=M+1

x <(i>26:f)\2°‘dF()\) + (g>% |s +t|2‘XOTA2”dF(A)> +

— ol @ « T « 1
4 9320 g2, jv dF(\) Y o ((cos(ka) — cos(ky))*+
0 k=M+1

+(sin(kz) — sin(ky))?) .
Now we apply the inequality
(In (K +¢))°

(n ()

for some ¢ > 0 (this is inequality (10) in [79]). Since

| cos(kx) — cos(ky)| <

Mo Mok
> o 1+Zjﬁdx—l+f—dx—
k=1 k=2k—1
_1+x1_20‘M_ 2c0 1
B 1-2af, 2a-1 (2a—1)M2e-1
for all 1 <a<land
%) 0 1 pl—20 0 1
—d = | —=dax = =
Z /4}20‘ Z f xr2o = f 20 ¥ 1 -2« o (204—1)M2°‘_17
k=M+1 k=M+1k—1 M
we have
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X

2 2(2—a 2a (T2 M 1
T2 (t, ) —xar(s,y)) < 24275 (5) 20— 1 (QQ A2a—1

- |s — ]
A1 — A <b12 + [(

=0

(t +osPAgn (14 c)>2a
8

Al41

|

AL

/
:

28 N—2

5 M I

M

L 16M(F(+00) = F(A)) S (1o

(ln (\$iy| + 65))26 £

A — APYdF(N) 4 22*A%* (F(+00) — F(A))) n

4 2

)

(1+C)>2a + <|t+s|>2a (14 20%)+

)\QO‘dF()\)) £ 407205 g2 pp2x

447204 S2Q7T2aM

(i (o)) ;

20 (bz ( (1+C')>2a /\Tl)\QadF()\)> N
Al

43—20(7.[_2(1

20
(k2+65)) + WX

26 0 26 o
(ln (1+131))25 ((Z) OjAzadF(AH (g) |s+t2“0fA2*dF(A)> n

22(2 CY) 2a 2a

) (n (5t +€6>>

Therefore

sup 7 (xar (£ ) =xnr (s,) <
[t—s|<h
|[z—y|<h

N-2
X A = AP (bl2 +
1=0

deF by i o

0 k=M+1

2 M
9. 42(2—0) 20 (j) M
|: 2 200 — 1 @

(T(IIO)> " +T%%(1+2C%)+

Al41
f /\2adF()\) + 9. 4472ah2a . MQX
A

1

a1
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<T)\ APP*dF(N) 4 22A?Y(F(+o00) — F(A))

> 4472aT2aﬂ_2aM
A

NG
% <§: WH)) Z | M= [ <b2 ( a +C)>2a Alfl)\zaalF()\)) +

k=1 5

M 3
43 2c 772@

6M(F(+00) ~ FN) &5 o gyyas 4520w
+ (n (L + 1))25 ; (In (K*+¢°))" + (o — M2 X
2§ oo

2§ o©
x M ((Z) Oj)@adF(/\) +(27)% (ﬁ) fAszF )\)>
h
TV%F(A) i W] ’

+
(In (2 +1))* 3 W e

Now inequality (3.9) implies

922(2—a) 2a 1 2a

1 T 2
sup T(xm(t,x)—xn(s,y)) < [2 L 42(2—a) T2
|[t—s|<h (%)25 (h’l (% + 1))25 (2)

lz—y|<h
N—2 o
M 20 [ 32 T(1+C)
“ a1 ( &~ J2a- 1) A1 — A (bl + (4
irs ) 4-2 2
9. 4420 )

=0
T2A(1+C) 2 o
+T2%(1 +20%) 4 | ———— N22dE(\) |+
(=) ! (5)7 (n (f +1))"
( >)>+44-%TQ%MM

(n (i + 1))
M1 (B2 4 0)) 20 V=2 o
x (Z W) S (b; - (1)
lf

: (T A — AP2dF(A) + 227 A% (F(+00) —
A

k=1

A1 o
1 M

X f AN2@dF(\) 6M (F'(+o0 Z (In (k2 + ) 5+

Al (ln ( + 1) Pt
3=2a,2a 26 00
+ ' 6 J)\QadF A)+
(2a — 1) M20-1 % ) o
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26 0 2(2—a)72a, 20
+(2 < ) j/\QV ) 2((1T)7)T%j/\2adF()\)><
ln n + 1
X
k=

i ln k2+e))61%’

M+1

Ly e (D) Y M (L
O(h)g(ln(%Jrl)f [2 y (a (2) 200 — 1 2o M1 )

<T(1+C)

x N1 — N|*@ (bf + 1

=0

N (TQA(;L C))ﬂ Alfl,\QadF(A)) +9.44 20 )2 <5)25 x

«
AL

2a
> +T%(1+2C%)+

x (j IA— APPYdF()) + 22“A2“(F(+oo)—F(A))> 4 44-202a 20
A

(K2 1 e8))20\ N2 20 A
x( W) Z A1 =] (le + <T(12+C)) f /\mdF()\)) *
=1 =0

Al
437204)71.2&
(2a0 — 1) M22—1

X ((i)% T)\QadF()\) + (27)% (g>26TA2”dF(A)> +

0

M
+16M(F(+00) — F(A) Y (In (¥ + ¢%))* + x
k=1

oo 0o 1 k/‘2 E) 267 2
+22(2—a)T2aﬂ,2o¢J‘A2adF(A) Z (Il( k:;e )) ) o
0 k=M+1
Corollary 3.3. Let a partition L = {)Xg, ..., A\n} of the set [0,00) be such

that \; < Aj41 and A\jp1 — N = N’il. Let all the assumptions of Theorem
3.7 hold. Then
Cy

(In (3 +1))"

o(h) <
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where

o\ /m\20 M 1 A 2o
= |9.42@-a) [ Z Z 20 —
= a (2) 2a—1\"* e )\NZ1) *

2a 2A 2a] A
(35) + (142012 4 <3T2 ) f)("%F(A)) +9.44720

0
25 (oo
><]\42 () (J |)\ _ A|2adF()\) + 22QA2(X(F(+OO) _ F(A))) +44—2aT2a7T2aMX
A

x (12”: . (k;zeé))%) (NA 1)2a (F(A) + (3T>2QJ)\2“dF A)) +

k=1

X <F(A) +

437204,”2(1
—X
(2a — 1)M2o—1

X ((Z)% :fo)\QadF(/\) + (27 (g)QJI)\Q”dF(A)> 4 2dmaragay

0 o 9 2673
xoj)\zadF(/\) 3 (m(k“é))] . (3.10)

kQ(x
k=M+1

M
+16M(F(+00) — F(A) Y (In (¥ + %)™ +
k=1

<o¢<1,%<1,6>0and0<,@<1

Do

Definition 3.4. A stochastic field X (t,z) approximated Gaussian field X (¢, x)
with the reliability of 1 — v, 0 < v < 1 and accuracy ¢ > 0 in the space
C(T), if there exists such partition of L, that inequality

P s | X(t) - K0 [> of <9
teT

holds.

Theorem 3.8. Consider R?, d(t,s) = max |ti—s;i |, T={0<t;<T,i=

1,21, T > 0 and let X = {X(¢),t € T} be sub-Gaussian stochastic field.

If sup 7(X(t)— X(s)) < o(h), where o(h) is continuous, monotonically
d(t,s)<h

decreasing function, such that o(h) — 0 ash — 0 and [ ¢ <1n U(%)(E)) de <
0o+
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1
oo where P(u) = (%)2 and o'~ () is an inverse function to o(e) .

(=1
Then P {sup | X(t) |> u} < 2A(u,0) for all0 < 6 <1 and u > 2{;9785)),
teT

where

A(u,8) = exp {2;% <u(1 —0)— Zf(050)> } ,

1
eo =sup (E| X(t) [*)®
teT

)

I(v) = Ofv <1n (%(Tn(g) - 1)) C e,

The Theorem 3.8 is a particular case of the Theorem 1.8 from the [29].

Theorem 3.9. Let in model X(t,a:) the split L be such that when q¢ >

291;50_53)) , 0 <6 <1 the following relationship takes place

2
2exp {_Qig <q(1 —0)— Zf(050)> } < 7,

where g = sup T(xm(t,z)) = oo, xm(t,x) is defined in (3.7) and let

0<t<T
} — 1> + 1) de,

I(0e0) < 1(0eg), where
080
. T C
I(0gp) = Of In (2 <exp { (;)
Cy represented by the formula (3.10), % <a<1,§<1,0>0,0<8<1
and v > %
Then the model X(t,x) approximates Gaussian stochastic field X (t,x)

with a given reliability 1 — v, 0 < v < 1 and accuracy ¢ > 0 in the space
C(T).

=

Proof. According to the Theorem 3.8 if ¢ > 291;50_58)), 0 < 0 < 1 then for
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XM (t, z) the following inequality holds

1 2. 2
P isup [ xm(t,z) [>qp <2expq —-—5 | q(1 —0) — —I(feo) ,
teT 2¢e§ 0

- 960 %
ne I(feg) = g (ln (20%”(5) + 1)) de,o(h) = ltflsllgh T(xar () —xa (8, 9))-
lz—yl<h

From Theorem 3.7 for o(h) we have

1
exp{(%)%} —1,

where 2 <a<1,2<1,6>0,0<B8<1,v>1and C; is defined as in
(3.10), then

} Oeo T c, 1 R
I(0gp) < Of In (2 (eXp { (5) } - 1) + 1) de = 1(0zp),

that can be made an arbitrarily small at a certain selection M, A and N.
Specifically, for a given accuracy and reliability we choose M so that the
fifth and sixth terms in the (3.10) were arbitrarily small. Further, considering
the resulting value of M, we choose A so that the second and the fourth
terms were small in the ratio (3.10). And finally, considering the value of
the M and A, we choose N so that one and three terms in the (3.10) were
arbitrarily small. It should be noted that with this choice of M, A and N
is an arbitrarily small not only the C4, but also €y, which is defined in the
Theorem 3.6. That there exists a partition L, for which holds

2exp {210 <q<1 o)~ waso)) } <.

This, together with the Definition 3.4 means that the constructed model
X (t,z) approximates X (¢,x) with a given reliability 1 — v, 0 < v < 1 and
accuracy ¢ > 0 in the space C(T). &

o=V(h) =

Example 3.3. Consider the model X (¢, z) of Gaussian homogencous and
isotropic stochastic field, representation of which is given in (3.5). For this
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model we put
1—4, ifa>1
F — )\4 I = I’
() { 0, ifA<1
We estimate the value C; and gg. For this, we presents them in the
following forms .
Ci=(Cr+Crr+Cip)z,

where
43—202a 5 26 ©© - - 5 26 oo .
CI_W((O‘> OjA dF(X) + (2T) (6) OJ)\ dF()) | +
[e's) 0o 26
d—aq2a, 2a 2a (hl (k2+66>>
4 odmepon f/\ daF() Y R
0 k=M+1

5 20 [ o0
Crr = 9-4472 ) (a) (f A — APPYdF(N\) 4 22*A%* (F(+00) — F(A))) +
A

M
16M(F(+o00 AN (I (B + %)™,
k=1

S\% jm\20 M 1 A\
—9.42@2~a) ( Z - _
Crr=32-4 <a> (2) 20— 1 <2O‘ M?a—l) (N—l) %

T 2a TQA 2a] A
(34) T (1+2a+1)T2a + (3 5 )

| AMF(A)) e
M 9 28 20 20 A
w2 M (Z e k;eé)) ) (Nji 1) (F(A) + <32T) b[/\%‘dF(A)> :

X (F(A) +

0
k=1

and

=

eo=(er+emr+ermm)?,
where
22(1fo¢)+1T2o¢7.r2a o0

o Joars

er =
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e11 = 8M?(F(400) — F(A)),

42(1—a)+1T2aﬂ.2aM ) 1 A 2a
X
“ N-1

SHr= 20 — 1 T M2l
3T\ &,
x <F(A)+ <2> OfA dF(A)).

=3, T =1, after transformations we

We choose a =1, =3,6=1,v

obtain
> (In(k? + e))2

78472 9
k=M+1

336 M2 16M
C[]:T"FF (ln(k2+e))2,

k=1

A \2/9 89 1 61
CII[:87T2(2M—1) (ZV—I) (2A2_8A2_A4+8>+
Y (i (K2 + )’

L) 5

2 S
+167TM(N_1 5 A2 2

Then we choose accuracy and reliability with which our model approxi-
mates the stochastic field, namely ¢ = 0,06, 1 —~ = 0,99. In addition, let
. Then by the Theorem 3.9 we obtain

1 1 /200’
2 _ 0,06-7—41(—) < 0,01,
eXp{ 253( 2 2 )}

()= [ (3 (o {(2)) 1) +1)e
%n (oo {9} Dae

o=1
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therefore

1 ¢ 1 o 1
R — — —_— — < .
2 exp 5 0,03 40f 1n<2exp{ . }+ z)ds <0,01

oN

By the help of approximate numerical methods, we can obtain, that for
C1 =1,99 and £y = 3,91 this inequality holds, so we obtained

(Cr+Crr+Crr)? < C;

and

[N

(er+emr+ernmr)? <éo.

2 2
Without decreasing of the generality, we put C; < 031 , Crr < =,

C &2 &2 &°
Crir < =3 and e < 5§, e < 5§, err < 55

Solvin3g the inequality for C; and €; by M, we obtain two values for M,
from these values we select the maximum. Taking into account the found
value of M we solve the inequalities for C;; and ;57 by A and we select
the maximum of them. Substituting the found values for M and A to the
inequalities for C'7;; and €55y, similarly we find value of N.

By using the software package Mathematica, we found that M = 32,
A = 65, N = 69442. Using these values we can construct a model X(t,x)
that that approximates Gaussian homogeneous and isotropic field X (¢, )

with reliability 0,99 and accuracy 0,06 in the space C(T).

—2

gl
Figure 3.2. The sample path of the model of Gaussian homogeneous and
isotropic stochastic field with reliability 0,99 and accuracy 0,06 in C(T).
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Chapter 4
The estimation of the correlation function of
stationary Gaussian process in L, metric.

The estimation of correlation functions of stochastic processes and constructi-
on of the criteria for identification of these functions stay an important
task in the theory of stochastic processes and fields. Intensive study of
these problems is associated with the active use of obtained results in
the theory of stochastic processes and in areas where it is used. Criteria
for testing of hypothesis about correlation function are based on the esti-
mations for distribution of correlogram deviation from correlation function.
Many books are devoted to correlogram-type estimates of the correlati-
on function of a stationary Gaussian process( [7], [28], [90], [144], [141].)
Among them the book [19] should be specially mentioned. In this book
correlograms of stationary stochastic processes and their main properti-
es are investigated. Correlogram-type estimates are considered also in the
works [80], [57], [61], [78].

In this chapter a separable real-valued stationary Gaussian process &(t)
is considered. The estimates for distribution of correlogram deviation from
correlation function of this process in Lo-metric are obtained. The esti-
mation is carried out by observing one sample path of the process. Sample
correlation function or correlogram is used as an estimate.

4.1. The estimation of the correlation function of
stationary Gaussian process by using correlograms

Assume that & = (§(t),t € [0,T + B],0 < B < o0) is a separable real-
valued stationary Gaussian process defined on a probability space {Q2, B, P},
with mean zero and a continuous correlation function

p(T) = BE(t+T1)E(t), 0<7<B.

(this means that process is continuous in mean square)

By the well-known Belyaev alternative, sample paths of separable stati-
onary continuous in mean square Gaussian process are continuous with
probability one on bounded interval or are such that with probability one
on any interval

sup X (t) = 400, inf X(t) = —oc.

tel tel

So, we can estimate correlation function only in the case, when sample paths

of stationary Gaussian process are sample continuous with probability one.
Assume, that sample paths of process £(t) are continuous with
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probability one on any interval [0, T|, T > 0. Necessary and sufficient
conditions of this fact are Dudley-Fernique’s conditions:
for some £ > 0

jE(HT(u))l/2 du < oo,
0

Hyp(e) - metrical entropy of the space ([0,T], p), where p - pseudometric,
p(t,s) = (E(&(t) — {(5))2)1/2, a Hr(e) = In Np(e), where Nr(e) the mini-
mum number of closed balls of radius e, which cover ([0, 7], p) .

Thus, will assume, that for process £(¢) Dudley-Fernique’s condition
holds. We note, that Dudley-Fernique’s condition holds if for some & > 0 at
sufficiently small 7 one of following condition holds:

1
2
Elg(t+71) = &) < W

or

j1n1+€(1 +AdF(\) < oo, &3>0,
0

where F'()\) - spectral function of stochastic process £ . Latest two inequali-
ties are close to necessary conditions.

Let £(t) be a single sample path of the stationary process. Consider
sample correlation function or correlogram

T
prin) = 7 [ &+ Pedr, T >0 (4.1)

as an estimate of correlation function p(7). Since p(7) is an even functi-
on, then only positive 7 (7 > 0) will be considered. Under our conditions
integral in (4.1) becomes a usual Riemann integral constructed after a si-
ngle sample path of the process £(t), and, as a matter of fact, this integral
represents an almost surely continuous process with respect to 7. Therefore
the correlogram can be viewed as a continuous in probability stochastic
process. This argument enables us to assume that the process pr(r) is
separable.
It is easy to calculate mean for pr(7):

17 1 L
Epr(t) =E (Toff(t+7)§(t)dt> = TofEf(t+T)€(t)dt = p(7)

for each T > 0 Ta 7 > 0.
Hence, pr(7) is an unbiased estimate of p(7). The accuracy of estimation
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is given by the difference pr(7) — p(7). Using the Isserlis formula for jointly
Gaussian random variables &;,71=1,...,4, E§ = 0:

E&18838s = E§ 16 B 38y + EE1§3E 8y + EE 4 S (4.2)

we can calculate Dpr(7):

Dpr(r) = E (pr(r) = p())* = E (pr(7))* = p*(7) =

1 TT
. <T2 | Jew+nemes+ T)&(S)dtds> —p(r) =
00

[EE(t+T)E(H) EE(s + 7)&(s) + EE(t + 7)€(s + 7) EE(1)E(s)+

I
N~
Sy
e

+ BE(t+ 7)E(s)BE(H)E(s + 1)] dtds — p (1) =

T T
[ [ [P()+ 02t = 8) + plt = 5+ 7)plt — 5 — 7)] dtds — p*(r) =
00

3~

| TT
:ﬁjj (t—s)+p(t—s+T1)p(t—s—71)]dtds.

Consider the dlfference (1) = pr(r) — p(7).
Lemma 4.1. For any 7 > 0 {(7) is square Gaussian random variable.

Proof. Since pr(7) is a mean square limit of integral sums of the type

7 3 &(ty + 7)E(tk) Aty, and each integral sum is quadratic form of Gaussi-
k

an random vectors, then ((7) is square Gaussian random variable for any

7 2 0. Therefore, ((7) is square Gaussian stochastic process. &

Consider random variable n = fOB (pr(r) — p(1))* dr,
0 < B < c0. We can calculate En:

En=E [ (pr(r) - p(r))’ dr =
0

1 BTT
:ﬁjfj[Pz(tfs)+p(tfs+7)p(t7377)} dtdsdr =
000
= %IJ(T—“) [p*(u) + p(u+ 7)p(u — 7)] dudr.
00
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Since 7 is a mean square limit of integral sums Y ¢?(7%) A7y, where (%)

%
is square Gaussian random variable, then the next theorem holds.
Theorem 4.1. For the estimate pr(7) of correlation function p(T) stati-
onary Gaussian process £ = {£(t),t € [0, B + T} the following inequalities
hold

B B ’U,21'
P {f (Br(r) — p(r)2 dr > foﬁT(T)dT} >1— g(u)exp {2} (4.3)
0

0

foru>0,0<m<—21nu7%(u),

where g(u) = \/%7 fjocf exp {—%} (disl and

fory > %

Proof. The proof is immediate by theorem 1.3, corollary 1.5 and previous
lemma. &
Remark 4.1. Theorem 4.1 enable us to construct confidence sets for correlati-
on function of stationary Gaussian process £(t).

Let H be the hypothesis that for 0 < 7 < B the correlation function of
separable real-valued stationary Gaussian process £ equals p(7). As an esti-
mator for p(7) we choose pr(7). To test the hypothesis H one can use the
following criterion.

Criterion 4.1. For given level of confidence o, 0 < o < 1, we can find such
positive x, and y,, that

$(Tasu) + f(ya) =
where
s, u) = glu)exp {252}, u> 0, f(a) = 22
The hypothesis H is accepted if
I (pr(r) = p(r))? dr
E [ (pr(r) — p(r))* dr

and hypothesis is rejected otherwise.

< Yo
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Remark 4.2. The probability of the first type’s error does not exceed o when
we use this criterion.

Remark 4.3. For given «, we can choose z,, and y, in the following way.
Since

P{xas&@a}%—a,
then

n _—
P ) Jo g .
{EUEM y]} “

The latter inequality holds if

P{n gtza}go&y and P{

En 7 >ya}<a(1—7)7

En”~

where 0 < v < 1. This means that x, and y, we can find from equations
ux,,
gwesp 2 =ar,

2%y§

(% )
It should be noted, that in this case x4 () and y4 () depend on 7. So, choice
of v (0 <y < 1) will enable minimize the difference yo(7v) — zo (7).

=a(l—7).

Remark 4.4. Consider the equation

MUNmp{ugh}w

For existence the positive solution

. 2In 55

the condition In &% > 0 should holds, namely g(u) < a, then

u < g~V (a). Such u exist, because g(u) —» 0 for u — oco. If we denote
Ua = g(il)(a)a

then
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Example 4.1. Let the hipotesis consists in the fact that

| 2

p(r) =Ae™ " Aa>0

is the correlation function of stationary Gaussian stochastic process with
mean zero. To test the hipotesis we can use criterion 4.1, where estimate
pr(7) is defined in (4.1).

We would like to calculate EIOB (pr(7) — p(7))* dr, where 0 < B < oo
for this case.

9B -

(Pr(r) = p(r)*dr = =5 Oj(T — u)p* (w)du+

E

O

BT

2

T2 II(T —uw)p(u+ 7)p(u — 7)dudr = I + Is.
00

Taking into account that

T 1 2T/ a . p
—2au? -
= = d(2T
Ofe du NG Of ez dt \ 24 (2T a),

T 1 —2aT? 1
—2au’ _ = t gy _ —2aT?
Ojue du = 1 Of edt—4a (1 e ),

where ®(x) gdt, we obtain

:\/%fowe

23142 s 1 2
L ==——|T,/—®0©T — (e2eT" 1
LT [ V222 \/a)+4a(e )}

I — ZT‘f\/z@(QB\/a) {T\/EQ(QT\/&) + ﬁ (727 - 1)}

Thus,

L+ = %’f <B + \/Z@(QB\/E)) (T\/ZQQT\/E) + i (e*ﬂ” - 1)) .

Example 4.2. Let the hipotesis consists in the fact that

p(t) = Ae™ "l Ala>0.
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is the correlation function of stationary Gaussian stochastic process with
mean zero. To test the hipotesis we can use criterion 4.1, where estimate
pr(7) is defined in (4.1).

Let us calculate
E [ (pr(r) — p(7))* dr, where 0 < B < co.

§ 2 2B T
EJ (pr(r) — p(7))" dr = o= J(T —w)p? () dut
0 0
9 BT
T2 JJ(T —u)p(u+7)p(u — 7)dudr = I + I5.
00

Since

T 1
—2au _ _ ,—2aT
Ofe du = % (1—e ),

—2au 1 —2aT 1 —2aT
e duy = —— — (1 —
u u e + 5 ( e ) s

BT B /7 T
ijQe_“|“+T|e_“|“_T|dudT = A? f (f e 297 du + fe_%“du) dr,
00 0 \0 b

we will have

2BA2 [T _ 1 _ T _
IIZW[%(l_e 2aT)_@(1_e 2aT>_%e 2aT:|7

242 T 3
o = — 1— —2aB - _ 2
2 T2 |:( € )(2a2 8a3)+
BT B2 B B
—2aB [ 2~ 2 2 b _oar
+e (2@ + 1a +4a2>+4a26 }
So
242 [B [ 1 B2 1
L+, =2 |2 = 7)) e 20T  Z_p=2aB _ = (1 _ —2aB
L b T2 {a <2a )e +4a€ 4a3( € ) X

(32 — 2Ta + 2a*BT + Ba)| .
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4.2. The estimation of the correlation function of
stationary Gaussian process when its value is
known only in a finite set of points

During statistical processing of the results the estimate pr(7) can be
obtained only approximately.

Assume that £ = (£(¢),t € [0, + B],0 < B < c0) is a separable real-
valued stationary Gaussian process defined on a probability space {2, B, P},
with mean zero and correlation function

p(r) =EE(t+71)(t), 0<7<B.

Assume also that we know the value of this process in points ¢; = %7
1=0,1,...,n,n e N, At; = =
Consider
1'&= — i iT
Pralr) = 2 3 €t + 7)€ pe(Ter)e() @

=0

as an estimate of correlation function p(7). where £(¢;) and £(¢; + 7) are
T
n’

known values of this process, t; = &L, i =0,1,...,n, n € N, At; =

It is easy to calculate that an(;' is unblased estlmate of p(T):

Epra(r) = ( ZEg(ZTH)é(ZT)) Zp

Using the Isserlis formula (4.2), we obtain

Dprn(r) = E (pra(7) — p(1))* = Ept.,,. (1) — p*(7) =
nlnd (3
el 2 () ()< (e

S S [ () e () e <+T>~:
e (Ger) e (G ) e () (5) +
(5 or)e () e (2) ()] -
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n—1ln—1 . . . . . .
1 ©— )T ©— )T i — )T
LSS e (L) 1 (2224 ) (622 )]
i=0 j=0
n—1ln—1 . . . .
1 i— )T (i —j)T (i —j)T
nQZZ{ ( >+p<n+7'p — 7|
1=0 j=0
It is easy to see, that an(T) is is quadratic form of Gaussian random

vectors, therefore ¢(7) = prn(T) —p(7), T = 0 is square Gaussian stochastic
process.

Consider n = fOB (Pr.n(T) — p(1))* dr, B > 0. En can be calculated on
the following way:

SRR () (2

0 i=0 j=0
n—1n—1 . . B |n—1n-1 .

Iy YA (D) L2 ()
i=0 j=0 0 |i=0 j=0

X p ((Z_nj)T —T)] dr.

Theorem 4.2. For the estimate pr.,(T) of correlation function p(T) stati-
onary Gaussian process & the following inequalities hold

B B N
P {f (Prn(T) — p(T)dr > ijZ)\T77L(T)dT} >1—g(u)exp {2}
0

0

foru>00<z< QIHT%("),

where g(u) = rf exp {—%} (disl and

1+s2u2)4

B B 11

~ 2 ~ 2uy1
P w(T) — p(T))" dr Dprn(r)dr p < ——F——+ 4.7
{J (pT., ( ) p( )) > ybr P, ( ) } ch (\/g - §> ( )

0
fory > %
Proof. The proof is immediate by theorem 1.3, corollary 1.5 and previous
calculations. &
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Remark 4.5. Theorem 4.2 enable us to construct confidence sets for correlati-
on function of stationary Gaussian process &(t).

Let H be the hypothesis that for 0 < 7 < B the correlation function of
separable real-valued stationary Gaussian process £ equals p(7). As an esti-
mator for p(7) we choose pr,, (7). To test the hypothesis H one can use the
following criterion.

Criterion 4.2. For given level of confidence o, 0 < o < 1, we can find such
positive z, and y,, that

5(Tasu) + f(Ya) = o,
where L
2 i 1
sa.u) = glu)exp {25} u> 0, f(z) = 22
The hypothesis H is accepted if
B~
Jo (Proa(r) = p(r))* dr
B~

E [y (pra(r) = p(7))* dr

and hypothesis is rejected otherwise.

< Yo

4.3. The estimation of the correlation function of
stationary noncentered Gaussian process by using
correlograms

Assume that £ = (§(t),t € [0,T + B],0 < B < o0) is a separable real-
valued stationary Gaussian process defined on a probability space {2, B, P},
with F£(t) = m and correlation function

r(t)=EE(t+7)—m)(E&{t)—m), 7>=0.

Suppose, that we know observation of one sample path of the process.
As an estimate of correlation function p(7) we consider

rr(r) = !

= = [+ n) =) - mydr, 0<r

N

B, (48

St~

where m and m, are the estimates for process’s mean that are defined as
following

1 T
== [ €,
0
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E(t + T)dt.

Since r(7) t) —m) = E&(t + 7)E(t) — m?, then

llowing equalities are correct:

T
Em;&(t) = ! fE{(s+7)§(t)ds = jr(s—t—l—T)ds—i-mQ,
0 0

1

TT TT
Em? = —2ij£(5 + 7)¢(y + 7)dsdy = —QIJT(S — y)dsdy +m?,
00 00

Em? TszEf dsdy—Tsz (s — y)dsdy + m?.

We will use these results further. Let us calculate Erp(T).

E’I“T

N \

T
f E(t+ T)E() — ME(E+T) — M (L) + Mri) dt =
0

T
= % j [EE(t+ 1)E() — EmE(t +7) — Em £(t) + Em,m]dt =
0

TT TT
= 12jfr (s—t—7)dsdt — m? 12fjr (s—t+7)dsdt—m 2y
00 00
+1}2ffrsy+7dsdy+m =r(r 12ffrst7dsdt
00 00
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Hence, 77 (7) is biased estimate for function r(7).
Consider

| I

(1) =7p(T ﬁ jrs—t—Tdsdt

);

;:’ﬂ

Qo <

77 (7) is unbiased estimate for (1), because Err(7) = r(7).

2

| T
Drp(1) = Drp(t) = Era(T) — <r(7’) ~ T fjr(s —t— T)dsdt> )
00

We denote a(7 fo fo r(t — s+ 7)dtds. Since () is an even function,
then r(7) = r( ) Therefore
Drr (1) = Erg(r) = (r(r) — a(7))*.

Let us calculate ET2(7).
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! fr(s —u—i—T)ds) +

dS+T

JT(S—U—T)

T+
= @ @
—_ e 3
= w w
! + |
S 3 3
! _ _
T 2 2
= ~ ~

S——o

) SR S
< @ @
—_ = M
= © .
! _ +
+ ~ +~
! _ _
¥a)
T oe ¢

TIOT

— |~ —

— 5
I_I

,
/N
X Il 3 N
A A | \d/
\d) \d/ &) S
S 3 g + _
S R
@« w = =
= ¥ TR=E B
gl B
+ + = = wy
w @ , B—o |
= = T & =
| , He—o + & o
< e T u
-~
Ne—o0 Ne—o Py _ nl/_ﬂl
=N~ ,u e
S—— ~— = P
= )
, , T b0 2
—~
= = o — |~ +
= = , ~ |
N O
+ + = = <
= = T N Ne—o
, , + ! — &
+ o — ~
= N S
& ~
e ., = , 4
-~
Il X <
I

X

(s—u+7)ds+a(r)

~
Ne—o

1
T

r(s—t—7)ds —

Ne—o

= [r(t—u—kr)—q{
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T T
rt—u—r) f (s—t+7)ds— j (s—u—7)ds+a(r)| =
0 0

T
=r(t—u+rm)rt—u—7)—r(t—u+7)= j (s —t+7)ds—
0
L T
—r(t—u—|—7)fjr(s—u—T)ds—i—r(t—u—i—T)a(T)—
0

r(s—t+ 7)ds+

O;:’ﬂ

| T T
—r(t—u—T)TOfrs—t—Tds Of r(s—t—r71)d T
| T | T T
—|—T0fr(s—t—7’)dsTOjr(s—u—T)ds—a(T)TOfr(s—t—T)ds—
17 17 17
—r(t—u—r) fr(s—quT)der fr(s—u+7)dsfjr(s—t+7')d5+
0 0 0
17 17
+ J‘T(S*U+T)d8 J‘T(Sf”U,*T)dS*a(T)
0

T
fr(s —u+7)ds+
0

r(s—u—7)ds+a*(7).

O—m gy NI~

0
1 ¢ 1
+a(r)r(t—u—7)—a(r)Z [ r(s—t+7)ds —a(r)
0

2

TT
jfr(t— s+ 7)dtds
00

+ 7 +

T
+— j(T —8)[r%(s) +r(s + 1)r(s — 7)|ds—
0
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L LT
_ﬁjjf rt—s+7m)r(s—u+7)+2r(t—s)r(s—u)+
000

+7r(t—s—7)r(s —u—7)|dtdsdu+
+(r(r) —a(r)).

Hence,
s 2 N 2
Drr(1) = = ffr(t—s)dtds +ﬁ Jfr(t—s—l—r)dtds +
00 00
5 T
+ﬁj s)+r(s+7)r(s—1)ds—
0

CO —_
e—X
S

T
f t—s+7)r(s—u+7)+2r(t—s)r(s—u)+
0

+r(t—s—7)r(s—u—7)]dtdsdu.
Let us show, that 7p(7) is square Gaussian stochastic process.
Consider a partition A = {to =0t1 =2 .t = . . t,= T} of

E7 n
the segment [0,7] and replace integrals in 77 (7) by corresponding integral

sums

n—1
N 1 - N
Pra(r) = - 3 (€t +7) — ) (1) — ),
i=0
and m., with m by integral sums
1 /T
Mrn = Zf <n + T)
1=0
and )
N 1 %= [iT
= 2e ()
Then
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Hence,

ra(r) =a (T)a0),
where @(7) is the centered random vector with components ay(7), k =
0,n—1.

Obviously, that 7r(7) = Lim.,—seo?rn (7). Therefore ((7) = rr(1) —
E7p(1) is square Gaussian stochastic process.
Consider n = fOB (Fr(t) — Efp(1))* dr, 0 < B < .
B
En= [ E(Fr(r) - Bir(r)* dr =
0
A A 2 T T 2
:I T4 ffr(t—s)dtds + ffrt—s—i-T )dtds| +
0 00 00

+ Y+r(s+7)r(s—71)]ds—

OHH

2
T2
L LT
—FJJJ‘ rt—s+7m)r(s—u+7)+2r(t—s)r(s—u)+
000
+

r(t—s—7)r(s —u—7)] dtdsdu) dr

Theorem 4.3. For the estimate rr(7) of correlation function r(r) stati-
onary Gaussian process the following inequalities hold

P {j (Fr(r) — r(r)? dr > fo?T(T)dT} >1— g(u)exp {“Zx} (4.9)
0

0



foru>00<z< 21“79(),

where g(u) = \/%7 fjof exp {—%} (disl and

1+s2u2)4
B B 2%yt
P {f (Fr(r) — (7)) dr > ny?T(T)dT} < —F A (410)
0 0 ch (\6 - 5)
fory > %
Proof. The proof is immediate by theorem 1.3, corollary 1.5 and previous
calculations. &

Remark 4.6. Theorem 4.3 enable us to construct confidence sets in the space
L4 (0, B) for correlation function of stationary Gaussian process &(¢).

Let H be the hypothesis that for 0 < 7 < B the correlation function of
separable real-valued stationary Gaussian process £ with F£(t) = m equals
(7). As an estimator r(7) we choose 7 (7). To test the hypothesis H one
can use the following criterion.

Criterion 4.3. For given level of confidence a, 0 < o < 1, we can find such
positive x, and y,, that

where N
) = gl exp {252} u> 0, f(a) = S22t
The hypothesis H is accepted if
Sy @r(r) —r(r))* dr
E [ (Fr(r) —r(r))’ dr

and hypothesis is rejected otherwise.

< Ya

Remark 4.7. Since 7r,(7) - is the quadratic form of Gaussian centered
random vectors, then ((7) = 71, (7)—E7r ,(7) is square Gaussian stochastic
process for 7 > 0. Therefore, in the case when values of process £(t) are
L i =0,n—1, the criterion
4.3 can be used for testing the hypothesis about the correlation function. As
an estimate of correlation function in this case 7, (7) must be considered.

known in the points ¢; and t; + 7, where t; =
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Chapter 5
Estimation of the covariation function of

Gaussian stochastic process in the space
LP(T)vp 2 1

Estimation of spectral and covariance functions of stochastic processes
and criteria construction to identify these characteristics are the matter of
active research and topical direction in the theory of stochastic processes.
The interest to study of these problems is caused by wide application of the
obtained results, in particular for solving different problems in geology and
meteorology.

There are several methods to obtain these estimates and to construct
criteria for testing hypotheses about the covariance functions. One of these
methods is based on Bartlett’s asymptotic limit formula (see [9], Brockwell
and Davis, 1991, Chap. 7). In the papers by Coates and Diggle (1986) [24],
Shumway (2006) [122], Choi, Ombao, Ray, (2008) [23], Taheriyoun (2012)
[123] the criteria for comparison covariance functions of two stochastic
sets were constructed. The criteria in the case of the separable, symmetric
or stationary covariance function are obtained in the papers by Scaccia
and Martin (2005) [120], Park and Fuentes (2008) [108|, Fuentes (2005,
2006) [37], [38] and Lund, Bassily, and Vidakovic (2009) [95]. In the papers
by Fan, Zhang, Zhang (2001) [33] and Fan, Zhang (2004) [32] generalised
likelihood ratio test for a stationary time series was constructed. Li, Genton
and Sherman in the paper [92] proposed a methodology to evaluate the
appropriateness of several types of common assumptions on multivariate
covariance functions in the spatio-temporal context.

In this chapter another approach is used to construct criteria for testing
hypotheses about the covariance function of Gaussian stationary stochastic
process. Namely, this criterion is based on the fact, that we can evaluate the
deviation of covariance function from its estimators with a given accuracy
and reliability in L, metric. In the above-mentioned papers the limit distri-
bution of the estimates was found. Instead, we find such T for which with a
given accuracy and reliability the norm of deviation the covariance function
and its estimator will be the smallest. Therefore, it is difficult to say which
approach is the best. Probabily, we can say that the simultaneous use of the
different approaches will be the best.

Similar approaches have been used, for examples, in the papers [11],
[20], [47], [61], [80] and in the book [90], where some estimates of covari-
ance functions with given accuracy in uniform metrics were obtained. In
the papers [86] and [34] Yu. Kozachenko and T. Fedoryanych constructed
criteria for testing hypotheses about covariance function of a stationary
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Gaussian process with given reliability and accuracy in the space Ls[0, A].
To construct the criteria in this paper the estimates are used for the norm
of square Gaussian stochastic processes in the space L,[0, 4], p > 1, which
were obtained in the paper [83] by Yu. Kozachenko and V. Troshki. More
detailed information on the theory of square Gaussian random variables
can be found in the book [19] and in the paper [81]. In particular, in these
manuscripts the properties of the space of square Gaussian random vari-
ables were studied and its connection with other spaces of random variables
was identified.

In this chapter we have obtained estimates of probability of deviati-
ons p(7) from p(7) in the norm of the space L,[0,A], p > 1. In addi-
tion, this chapter deals with the construction of a criterion for testing
hypothesis about covariance function of a stationary Gaussian process in
the case of unknown mean of the process (see [84]), criteria for testing
hypotheses about the covariance functions of Gaussian stationary random
process when the values of this process are known only in a finite set of
points, criterion for testing hypotheses about the covariance functions of
Gaussian random process when available alternative hypothesis and cri-
terion for testing hypotheses about the covariance functions of Gaussian
non-stationary stochastic process. In fact, we continue studies initiated in
the paper [83].

5.1. Estimation of the norm of deviation the
covariation function from correlogram.

Consider a measurable stationary Gaussian stochastic process X which
is define for any ¢ € R. Without any loss of generality, we can assume that
X={X{),teT=[0,T+A4],0<T < 00,0< A< oc0}and EX(t)=0.
The covariance function of this process p(7) = EX(t + 7)X(t) is defined
for any 7 € R, p(7) is an even function. Let p(7) be a function that is
continuous on T.

Theorem 5.1. Let correlogram
1 T
pr) =7 jX(t +XBd0<T< A (5.1)
0

be an estimator of the covariance function p(t). Then the following inequali-
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p

ty holds for all € > (% + /(5 + l)p) Cp

A 1
P{ﬂMﬂ—wv»wT>e}<2 1+é”Y§mp{— “1},
0 Cy V207

P
2

where Cp, = JA <T22 (f(T —u)(p?(u) + plu+7)p(u — T))du) dr and 0 <

A< oo.

Remark 5.1. Since the sample paths of the process X (t) are continuous with
probability one on the set T, p(7) is a Riemann integral.

Proof. Consider

E(p(1) — p(7))* = E(p(7))* — p*(7).

From the Isserlis equality for jointly Gaussian random variables it follows
that

1

TT
E(p(7))* = p*(1) = E <T2 ij(t +7)X()X(s+ T)X(s)dtds> — p2(7)
00

e

(EX(t+7n)XHEX(s+7)X(s)+EX(t+7)X(s+7)

X
=
<
O~

rlE
Cmg O/ O/ y T C—

)X(s) +EX(t+7)X(s)EX (s + 7) X (t))dtds — p*(7)

(P*(T) + p(t — 5) + p(t — s+ 7)p(t — s — T))dtds — p*(7)

(p*(t — 8) + p(t — s+ T)p(t — s — 7))dtds

3=

(T —u)(p*(u) + p(u+7)p(u — 7))du.
We obtained that

(T —w)(p*(u) + plu+ T)p(u—7))du.  (5.2)

=
—
>
—~
q
S~—
|
)
—~
2
5
Il
N~
N
Ot
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Since p(7) — p(7) is a square Gaussian stochastic process (see Lemma 3.1,
Chapter 6 in book [19]), then it follows from the Theorem 3.4 that

; 1/ »
P{f(ﬁ(T)—p(T))pdT>€} <2 1+ﬂexp S (>
0 cy V2C)

where C), = E(p(7))? — p?(7). Applying equality (5.2) we get

Al T 2
¢, = [ (T i (T—u><p2<u>+p<u+r>p<u—r>>du> dr.

0 0

The theorem is proved. &
Denote
el/r\/2 v
g(e) =2 T CXpy — I
Cy V20y

P
From the Theorem 5.1 it follows that if € > z, = C, (L + /(5 + l)p)
then

A
P { [(o(r) = p(r))rar > } <g(e).
0

Let £5 be a solution of the equation g(e) = 4, 0 < § < 1. Put S5 =
max{es, zp }. It is obviously that g(Ss) < § and

A
P{ﬂmﬂ—mﬂwh>&}<d (5.3)

0

Let H be the hypothesis that the covariance function of a measurable
real-valued stationary Gaussian stochastic process X (t) equals p(7) for 0 <
7 < A. From the Theorem 5.1 and (5.3) it follows that to test the hypothesis
H one can use the following criterion.

Criterion 5.1. For a given level of confidence § the hypothesis H is accepted

if
A

[(p(r) = p(r))?dp(r) < S5
0
otherwise hypothesis is rejected.

Remark 5.2. The equation g(e) = § has a solution for any ¢ > 0, since g(¢)
is a monotonically decreasing function. We can find the solution of equation
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using numerical methods.

Remark 5.53. One can easily see that Criterion 5.1 can be used if C}, — 0 as
T — oo.

Next theorem contain assumptions under which C,, tend to zero as T' —
0.
Theorem 5.2. Let p(7) be covariance function of centered stationary stochastic
process. Let p(T) be continuous function. If p(T) — 0 as T — oo then
A

T
Cp — 0 as T — oo, where C, = [(¢(T,7))P/2dt and Y(T,7) = 72 [(T —
0 0

u)(p?(u) + p(u+7)p(u — 7))du, A >0, T > 0.
T
Proof. (T, 1) < 2 [(p*(u) + p(u + T)p(u — 7))du < 4p*(0). Now it is
0
sufficiently to prove that ¥(T,7) — 0 as T' — oo. From the L’Hopital’s rule
it follows that

T
lim ¢(T,7) = lim % j(pz(u) +pu+71)p(u—7))du =

T— o0 T— 00 o
= lim (p*(T) + p(T +7)p(T — 7)) = 0.

The application of Lebesgue’s dominated convergence theorem completes
the proof. o

Here are examples in which we find the estimates for Cp.
Example 5.1. Let H be the hypothesis that the covariance function of a
centered measurable stationary Gaussian stochastic process equals p(7) =
Bexp{—a| 7|}, where B > 0 and a > 0.

To test the hypothesis H one can use the Criterion 5.1 by selecting
pr(7) which is defined in (5.1) as the estimator of the function p(7). Let
0 < A < oo. We shall find the value of the following expression

T T
1= [(1 =) (e720n 4 eeltrlemalirl) gy = [ Tem20ud
0 0
T T T
+ Tje—a\u+7|e—a\u—7\du _ jue—Zaudu _ fue—a\u+7|e—a|u—r|du
0 0 0

=L+ 1L+ 13+ 14
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For the similar calculations as in the example, we obtain that

P A /2
2B 2 T —2art T 1 —2aT ? _
Cp < <T2> Of ((TT + 2@) e 4 oo+ e dr =

p TP/2
2
Tp

2 1
* s,

= (2B) Tr/2

Is = (2B)

A
where Is = [ (7 + &) e207 4 L 4 L e=2T) "2 g
0

Example 5.2. Let H be the hypothesis that the covariance function of a a
centered measurable stationary Gaussian stochastic process equals p(7) =
Bexp{—a| 7 |*}, where B > 0 and a > 0.

Similarly as in the previous example to test the hypothesis H one can
use the Criterion 5.1 by selecting pr(7), which is defined in (5.1) as the
estimator of the function p(7). Let 0 < A < co. We shall find the value of
the following expression

T T
1= I(T —u) (672““2 + efa‘“JrT‘?e*“l“*TF) du = IT672a“2du
0

T T T
_ 2 2 -~ 2 - 2 2
+TI6 alu+T| e alu—T| du—jue 2au du—jue alu+| e alu—T| du
0 0 0

=L+ L+ I+,

For the similar calculations as in the example, we get that

2 A /2
2B\ ® VT VT o2\ \ 1
< (= T ar = (2B)2 —— I,
e <T2> J( (2\/2a+2\/2a€ )) S

A p/2
where Ig = ( i + i 6_2‘”2) dr.
Of 2v2a 2v2a

vl

Lemma 5.1. Let X be a stationary Gaussian stochastic process with the
spectral density f()\) and covariance function

o0

p(T)::.r cos AT f(A)dA.

— 00
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Let f(\) be a differentiated function and

Af(A) = 0,as\ — oo,

oo

[1rolax < oo,

0
[ I < oo
0

Then, to test the hypothesis about the covariance function can be used the

Criterion 5.1 and

T

L= { [ Dof VF () ldrdy;
00

5=IIMMMWWM%

Proof. Since the function p(7) is an even function, then
o0

p(7) = f cos AT F(N)d\ = QTcos)n'f()\)dA.
0

— 00

Using Theorem 5.1 we obtain

P

2

A T
C><J<§Jw%m+pw+7mw—7»m>(h:

A T /oo o0
= f (;{ f (J cos )\uf(A)d)\jCOSWUf(V)dW‘f‘
b 0

0 0

o0

cos Au + 7) F(A)dA f cosy(u — 7) f(v)dy
0

+

OHg

>du> -

)47

a2 (1
< - p/2+1 _ op/2+2) yP/2 _
C,,\( > dp<p(2(A+2) ) 2 A ( (22

P
2
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Consider the next integral

o 0 .
—fbm/\uf/(/\)d/\:

o U

’ n
fcos Auf(N)dA = F() 8”; Y
0

0
sm@u j sin A\u / ML (5.4)

0

From the properties of definite integral it follows that
T 1 T
[ PAydu = [ pP(u)du+ [ p*(u)du
0 0 0

1
Consider |[ p?(u)du|. It is known that for any § > 0 and u > 0
0

sin Ou

<.
U

From (5.4) and from properties of definite integral, we obtain the following
inequalities

w)du

. 0 .
J‘ <f(9) sw;@u B f smu/\uf/(/\)d/\> »

0

) f sin ’
. (Wi‘f“ o (7)d7> | <

X
0

; sinfu esm)\u / sinbu gsin u
< [ FO= = [ =228 0 [F0) == — [ == ()dy | du <
0 ; 0 sinfu 0 sin \u
<Oj<|f<9>| - +‘j - f(A)dA) x

sinfu

x (If(ﬁ)

6 .
sinyu
+|Of " f(v)dy

)dug
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1 0 0
< j (If(9)9|+ | |Af’<A>|dA> <|f<e>9|+j|vf’<v>|dw> du =
= <f )0 +f|Af |dA> <|f 9|+fhf Id7>~

Now if 8 — oo, then

fp Ydu

From the similar considerations as in the previous case, we find that

fﬂ2 ()l f ( sm@u f sin )\u )

1 0

—>f|Af IdAflvf )|d.

. 0 .
o (f(ﬂ) sinfu J~ Smfﬂtf(fy)d’y) dul <

X
u

T 6 o,
< ju2< + [ <A>|dx) <|f<e>+ [1f (v)ld’y) du

0 0

If § — oo, then
T Tdu oo 0

2 ’ ’ o
1fp (w)du| — J@J\f <A>|dxoj|f (Mldy =

~(1-7) :flf |dAj 7 ()l

T 00 cO 00 00
[ < [ [ar 0f i (1= 3 ) [ 1 05 Gl
0 00 00
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T
We estimate [ p(u+7)p(u—7)du. To do this, write it in the following form
0

T T+1 T
fﬂ(u +7)p(u —7)du = f p(u+T)p(u — 7)du + f p(u+7)p(u — 7)du.
0 T+1
Consider
T+1

u+T u+T

T+1 . 0 .
j <f(9) sinf(u+71) j sin A(u + 7) f,()\)d)\> y

<

. 0 .
" <f(9) sinf(u — 1) B f siny(u — 1) f/ (’y)ah) du
0

uU—=7 u—T

T7+1

I<|f 9|+f|/\f d/\> (f 9\+f|7f Idv>

0
Hence, if § — oo

T+1

[ plu+)p(u—7)du

— (1 +1) [ IAf (N)]dA f v f (3)ld.
0

Consider the second term

| plut m)p(u— 7)du

T+1
j <f(6) sinf(u+71) f sin A(u + 7) f/()\)d)\> y

u+T u+T

. 0 .
» <f(0)szn9(u —7) 3 f siny(u — 1) f/ (’y)d7> du
0

<
uU—T U—T
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0 0

< J“qujﬁ%;:;q <119N-FJWfYANdA> <u19>4-11f%v»d{)du-ﬁ
T+1

0 0

T
du
o j |dAj|f )|dv,0 — oo.
T+1
Since 7 < T, then
L du 1 u—1||" 1 T-—71 T+1—17
J‘ ﬁ:?hl :27 In T — In 1 =
T_Hu —T T u+T _— T + 7 T+ 147
1 (T—-7)27+1)
:—1 —_— <]..
o7 n‘ (T +7)
This means that
T
fp(u—i—T)p(u—T <(t+1) ff\)\'yf ~¥)|dAdy+
0
+ff|f 7)ldAdy.
Denote e
L= [ [af WF (3)ldrdy;
00
L= [ [1fNf ()drdy
00
Then

4 p/2 A 1 /2
C, < <T> f<11+<1—) 12+(T+1)11+12> dr =
0

) o))

For any non-negative a, b and p > 0 the following inequality holds

(a+b)P < dyp(aP +bP),
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where
d 1, mpm0<p<l,
LA 3 mpu p > 1.
From the last inequality we have that
A

Cp < (;)M d,,oj (((T + o)) + ((2 - T) 12>p/2> dr =
_ (;)pﬂ . (113 (2<A+2)p/2+1 _ 2p/2+2) 244 ((2 B ;) 12>p/2> |

It is easy to see that C, — 0 if T" — oo. Then, from the Remark 5.3 it
follows that for test the hypothesis about the covariance function can be
used the Criterion 5.1. &

5.2. Estimates of covariance functions of Gaussian
stationary stochastic process in L,(7') when its
value is known only in a finite set of points

Usually in practice the value of the process are observed at the certain
times. And based on this data, you need to make conclusions about the
behavior of the process that was considered. Therefore, we estimate the
covariance function of Gaussian stationary stochastic process when we know
the value of this process at the certain times, whose number is finite.

Let X ={X(t),teT=[0,T+ A],0<T <00,0<A<o0}, EX(t)=0
be a measurable real-valued Gaussian stationary stochastic process with the
covariance function

p(T)=EX(t+7)X(t), 0<7<A,

and defined on the probability space {Q, B, P}.
As an estimator of the covariance function p(7) we choose

Prn(r) = Z_g (t; +7)X ZX(ZT T>X<inT>,(5.5)

where X (¢;) and X (¢; + 7) are independent, known values of the random
process, t; = %,izO,l,...m, neN, At; ==
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Remark 5.4. Since,

moai =2 (155 (5 +0) 5 (5)) = B o -

then pr.,(7) is unbiased estimate for p(7).

Theorem 5.3. Let X be measurable real-valued Gaussian stationary stochastic
process with known values at the certain times t; = ‘L, i = 0,1,...,n

n’?

n € N. Let EX(t) = 0 and p(7) be the covariance function of this process
and let

holds, then

A
{j PT, n|T

0
Proof. Consider

E(pr.n(7) = p(7))* = E(pr.n(7))* = p*(7).

From the Isserlis equality (see book [19]) for jointly Gaussian random vari-
ables it follows that

Ean( ) =
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E
vox (L) x () ex ( i
—lenZMZI {p2(7)+p2 <<i_nj T) +p< Z_nj>T+r ((Z_J)T )} =

Namely,

E(pr(r) — p(7))* = % nini [”2 <(Z_nj)T) -

i=0 j=0

(C0T ) (€07 )]. o

Since pr.,(7) is a quadratic form of Gaussian vectors, then by Lemma 3.1,
Chapter 6 in book [19] we have that pr,(7) — p(7), 7 > 0 is a square
Gaussian stochastic process. From Theorem 3.4 follows that

4 1/p »
P{flﬁT,nv)—p(T)wdu(T)>e}<2 LA C S
0 cy Vacy

Applying equality (5.6) we obtain
A fn—1n-1 . .
_ 1 o (i =4)T
a-w [ (SE(55)

(S ()

The theorem is proved. &
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Denote

gl/p\/i ep
T— exp | — T
ch vacy
P
From the Theorem 5.3 it follows that ife > z, = C, (\% ++/(5+ 1)p> ,

then M
P { [ ()~ pr)par > } < 9(e)
0
0

Let €5 be a solution of the equation g(¢) = J, where 0 < § < 1. Put
Ss = max{es, 2 }. Then it is obvious that g(Ss) < ¢ and

A
P {j P (7) — p(7)PdT > 55} <6 (5.7)

Let H be the hypothesis that the covariance function of a measurable
real-valued stationary Gaussian stochastic process X equals to p(7) if 0 <
T < A. As a estimation of the p(7) we choose pr (7). From the Theorem 5.3
it follows that to test the hypothesis H one can use the following criterion.
Criterion 5.2. For a given level of confidence § the hypothesis H is accepted
if

[P0 (7) = p(7)[Pdp(T) < S5

S

otherwise hypothesis is rejected.

Remark 5.5. By using this criteria the error of the first kind does not exceed

d.

5.3. Estimates for covariance function of a stationary
Gaussian process in the norm of the space L,[0, 4]
with unknown mean

Let us consider a continuous real stationary Gaussian stochastic process
X defined on a probability space {2, B, P},

X={X(t),teT=[0,T+A,0<A<T < o0}
and EX (t) = m. We denote the covariance function of this process by

p(r)=EX@{+7)—m)(X({¥)—m), T€ER. (5.8)
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Also we use the following denotation:

r(r) = = jjp(s —t — 7)dsdt. (5.9)
00

We choose as an estimate of the covariance function p(7) the statistics p(7)
defined in (5.1).

Remark 5.6. Since the process X is a continuous one, then the right part
in (5.9) contains Riemann integral.

Remark 5.7. Since

T
0
T
- % [((BX(t+7)X(t) — BanX (t 4 7) — Bin X (1) + Briviny) dt =
0

T T
1
2
=p(7) +m” — T20fof X(t+ 7)dtds—

1
T2 EX(s+ 7)X(t)dtds +

SN
O~
OHH

T
I (s+ 7)X(t)dsdt =
0

1 TT | TT
= 2ffps t—7)dsdt—m? QIIPS t4-71)dsdt —m?+
00 00

1
T2

1

2

O;:’ﬂ

T
jp s—t+7)dsdt+m?* = p(T
0

O;:H

jp s—t—T)dsdt = p(1)—7r(T),
0

then 5(7) is a biased estimate for p(7) and the bias is equal to r(7). However,
the statistics p(7) = p(7)+r(7) is an unbiased estimate. Moreover, variances
of the estimates p(7) and p(7) are equal.

Theorem 5.4. Let X(t) be a measurable stationary Gaussian process with
EX(t) = m and the covariance function p(T). Suppose that for 0 < A <T
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and p > 1 the condition C(p,T) < oo holds, where

A TT
C(p,T)—j(l fjpt—s )dtds
00

T
+ o5 [(T = 8)[p*(s) + p(s + 7)pls — 7))ds—

2
+

2

+T1

TT
jjpt—s-i—T)dtds
00

1TTT
— =5 | | [ ot = s+ P)p(s = ut 1) + 2p(t = )p(s — u)+
000

+ p(t—s—71)p(s —u—71)] dtdsdu) dr. (5.10)

Then for )
p p
e> (ﬁ+ (2+1)p) Clp,T)

the following inequality holds true:

p7- 51/17[ - 5%
{j|p 7)|Pd >6}<2”1+C1’(pT) p{ \/EC}J(p,T)}'

Proof. At first, we shall calculate
Dj(1) = Ep*(r) — (p(7) — r(7))*. (5.11)
In order to do that we consider Ep?(7):
L LT
(jj t 4 7) — i) (X (1) — 1)
00
X (X (u+7) — 1) (X (u) —m)dtdu) =
— [ [ B+ ) =) (X () = )B4 ) — 1) (X () — 1)+
0

0
+E(X(t47) — ) (X (u+ 7) — 1y )B(X (t) — ) (X (u) — )+
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+ E(X(t+7) — i) (X (u) — m)E(X (t) — m) (X (u+7) — 1h,)] dtdu =
T T

12 ff [ + I + I3] dtdu.
00

Let’s calculate each of the integrals above separately:

I =E(X(t+7) — m.) (X () — )B(X (u+7) —1i0,) (X (1) — 1) =
= (EX(t+ 1)X(t) — EmX(t + 7) — Eriv, X (t) + Eriurn, ) x
x (BX (u+ 7)X (1) — BEmX (u+7) — Eri, X (1) + Ern, ) =

Now let’s calculate I:

L=EX@{t+71)—1m)(X(u+7)—m)EX(#) —m)(X(u) —m)=
= (EX(t+7)X(u+7)—EnX(t+7)— Efn,X(u+7)+ En?) x
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X (BX(6)X (u) — EmX (1) - EmX( ) + Enm?) =
T

l(ﬂ(tu)JrT(O) ( fpsftds ;Ip(su)ds>]x
0

xl(p(tu ( Of s—t)ds + ;Of (s —u)d )1

= (p(t — u) +r(0))* — 2p(t — u) <1Jps—tds j 3—uds>—
0

0
| T T
—2r(0 < ijs—tds Toj s—u)ds)

Nl

2

+ [(ilf ij(s - t)ds) + 2% ij(s - t)ds% ij(s —u)ds+

+ ( p(s—u)ds) ] .

I3 = B(X(t +7) — 17 ) (X (u) = m)E(X(8) —m)(X(u+7) —1ir) =
— (EX(t+7)X (u) — EmX(t + 7) — Brn, X (u) + Enurie, ) x
X (EX()X (u+7)—Em,X(t)— EmX(u+7)+ Emmn,) =

N~
i

For I3 we have the following:

X

= p(t—u+T)—lfp(s—t—T)ds—ljp(s—u—i—T)ds—}—r(T)

xl t—u—r1) jps—t—i—Tds——fps—u—T)ds—i—r()

1

:p(t—u—l—r)p(t—u—T)—p(t—u—i—T)T p(s —t+7)ds—

SN
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—pt—u+7) p(s—u—7)ds+ p(t —u+71)r(1)—

N =
Oty

T T
1
—p(t—u—T)TJ (s—t—T)ds+ j (s—t—7)d Tf (s —t+7)ds+
0 0 0
1 1 L T
+T0fp(s—t—7)d8T0fp(8—u—T s — (T Toj p(s —t—7)ds—
T T T
p(t —u— TTI s—u+T)ds+ f s—u+7)d Tfp(s—t—l—r)ds—!—
0 0 0
1 ¢ T | T
+f0jp(sfu+r>ds OIP(S*U*T)dS*T(T)Tofp(sfqur)dsqL

+r(m)pt—u—7)—r(7) p(s—t+7)ds—r(T) p(S*U*T)d.S#*T'Q(T).

N~
oty N[ =

N~
SN

That is, we have that

Ep*(1) = (p(1) = r(r)” +72(0) + (1) +

[0 (t — w)dtdu + p(t — u+7)p(t — u — 7)dtdu] —

. T
|
0
+pt—s+7)plt—u—7)—plt—s+7)plt—u+7)+pt—u+7)p(s—u—7)+
+ot—u—T)p(s—u+7)— p(t—u—T)p(s—u—i—T)]dsdtdu:

TT T T 2
ffpt—sdtds fjpt—s—i—ﬁ'dtds
00 00

2 (T = 8)[62(5) + pls + 7)ol — lds—

1
e

SN
SN

’ﬂ

O~

T
f2ps—t t—u)+plt—s—1)p(t—s+7)+
0

1
T

+

3

+
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1
T3

SN
O~

T
J (t—s+7)p(s—u+7)+2p(t—98)p(s —u)+
0

+ p(t — s — 7)p(s — u — 7)] dtdsdu + (p(7) — r(7))%.
Then from (5.11) follows

T T 2
f fp(t — s)dtds
00

+7

2

+

T T
ffptfer 7)dtds
00

) + pls + T)pls — 7))ds—

ﬂ‘m
O;:'ﬂ

1

73 plt—s+T7)p(s—u+7)+2p(t —s)p(s —u)+

OH’%
O;:‘ﬂ

T
of
+ p(t —s—7)p(s —u—7)]dtdsdu. (5.12)

If in the definitions of the variables p(7), m and 7, we substitute the
integrals by corresponding integral sums, that is

pulr) =~ 3 <X(ti v -2 S X(ti+ ﬂ) (X(t,») -2 3 X(ti)> ,
=0 =0 =0

where {t;} is a partition of the interval [0, T'], then it is easy to see that p(7)
is a mean square limit of the p, (7). Therefore from the Definition 1.6 and
Lemma 3.1, Chapter 6 in book [19] follows that for each 7 > 0, the variable
(1) —Ep(7) is a square Gaussian random variable. Then from the Theorem
3.4 we have that for 0 < A < oo the following estimate is true:

1/p4/2 >
{f|ﬁ |pdr>6}<2 1—|—€1\fexp{ ip }
Cv(p,T) V2C» (p,T)
From definition of the value C(p,T') (see Theorem 3.4) and from formula
(5.12) follows the expression (5.10) for C(p, T). &

Corollary 5.1. Let the conditions of the theorem 5.4 hold. Then for
p p 1/
uz | —=+4/(z+1)p | C/P(p,T),
( 7 (5 )p> (», T)
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where C(p,T) was defined in (5.10), the following inequality holds:

1/p
5( T)|Pdr U 71“/5 exp{ ——
O'p d) B R e p{ ﬁcé(p,ﬂ}'

Theorem 5.5. Let X be a measurable stationary Gaussian process with
EX(t) = m and with covariance function defined in (5.8). Also, let C(p,T)
be such as defined in (5.10). Then for

A 1/p
£> (f IT(T)pdT> + <\% + (g + 1) p) CYP(p,T),
0

where A is an arbitrary number and r(7) is defined in (5.9), the following
inequality holds:

A 1/p
P (j |ﬁ<7>—p<7>|pd7> >er <

1/2 Y
A p
€= (f IT(T)I”dT>
exp{ — 0

C¥ (p, T) V2C7 (p,T)

Proof. 1t is easy to see that the following inequalities hold true:

A 1/p A 1/p
< J 1) —p<T>|PdT> = ( J 1) = Bir) —r<7>|pd7> <
0 0
A 1/p A 1/p
< ( J1p(m) Eﬁ(rﬂpdr) (jr |pdr> .
0 0
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For any € > 0 we have that

Now, if we choose

A 1/p
€2 (f IT(T)pdT> + (\% + (g + 1) p) CYP(p,T),
0

where C(p,T) was defined in (5.12), then form the corollary 5.1 we get the

assertion of the this theorem .

2

Let H be the hypothesis, which says that under 0 < 7 < A the covariance

function of a real valued measurable stationary Gaussian process X

with

unknown mean is equal to p(7). As an estimate for p(7) we shall take (7).

Let’s define

= 76\6 expl -
g(E)_Q\/lJrC%(p,T) p{ ﬂC;(p,T)}'

Then from the theorem 5.5 follows that if

A 1/p
— P P p 1/p
£z = <Of|r(r)| d7'> +<\/§+ (2+1)p)0/ (p,T),

1/p A 1/p
(j A(7) |pdT> >e (j r(r |PdT>
0

1/p
A
Let 5 be a solution of the equation g [ € — (I |r(7')|pd7>
0

then

where 0 < 6 < 1.

Remark 5.8. Let’s define D(u) = 2v/ 1+ \/iuexp{—%}. Then D(0) =
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and for w > 0, D(u) is monotonically decreasing to zero, therefore the
equation D(u) = 4 has only one solution, which we shall denote as us. The

1/p 1/p
equation g | € — <f |r (T |pdr> = ¢ for e > (I |r (T |pd7'> can be

written as
A 1/p
€— <f |T(T)|pd7'>
D . )
C»(p,T)
A 1/p
Thus, this equation has the only solution €5 = U5C’ T)+ (f |r (T |pd7’> .
0
Let’s choose Ss = max{es, z,}. Then it is evident that ¢g(Ss) < ¢ and

1/p
<j|ﬁ |pd7> > S5 5 <0 (5.13)

Then for testing the hypothesis H we can use the following criterion.
Criterion 5.3. For a given confidence level ¢ the hypothesis H is accepted

if
1/p
(f 1(r) |Pd7> < S

otherwise, the hypothesis is rejected.

Remark 5.9. In this criterion, the type I error (or error of the first kind)
does not exceed J. Since in this paper we do not consider an alternative
hypothesis, then we do not estimate the type II error here. But we would
like to note that in the case, when neither r(T, 1), nor C(p,T) tend to zero
under T" — oo, the type II error can not be made arbitrarily small. We
plan to consider similar criterion with different alternative hypotheses and
to study its asymptotic properties in the next paper.

Example 5.3. Let’s consider the hypothesis that the covariance function
of a stochastic process is the following:

o =(1+3)
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where a > 0, v > 0 are known numbers. We restrict ourselves to the case,
which is the most frequently used in meteorological studies, that is

a2

= 5.14
o) = (514)
and we estimate each of the integrals in the definition of the value C(p,T).

We have that

T T TT
1= [ [ p(t = s)dtds = jfa2+ s =
00 00
A A T-—s S
af (arctg —i— arctg— ) ds < af < arctg‘ + ’arcth ds < waT.
a a
0 0
Due to the similar considerations we obtain an estimate for the next integral:
T T T
T
= ij(t — s+ 7)dtds = af (arctgH + rctg) ds <
a
00 0

T—s—|—7"
arctg———| +
a

T
T—5
§af( aTcth ds < maT.
. a
In the paper [83], it was shown that if a covariance function p(7) is conti-
nuous one, then

Is = I(T — s)(pQ(s) +p(s+7)p(s —7))ds < 4Tp2(0).
0

Since now we are considering continuous covariance function, then the esti-
mate given above holds in our case too.
Taking into account estimates for the integrals I; — Iy and the fact that
Dp(r) > 0 we get an estimate for C(p, T):
2(ra)*  4%(0)]""
T2 T

Cp,T) < A (5.15)
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Let’s now estimate the value of r(7). Due to the similar considerations as
in the case of estimating I>, we get that:

5 T T

a dsdt mal  wa
= — < = —. 5.16
r(r) Tzojofa2+(st7')2 72 T (5.16)

From the inequalities (5.15) and (5.16) follows that C(p,T) — 0 and r(7) —
0 as T — oo. This means that for testing the hypothesis about covariance

function, given in (5.14),we can use the Criterion 5.3.

5.4. A criterion for testing hypotheses about the
covariance function of a stationary Gaussian
stochastic process when the alternative hypothesis
is available

In the previous sections were formulated the criteria for testing hypotheses
about the covariance function of Gaussian stationary stochastic process.
Namely were proposed the hypotheses which we accepted when the certain
conditions holds and otherwise the hypotheses were rejected. In additional,
in this subsection we consider the problem of testing hypotheses about the
covariance function of a stationary Gaussian stochastic process when the
alternative hypothesis is available.

Let X ={X(t),teT=[0,T+A],0<T <00,0< A< o0}, EX(t)=0
be a measurable real-valued Gaussian stationary stochastic process with the
covariance function

p(T)=EX(t+7)X(), 0<7<A,

and defined on the probability space {Q2, B, P}.

We suppose that H; is the hypothesis, which consists in the fact that if
0 < 7 < A then the covariance function of real-valued Gaussian stationary
stochastic process X equals to p;(7). As a estimation of the covariance
function we choose the correlogram p(7) that is defined in (3.8). Let there
exist an alternative hypothesis Hy which consists in the fact that if 0 < 7 <
A then the covariance function of real-valued Gaussian stationary stochastic
process X equals to p2(7). We assume that pi(7) > p2(7).

Let 5 be a solution of the equation g(¢) = 4 for a given 0 < § < 1,
where
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P
From Theorem 3.4 we have that if condition e > z, = C, (% + /(5 + 1)p>
holds, then

A
P {j p(r) = p(r)Pdr > } <g(e)-
0

Denote S5 = max{es, zp }-

Criterion 5.4. For a given level of confidence § the hypothesis H; about
that the covariance function of Gaussian stationary stochastic process equals
to p1(7) is accepted if

|[p(T) — p1(7)|PdrT < Ss. (5.17)

O

The hypothesis Hy about that the covariance function of Gaussian stati-
onary stochastic process equals to pa(7) is accepted if

A
jm(T) — po(7)|Pdr < S. (5.18)
0

If both of the inequalities (5.17) and (5.18) hold true or not true, none of
the inequalities, then the main and the alternative hypotheses are rejected.
This is means that for the application of this criterion are not enough data.
It needs to increase the upper limit of the interval, calculate all constants
and check whether the mentioned inequalities hold true.

5.5. A criterion for testing hypotheses about the
covariance function of non-stationary Gaussian
random process

In all previous section of this chapter were considered Gaussian stati-
onary random processes. Based on the estimates that were obtained in the
section 1.6 we can prove theorem that is similar to the previous cases and
with it help formulate a criteria for testing hypotheses about the covariance
function of non-stationary Gaussian stochastic process.

Consider measurable real-valued Gaussian non-stationary stochastic process
X ={X{),teT=1[0,T],0<T < oo}, EX(t) = 0 with the covariance
function

p(t,s) =EX(t)X(s), 0<t<T, 0<s<T,
and defined on the probability space {2, B, P}.
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As an estimator of the covariance function p(t¢, s) we choose

1 N
=~ ZX(ti)X(si), (5.19)

where X;(t), X;(s), ¢ = 1,..., N are observed independent trajectories of
the process X.

Remark 5.10. Since,

Ep,(t, 8 < ZX ) = %Zp(t’s) = p(tv5)7

then p,(t, s) is unbiased estimate for p(t, s).

Theorem 5.6. Let X be a measurable real-valued non-stationary Gaussian
stochastic process, X;(t), 0 <t < T and X;(s),0<s<T,i= 1,2,...,N
are observed independent trajectories of the process X. Let EX(t) = 0,
p(t, s) be a covariance function of this process and

| LT
:mjf o(s,s) + p2(t, ))pdtds.
00

If condition

2
holds, then
T 1/p\/9 i
{jj Bult, s) — plt, s))Pdtds >5} < ;[exp L
00 cy V207

Proof. Consider

E(Dn(t,s) = p(t,))* = B(pu(t,5))* — p*(t, s).

From the Isserlis equality for jointly Gaussian random variables it follows

Ep2(t, s) <N2 ZZX X, (8) X», (5)> -

i=1 k=1
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+ EX, (1) Xi (s) EXy (5) X; (1)) = p2(t,8)+

N N

EX, (t) X, (s) = { p(g 0, “plﬂjk
then )
Ep,(t,s) = p*(t:5) + 7 (ot t)p(s,8) + p*(t, 5)) -
Hence
E(pn(t,s) — p(t, s))* = % (p(t,t)p(s,s) + p°(t,s)) . (5.20)
%

From the values of p, (¢, s), p(t, s), Definition 1.6 and Lemma 3.1, Chapter
6 in book [19] it follows that for all t,s € T p,(t,s) — p(t,s) is a square
Gaussian stochastic process. From Theorem 3.4 follows that

T T
{jf p(t s)|pdtd8>5} <2
00

Applying equality (5.20) we obtain

, IT
pjj p(s,s) + p2(t, ))pdtds.
00

Denote

1/p4/2 l
g(e) =2 14—6 I\fexp{— gpl}.

P
From the Theorem 5.6 it follows that if € > z, = C), (% + /(5 + l)p) ,
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then

{ff| Pn t $)|pdtd8 > E} < g(g),
0

Let £5 be a solution of the equation g(e¢) = 4, where 0 < § < 1. Put
Ss = max{es, z, }. Then it is obvious that g(S5) < d and

T T
P {Ojb[ B o, s)[Pdtds > e} < 6. (5.21)

Let H be the hypothesis that the covariance function of a measurable
real-valued non-stationary Gaussian stochastic process X equals to p(t, s)
if0<t<T,0< s <T. As a estimation of the p(t,s) we choose p,(t, s).
From the Theorem 5.6 it follows that to test the hypothesis one can use the
following criterion.

Criterion 5.5. For a given level of confidence § the hypothesis H is accepted
if

|Pn(t,s) — p(t, s)[Pdtds < S5

o O
O%ﬂ

otherwise hypothesis is rejected.

Remark 5.11. By using this criteria the error of the first kind does not
exceed 0.
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Chapter 6
Square Gaussian stochastic processes defined
on R,

Orlicz space, considered in the first chapter, contains a wide class of
random variables and processes. An important role among them occupy
square Gaussian random variables and processes. This is the class we use
for the estimation of correlation function of Gaussian stochastic process.
Square Gaussian random processes were first introduced by Ryzhov Yu.M.
and were investigated by Kozachenko Yu.V., Moklyachuk O.M.,Oleshko T.,
Stadnik A.

This chapter is devoted to investigation Square Gaussian stochastic pro-
cesses defined on R™. The problem of estimation for distribution of supremu-
ma for such processes is considered. Obtained inequalities are applied for
investigation of stationary in wide sense square Gaussian stochastic processes.
For the real-valued stationary Gaussian stochastic process the estimations
for correlogram deviation from correlation function in uniform metric are
obtained and criterion for testing of hypothesis about correlation function
of Gaussian stationary stochastic processes is constructed.

Using both, criterion constructed in previous chapter and criterion which
was constructed in this chapter, enable us significantly reduce the probabi-
lity of the second type’s error.

6.1. The estimations for distribution of supremuma
Square Gaussian stochastic processes

Let {Q, B, P} be a common probability space, U(z) = el*l — 1.

Suppose that function Ry (s), —A; < s < A2, A1 > 0, A3 > 0 (is possible
that A; = oo and A2 = 00) is continuous and such that R;(0) = 1 and R;(s)
increases monotonically with s > 0 and decreases monotonically with s < 0.

Suppose also that Rs(s), |s| < A, A > 0 (is possible that A = o0) is
even function, such, that R2(0) = 1 and Rz (s) increases monotonically with
s> 0.
Definition 6.1. [52] Will say that stochastic process X = {X (t),t € T},
where T is some parametric set from the space Ly (Q), U(z) = el*l — 1,
belongs to the class O(Ry, Ra), if in space Ly (€2) exist such norm ((-)), that
the following conditions hold true:

1) one can found such constants K; and Ko, that for all ¢t € T,u € T,
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we will have
K[| X (@) < ((X(2))) < K[ X (@),
Kol X (1) = X(u)[| < ((X(t) — X (u))) < K[| X(¢) — X(u)]],

where || - || is Luxemburg norm in the space Ly (),

2) for —A; < s < Ay,t € T we have
X
FEexp {s

3) for |s| < A,t,u € T we have

X(t) - X .
EeXp{s«X(t) X(s)))} < Ra(s),

=
|

sup  ((X(t) = X(s))) < o(h),

m(t,s)<h
where o = {o(h), h > 0}, is continuous monotone increasing function,
c(0) =0 and o(h) —> 0 for h — 0, m(t, s) is a metric in the space
(T, m).

Lemma 6.1. [52] Square Gaussian stochastic process X = {X(t),t € T}
belongs to the class O(R, R), where

5]

R(s) = exp {2

1
(X)) = V2(BIX(1)]*)2,
1
(X(1) = X(s))) = V2(B((X () — X(s))*)=.
Let (T, m) be a compact metric space with metrics m and let X =
{X(t),t € T} be separable square-Gaussian stochastic process.
Suppose, that exist continuous function ¢ = {o(h),h > 0}, strictly

monotone increasing such that o(h) — 0 for h — 0 and the following
inequality holds

sup  (E(X (1) = X(s))*)? < o(h).

m(t,s)<h,t,seT
Remark 6.1. If process X (t) is continuous in Lo—norm, then the function

o(h)=  sup  (E(X(t) = X(s))*)?,

m(t,s)<h,t,seT
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has this property if it is continuous and strictly monotone increasing.

We introduce the following notation:

e £ = inf supmf(t,s),
teT gc

[N

o 5 =sup (E|X(t)]*)*,
teT

e o(=D(h)-inverse to o(u) function,
o 1y = (7(80),

e N(e)-the smallest number of closed balls of radius e, which cover
(T, m),

e r(u) >0, u > 1 is monotone increasing function, r(u) — oo
for u — oo, such, that r(et) is convex function for ¢ > 0.

Theorem 6.1. If the condition

[ (NI @))dv < o,
0

holds, then for all real p, 0 < p < 1, and u such that

0< <1—p . {1 1}
u< —=min<{ —, —
V2 0o to

we have the inequality

Eexp{u§g¥|X(t)}<2<R<u1\{2(;0>> 7 <R<u1\{2;0>> :

1 top
xr(=1 | — f r(N(e"D(w)))dv |, (6.1)
top 4
where ;
R(z) = (1—2)7%exp{—§}, (6.2)
0<z<1
Proof. The proof of the theorem follows from lemma 4.1 [59] if M =1, At =
1. O
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Corollary 6.1. Let the conditions of theorem 6.1 hold and
zo = max(dp,to). Then for 0 < p < 1 and for all

0<u< izl
u

202

inequality
top
2 1
Eexp {usup|X(t)} <2R M e e IT(N(U(il)(”)))dU :
teT 1-p top 0
(6.3)

holds.

Proof. Since the function R(z) is monotone increasing for 0 < z < 1, then
corollary follows from the theorem 6.1. &

Let (T, m)-be separable finite dimensional metric space. Suppose, that
space (T, m) can be represented as a countable union of compact sets By,
k =1,2,..., namely T = [J;-, By. Consider a separable square Gaussian
stochastic process X = {X(¢),t € T}.

Assume the existence of such continuous strictly monotone increasing
functions oy, = {ox(h),h > 0}, that ox(h) — 0 when h — 0, for which
the next inequalities hold

sup  (B(X() — X(s5))%)2 < an(h).
m(t,s)<h,t,s€By

We denote
e gor = inf sup m(t,s),
Ok tE By SEBPk ( )
1/2
® Joi = sup (E|X(t)\2) / ;
teBy

(=1

e o, “’-inverse to o}, function
o lor = ok(cok),
o 2o, = max(dok, tok),

e Nj(u) - the smallest number of closed balls of radius u, which cover
Bka

e r(u) >0, u > 1 - monotone increasing function, r(u) — oo for
u — 00, such, that function r(e') is convex for ¢ > 0.
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From the theorem 6.1 the next theorem follows.
Theorem 6.2. If for all k condition
tok
r(Ni(ol (v)))dv < oo,
0
holds, then for all real p, 0 < p < 1 and u such, that
O<u< \/l’ mln{ﬁ7 é} inequality

Eexp {utseué)k X(t)|} <2 <R (ufi(;k)) 7 (R <u1\[_2t;k>>

tokp
1

(=D ( | T(Nk(a,g‘”(v)))dv> : (6.4)

tokp
is true, where R(z) defined in (6.2), 0 < z < 1.

Theorem 6.3. Let ¢(t), t € T be continuous function and 0 < c(t) <1 for
allt € T. We denote v, = sup;cp, |c(t)|. If for 0 < p <1 conditions

1) d=3"7" 1 Yezok < 00,

2) T r(Ni(oy Y (v))dv < o,

JYEZok
d

9) T2 (r0 (G 7 vVl @))dv) ) T < o

hold, then for all 0 < u < 111;\/2 inequality

Eexp {ufg |c(t)X(t)} <2R (

) tokp (<1)
><H<r< ><t0kp Oj r(Ny (o (v)))dv)) , (6.5)

is true, where R(s) = exp {—%} (1—|s|)~2, |s| < 1.
Proof. Obviously, that

sup [c(t) X ()] < sup sup |e(t)[[X ()| = Z% sup | X (2)].
teT k teBy teBy
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Then for u >0

Eexp{ufgyc(t) (t >|} EeXp{uZ% sup [ X (¢ >|} (6.6)

k=1 €8k

Will choose zo, = max (o, tor ). Since R(z) is monotone increasing function
for 0 < z < 1, then from theorem 6.2 and corollary 6.1 for all k£ and

Eexp {u sup X(t)|} < 2R (@) r1 (1 j r(Nk(g](cl)(U)))m)) .

tEBy,

Assume that {g;} is such sequence, that ¢, > 1,k =1,2,...and > =, +
1.
From (6.6), (6.7) and Holder inequality [19] follows, that for u > 0 for

which all inequalities 0 < uyrqr < Wﬁ k=1,2,... hold, we have

Eexp {ufgg le(t) X (1)] } E H exp {uvk sup | X (¢ )I} <

k=1

o'} 1/ak
< I1 (pew {unar s x}) ™ <

_ te By

torn 1/Qk
. U%(Jk\[ZOk 1 1
2R r [ — [ (Vi (0))dv =
patiet -p Lokp

0

1/q
U%Qk\@%k * %
1-p

00 tokp 1/qx
_ 1 (-1)
x |7[ (M 1) (t%p Oj (N (ol (v)))dv)) .

Last inequality holds for all u, for wich inequalities

Il
|\,':]8
H:jé%

1-— 1
O<u<-—L_ -
V2 ZokVkGk
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hold for all £k =1,2,.... We denote d = Z,?;l Y20k and choose ¢ = d

Y20k
(qk>1 Zzolqik=1)
Than for 0 < u < f L the following conditions hold true

R (u(Jk'Vk:ZOk\/E) —R( df)
1—p N 1—

and )
ﬁ R <UQk“YlkZOk\/§)) " _
k=1 -p
D
=(R[u = U
1-p 1-p
Since

k=1
we will have
dv/2
Eexp {u sup |c(t)X(t)} < 2R (u f) X
teT I—p

for

Theorem 6.4. If the conditions of the theorem 6.8 hold, than for an arbi-
trary x > 0 and 0 < p < 1 the following inequality holds

P{jglc(t)x(t) > x} < 2exp{ x(;f )} (1 + fx(; - )>1/25(p),

where

Tk Zok
d
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Proof. From the theorem 6.3 and Chebyshev inequality follows, that for
r>0and 0 <u< f we will obtain

E exp{usup |c(t) X (t)|}

S teT
P {:EIT) le(t) X (t)] > JU} < oxpluz] <
< 2R <(Ud\/;)> exp{—uz}®(p) =

udv/2 udv/2 ~
=2 <1 = )> exp{—m_p)}exp{—uaj}@(p).

Let us denote D = %. Then

P {sup le(®) X ()] > $} < Z(u, z)®(p),

teT

for0<u< —})7 where
— _ -1/2 _u
Z(u,xz) =2(1 —uD) exp 5 (D+2z)¢.

It is easy to verify, that for 0 < u < % infinum of this function is achieved

in the point v = L — < 7 Therefore,

D D+2w
—1/2
z D
£ Z(u) =2exp{- 7} .
0<11?< | Z(u,x) =2exp D (D " 2m)
The last equality proves the theorem. &

6.2. Stationary square Gaussian stochastic processes.

Let X = {X(t),t > 0} be a stationary in the wide sense square Gaussian
stochastic process and let for all ¢,s > 0,

(B(X(t) — X(5)%)? =5(|t — s])

be true.
Assume that o (|t — s|) < o(|t — s|), where 0 = {o(u),u > 0} is stri-
ctly monotone increasing continuous function, o(u) — 0 for v — 0 and
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lim o(u) = ¢, < co. Since
U—>r 00

1/2 1/2 1/2
(B(X(t) —X(5))?) 7" < (BX(0)*) "+ (B(X(s)?) ",

then ¢, = 2 (E(X(t))2)1/2.

Let A = {to,t1,..-,tk,...}, k = 1,2,... be such partition of R, that
to =0, tg—1 < tg, txy —tx—1 = 1 and t, — oo for k — oo and let ¢(t) > 0
be some continuous function, that 0 < ¢(t) < 1.

Let us denote By = [tg—1,tx), kK =1,2,..., v% = sup |c(t)].

te By,
As before, we denote

e g0 = inf sup mf(t,s),
tE By sEBy,

1/2

)

e dpr = sup (E|X(t)\2)
tEBy

o tor, = o(eok),
o zor, = max(dok, tok),

e Ni(u) - the smallest number of closed balls of radius u, which cover
Bk7

e r(u) > 0, u > 1- monotone increasing function, r(u) — oo for
u —> o0, such, that function r(e') is convex for ¢ > 0.

We will use this denotation throughout this section.

Lemma 6.2. Let X = {X(¢),t > 0} be a stationary separable square
Gaussian stochastic processes.
If the following conditions hold

1) ZZ‘;I Vi < o,
2) S ol vk In(ty — ty—1) < oo,

3) for some a >0 and any € >0

€

oD (u _au 0
Oj( () du <o,
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then for0 <p <1l and 0 <u< (11;\/123 inequality

dv/?2
Eexp {u sup |c(t)X(t)} <2Rr (Y V2 X
teR+ 1-p
1/«
1 ) 1 ptok te — th 1 @
- 1 — 14+ ———] d <
K ];’Ykzmc ' (ptOk oj ( i 20(1)(”)) !
udv/2 1 & 1 B
<2R (1 —p) exp {d kZ:l'YkZOk {ln(tk —th—1) + > InR (p)] }

holds true, where
d= ZZL YEZ0k

1
# tok R
R (p) = b { (ptlﬂk 0 (1 + 2g<—11>(u)) d”) } :

Proof. Lemma follows from the theorem 6.3. We put r(v) = v, v > 0,
a > 0. In this case T =R, m(t, s) = |t — s|. Since By = [tx_1, tx], then

by — tk—1
N, < —+1
k() 2u +

and

1 plok (1) 1 ptok te — by
L (o (D) < 2 (1 Bt )
Plok Ojr( elox (u)) ) du ptok Ojr +2cr(—1)(u) "

(for stationary process ox(u) = o(u), k=1,2,...).
Since for x > 1 and y > 0 the inequality

l+azy<z(l+y)

holds and taking into account that r(v) = v®, @ > 0 is an increasing functi-
on, we have

(g < (0 (o)) -

= (b — tp 1) (1 + M)a
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Then

Thus,

t 1/«
1 [e'e] 1 Plok 1 tk o tk—l « d
= - In | [ — e <
exp d;’YkZok n plor Oj < +20(—1)(v)) v
ptok

1 & 1 1 @ \°
< exp p Yizok In | (ty — te—1) (m Oj (1+M> dv) =

k=1
=e 1 E In(ty —tr—1)+
=ex 20k
PV VeZok IN(Tk — Tp—1

1 9] : 1 plok X 1 ad Ny
+a];7k20kn ]Fozc Of < +20(_1)(U)) v ) (_g

Since zgr < ¢o, then

Z'YkZOk CJZW < 00,

and

oo oo
Z’ykZOk In(ty — ti—1) < ¢ Z Vi In(ty — tr—1) < 0.
k=1 k=1

1 ¢ «
S () e

Fore >0
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because
—«
( (= 1) ) dv < o0,

o;m

6.8) is convergent.

u) = %jo (1 + m)a dv and denote
Flv) = <1+m) ,a> 0.

therefore all integrals in

/—\A

Consider a function z

Q\'—‘

1 ¢ 1 1 r
’ _ L _ -
Y(w) = —= [ fw)dv+ - f(w) u( [ )
0 0
Function f(v) decreases for v > 0 and « > 0, therefore - fo v)dv >
f(u), that is 2’(u) < 0, and therefore, z(u) - decreases.
eok = 1, tox = ox(eor) = o(eox) = o(1), this means R* exist, moreover,

1 po (1) 1 a
R*(p) < 1+ —+~+—| dv.
®) < o) f ( " 2a<—1><v>> °
Therefore
1 Plok 1 @
R*(p) =sup{ — 1+ dv y <
(®) kp{pt(]k ( 201 )) }
Then .
1 plok 1 Iy o
1 14+ ——) d =
Z'YkZOk n (pt()k Of ( + 20(_1)(0)) v
1 o0
= ElnR*(p) Z'ykzo;c lnR* CUZ’}% < 0.
k=1
Therefore,

Eexp {u sup |c(t)X(t)} < 2R (Zd\/]f> X

teRt

exp {2 i'YkZOk [ln(tk —th—1) + éln R*(P)} } .

k=1
Theorem 6.5. Let X = {X(t),t > 0} be a stationary separable square
Gaussian stochastic processes and let the following conditions hold
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1) Zz‘;l fYk < oo,
2) ey veln(ty — tp_1) < oo,

3) for some o > 0 and for any € > 0

( V@) "
Oj( ) du < oo.

Then for an arbitrary x > 0 and 0 < p < 1 the following inequality holds
true

{1001 2} <200 {2020 (1, YEHLD)

1/2
x%l(p) < Qexp{_x(l_p)} (1 + W) 52(]))7

dv2
where -

dZZ’YkZOk,

k=1
1/«
~ 1 %) 1 plok e — th1
(0] = - | —_— 1 d
W)= ey ;WO’“ ! (pt% Of ( +2a<1><v>> ’

5 (p) = exp {;Z ViZok |:1n(tk —tp-1) + éln R (p)] } ; (6.10)

k=1

1 ptok 1 « é
R*(p) = — 1+ —— | d
(p) szp <ptok _0[ ( +2a(—1)(v)) v)

Proof. The proof follows from lemma 6.2 and Chebyshev inequality. &

Example 6.1. Let X = {X(¢),t € T} be a stationary square Gaussian
stochastic processes and assume also, that o(v) < cwl v>0¢>0 <1
ta o(v) < ¢4

Consider ¢(t) = m, t > 0,y > 2. Let us verify, that conditions
of the theorem 6.5 hold for 0 < o < /3 in this case and let us estimate the

183



probabilities

P{ sup |e(t) X ()] > x}

teR+
Will choose the points ¢ in this way:
th=e"l—e k=0,1,...,
th—thg=efle—1)>1,k=1,2,....
1) ¢(t) > 0 is monotone decreasing function, therefore

1 1

Y= max c¢(t) =c(tg-1) = =—, k=12,...

t€[tr—1,tx] (In(e+ek—e))” k7
Hence,
Z%—Z (tx-1) Z*<°O
k=1

this means that condltlon 1) of the theorem 6.5 holds.
2)

i’Ykln(tk_tkl iln (e—1)) \Zk—i—l
k=1

k=1

i.e. condition 2) of the theorem 6.5 holds.
Let us verify that condition 3) of the theorem 6.5 holds true.

Since o(v) < cv?, v > 0, then ¢~V (v) > (%)l/ﬁ. Whereas

a<l
a 2 /B N\
(s oo 25

g a/B /B &
gf(l—i—c)dv:e—i—c Iv_?dv<oo,
0

2aya/B 2ua J
for o < B, we have that condition 3) holds also.

Let us estimate ®;(p) from the theorem 6.5.
Since tor, = o(eor) = 0 (%) , than for v < g
tr — ti—
oV w) < oD (tor) = %,

namely
tp — tk—1 S 1

20(-D(v) =
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Hence,

ptok t — te o ptok b — th o
14 k=l g < kT k=l
| (1+ aig) @ I (se0t) @

ptok 1 « ptok g
= (tk — tk—l) f (0'(_1)(1})> dv < (tk — tk—l) J‘ (f dv =
— Cﬁ(tk _¢ _1)(y (p Ok) _
1= B
Therefore Y
1 ptok te — th1 o «
—_— 14+ —+— d <
(ptOk of ( + 20(—1)(1))) v
< B (ty — ty—1)(ptor) "5 _ 2
=~ 1/ - 1/a”
(1-3) /7 (1-3)
From the last inequality and (6.9) follows
~ 1 & 2 2
Q1(p) <expyq 5 Z'Ykzok In < i/a =14
iz 1/86(1- 2 /e 1/8(1_ a /o
- p ] p B

From previous inequality for o — 0, we will have

So, from the theorem 6.5 for z > 0, 0 < p < 1 we have estimates

P{sup ()X ()] > x} s exp{””“ ‘p)} <1 | V2 -p)

pi/B

dv2

teRTt

d

>1/2
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2ok = max{a (%) ,50k}, and dor = sup (E|X(t)\2)1/2 = o,
tEB}.

because the process is stationary and o (@) < Cq.
Suppose that ¢, < dg. Then zor = dg and

d= Z%Z% = 502 ki“/
k=1 k=1

Put p= dmﬁ. Then for z > dv/2 we will obtain

P{E@ |c(t)X(t)|>x} <4el+éexp{ df} (6 ) (df)é,
P x> o) <ow {221 (2] e,
where C(8) = 4v/2¢! 77 .

Lemma 6.3. Let X = {X(t),t > 0} be a stationary separable square
Gaussian stochastic process.
If the following conditions hold

or

Nl

1) E;ozl Te < 00,
2) 22021 Yk ln(tk — tkfl) < o0

3) for some a > 1 and for any e >0

Of(ln <1+M))adu<oo,

then for0 <p <1l and 0 <u< [11;\/% inequality

Eexp {u sup |c(t)X(t)} <2R (t{d\/j> X

teR+

2l-3 &
exp{ > wzor It — th-1))+

k=1
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1 ptok 1 @ s
— In{l4+ ——-— d <
+<pt0k J (( +2a<l><v>>> )

udv/2 2l-3 | & ~
< —
< 2R ( = p) exp { y kzﬂvkzOk (ln(tk ti—1) + R(p) )
holds true, where
d= Zi‘;l VEZ0k

) (2 5 (1 )00}

Q=

Proof. Consider r(v) = (Inv)*, a > 1, v > 1. Whereas
r(ry) = (Inz +Iny)* <227 ((Inz)* + (Iny)*),

we will obtaine

1 Ptok 1 Ptok ¢ ¢
— j r(Np (oY (0))dv < — j r (1 + ka) dv
o .

N

20(=1)(v)

1 Plok 1
< — t —t 14+ ————— dv <
plo OJT(( h ’“)< +2o*<—1>(v))> ’

ga—1 Plok 1 a
< — ) - -
< Do Of [(ln(t;H_l te))® + (ln (1 + 20(_1)(1)))) ] dv

1 plok 1 @
=201 (1 ol B L R ey ront '
[( n(tgr1 —tr))" + plor ) < n < + 20(_1)(11))) dU]

. _ 1
since for our case In7(~1)(z) = 2=, then

k=1
1
1 0o 1 plok 1) a
= = — Ny (o1 d <
exp d;%z(m o J r(Ng(o (v)))dv
2% &
< exp ] ;%201@ [(In(ty — tr—1))*+
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1 ptok 1 o o
— m(l1+——)) d <
" ptor f (“( +Qo<l><v>>) ]

21_L o0
<exp { 7 Z%Zok In(ty —tp—1)+
k=1

+ ( j (i (HM))“CM)

|~

@

Function
1 «@
1= (in(1+ 5,555
decreases for v > 0, therefore z(u) = %fou f(v)dv also decreases for u > 0.
Denote

R(p) = mz?x{ptl()k pjk <1n <1 + M))adv} < 0.

Using (6.5) we obtain

Eexp {utzlég |c(t)X(t)} < 2R (zd:/i) X
X exp { Ql;i L:ol Y20k (ln(t;C —tr—1) + (E(p)) é)] } .

Theorem 6.6. Let X = {X(t),t > 0} be a stationary separable square
Gaussian stochastic process.
If the following conditions hold

1) Zz‘;l Wk < o0,
2) Y pey eln(ty —tp_1) < oo,

3) for some a > 1 and any e > 0

(1 ) e

188



then for arbitrary x > 0, 0 < p < 1 inequality

{01 ) <20 {HUZD (1 VB0 0)

teR+ dv2
(1-p) 20(1-p)\ "’
x P < 2e _ 14— iiJ
1(0) < 2000 { - 202 }( ! ) )

holds true where -

d227k20k7
k=1
1—1L oo

Yezok In(ty — th—1)+
=1

1
1 plok 1 «@ o
—_ In{l+ ——+— d
! <pt0k of (n( " 20(1)(”))) ! ’

1

4 (p) = exp { Zl;i [i Yk Z0k (ln(tk —tp-1) + (E(p)) )] } .

k=1

R(p) = mgx{ <pt10k p;[ (m (1 + M))adv> } .

Proof. The proof follows from lemma 6.3 and Chebyshev inequality. &

KN
w
=
N~—
I
]
>
ko)
—
[\
S
ol

6.3. The estimates for correlogram deviation from
correlation function of stationary Gaussian
stochastic process in uniform metric

Assume that & = {£(¢),t > 0} is a real-valued continuous in mean
square stationary Gaussian stochastic process with E¢(t) = 0 and correlati-
on function p(7) = EE(t + 7)&(1).

Consider correlogram

T
jg(t + 7)) dt.
0

as an estimate of correlation function p(7). pr(7) is unbiased estimate of

p(7): Epr(r) = p(7).
Let the process £(t) have a square integrable spectral density f = {f()\), A €
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R} (f € La(R)), that is
+oo
f FA(N)dA < oo.

oo
By the definition of spectral density, the function f is Lebesque integrable

(f € L1(R)). In this case correlation function p(7) of stochastic process is
square integrable, namely ||p[|3 = [*°° p?(r)dr < 0.

Let us denote X(T,7) = pr(r) — p(7). As before, X(T,7) is square
Gaussian stochastic process. Let us estimate E(X (T, 7))? and E(X(T,7) —
X(Tl , Tl))2 .

Assume that space (T, m) is defined as follows

T={T,7):A<T<o0,a<7<b0<a<bA>0},
m((Tl,’Tl),(TQ,TQ)) = max {‘Tl _TQ‘,‘Tl —T2|}.

(T1,71),(T2,m2)€ET
Lemma 6.4. If the condition

+oo
[ F20)dx < 0. (6.11)
holds true, then

sup E(X(T,7))* = ==,
(T, 7)eT T

where C1 = (1 + \/§)||p||§

Proof. By the Isserlis formula [19] and by the well-known formula

e

ffts dtds—zf — ) f(u)du
0

for the even function f, we will get
E(X(T,7))* = Ep*(r) — (Ep(1))* =
T
2 2
= = | (@ =)0’ () + plu— T)p(u+ 7))du.
0
From the condition p € Ly(R) and fact that p(7) is "even"follows, that

+oo

f ()du—2fp u)du < oo.

0
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Then ( 7 > 0 for definiteness)

oo 1
Ip(u—r)p(u—kr (fp u—T) )

0

+o00 % +oo % +o0 % +oo 2
= (I p2(v)dv> (I p2(v)dv> < (I p%v)dv) (f p2(v)dv> =
—r T —o0 0

—\fj v)dv < 00,

(S
7N
%
)
o
IS
+
2
QU
N——
[N
Il

and we will get

2+2v2 (7 1+ V2)lel3
f P (u)du = —r

E(X(T,7)* < =

0
Consider a partition of the space T: T = Uzozl By, where
B, ={(T,7): Tp <T < Tpy1, a<7<b},

T, < Tiy1, Tk+1 T, >1,T, — o0 if Kk — o0.
Lemma 6.5. Assume that condition

j F2(N) (In(1 + [A]))** dX < oo. (6.12)

holds for a > 0. Then

sup (E (X(T,7) — X(Tl,ﬁ))2) < or(h),
(T,7),(T1,71)€Br,m((T,7),(T1,m1))<h
where .
or(h) = i —, C' > 0 is an arbitrary constant,

F=["rr0n (1n (e +C'A‘)) A,
Co=sr [F(1n (e +1%5)) "+ 1172 | + 200l

6T %11 Tk2+1) Thpr — Ty < < 1 ))a
x |1+ + In{e*+ ——— . 6.13
( Ty T; Ty Tyr — T (6.13)
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Proof. Consider (T,7) and (T7,7') with Bj, and suppose that T < T".

E(X(T,7) - X(T',7))" =

L LT
jf [0*(t—5)+ p(t — s —T)p(t — s+ 7)] dids
00

T T
2
*’?EJIV@fsm@fs+rfT>+p@fs+7mafsffﬂﬁ@+
00
2 TT1
—z | It = 9)pt = s+ 7= 7") 4 plt = s+ T)plt — s — )] dids| +
00
1 T 7
g [ [P 8) 4ot s+ )plt = 5 — )] deds—
00
1 TT
7EIJ‘[pz(ti5>+p(t*5+7—,)p(t*5*7,)]dtds =1+ A+ A
00

Let us estimate Ay, As Ta I.

TT
2
1:ﬁjj (t—s)p(t—s+7—7)+plt—s+7)p(t—s—7")]dtds—
0

(e}
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T T
‘TT/”[P(t—8>p(t—8+f—f’>+p(t—s+7>p(t—s—r’>]dtds =
00

\V]

o T
- ﬁjj[p(t_5>P(t—s+T—T’)+p(t—s+r)p(t—s—f’)}dtds_
00
_%ff[P(t—S)p(t—S-i-T—T’)—l—p(t—s—&—T)p(t—s—T’)]dtds—i—
00
+rﬁ2Ofoj[P(t_S)P(t—S-FT—T/)+p(t—s+7)p(t—s—7’)]dtds—
, T
_TT,_O[OI[P(t—S)P(t—S-FT—T/)+p(t—s+7)p(t—s—r')]dtds <
o T'T
< T2:’IOJ[P(t—S)p(t—S—l—T—T’)+p(t_s+7)p<t_8_7_/)]dtd8 n
" (1?2_T2T/>OJOI[P(t—S)P(t—SJrT—T'H
+p(t —s+7)p(t — s — 7')] dtds| <
o |T/ /T T 3
< T f(jpz(t_s)dtJPQ(t—5+T—T’)dt> ds+
T \0 0

1
2

T /T T
+f (j P2t —s+ T)dtfpz(t -s—- T/)dt> ds
T 0 0

2 2N\ |r(TF " ’
+ (2‘) pPE(t—s)dt | p*(t —s+7—7)dt | ds+
o) [\

+

Nl

T T T’
+f(fp2(ts+r)dtfp2(t57’)dt) ds|| <
0 0 0
“+oo

T j p*(u)du =

— 00

4 +oo 9 9
/ 2
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AT+ T)|T — T a2 20 [T = T]
= S loll3 < 4ol

Ty T2
In a similar way, we obtain

3
—
—
<
—

—

|

&

+
R
<

|
w
+
\]
=
|
»
|
\]

QL
Py
IS
i

(=)
[}

T T
1
+77 [ [ [o2@ = 5)+ p(t = s+ 7)p(t — 5 — )] dtds—
00
o
—jf [0*(t—s)+ p(t —s+7")p(t — s — 7')] dtds| <
00
|T’ T (. T+T T |T’ 7|
<23 A A st
2Th41 T2,
1 —= .
<+ Tk " T

We use the following lemma, proven in [19].

Lemma A. Let Y7(7) = VT (pr(7) — p(7)),

7> 0. For any T' > 0 and
7,71 = 0 the inequality

E|Yr(r) — Yr(m) SWlI f2(\) sin? Tl)

———2d\| +
N1 —T :
sl [ [ £ <<21’>dA]
holds, where ||f[|3 = fjooj F2(\)dA < o0.
For our case from lemma [19], we will get
_ 12 < ™)
E(X(T,7) - X(T,7) f 20 sin2 22— g
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e ,
Hifll2 | [ £200) sin® A(T;T)dA] (6.14)

[N
N——

Since the inequality [73]

e} «
n| < (e £ )
v In(e® + v)

holds for all u > 0, v > 0 and « > 0, then

)y
e )

where C' > 0 is an arbitrary constant, and (6.14) can be rewritten as

g
I< = 7Lf()\) In (e +— d)\(ln(ea+7_cﬂ>)2a+

sl @j 720 (m (e + 02”))2 dA) e +1|T—C~|))a

From the inequality (6.12) follows that

“+oo 2
f: j 2N (ln (e“JrCQ/\')) d)\ < 0.

Then _
I< ¢ o
a C
T (e + %))

where

_ . c o\ ® -

Cy =87 [f (ln(eo‘+b>> +||f||2f2].

—a
Hence,
oA * |
B(X(T,7) - X(T',7))? < < NS |
c T2
7 (tn (e + 57))
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* 67 T2
O = 2fpll3 (1+ G2 + ).

Whereas
su h(ln(e"—kl))a—(T —T)(ln(ea—i—l))a
h<Tk+Il)*Tk h ht g Tk-‘rl - Tk ’
then
i
sup (B @) -X(1,)*)" <oulh),
(T,7) (T, 7")€Br,m(((T,7),(T",7"))<h
where L
cz
Uk(h) = 71 ! o
T (n(e”+F))"
_ A w Do 1 —Tp a 1 “
Cy = Cy+ OBl (n (e 4 L)) o
As before, we denote
e gor, = inf su m ((Ty, 1), (1o, T :max{M,b_a},
o (T1,71)€EBk (Tz,rz)PéBk (( ' 1) ( : 2)) 2 2
9 1 C%
e dop = sup (E(X(T,T)) )2 = =1,
(T,7)EBy, T2

. a,(c_l)(v) - inverse to o (h) function,

oo { ()"} - el

Q

)

e tor = ok (o),
e N (e)-the smallest number of closed balls of radius e, which cover By,

e r(u) >0, u > 1 is monotone increasing function, r(u) — oo
for u — oo, such, that function r(e?) is convex for ¢t > 0.
Since C is an arbitrary constant, then let us choose for simplicity C' =
\/m, and put Tx41 — Tk > b — a for our partition.
Lemma 6.6. Assume that X (T,7) = pp(7)—p(7), c = {c(T),T € [4;4+00)}
is some continuous function with 0 < ¢(T) < 1. Let us denote

Yk = MAXT [Ty Th11] e(T).
If conditions
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1) Z;é“;l Yok (Tht1 — Tk) < 00,
2) [T F200) (In(1 + [A])** dA < o0, > 2

hold, then for 0 <p <1l and0<u< Cll;\/g the next inequality

Eexp {u sup |e(T)X (T, T)} < 2R (?d_\/j> X

(T,7)eT

1 o0
X exp {d ; Yezok (Thq1 — Ty) +
holds true, where

d= 2;011 Vk20k;
D _ [e% 2\/b—a
P= Sllip (ln (e + THer)) .

Proof. Let us put 7(v) = (Inv)f, v >e, 1 < f < $. For our case

r(zy) = (Inz +Iny)f <2771 ((hliE)f + (lny)f)

Dy Tt — Tk b—a
Mok S <2a,i‘”<v> “) (205;%) “) -
(Tig1 — Tr) (b — a)

(@)

and

<

)

for v < tgx. Then

s | ot < | St g,
i g (o)
< ]%Ok pj)kr <(b_ UL)(?;H —Tk) exp {2 (%)i > dv =
_ ]%Ok pjk <ln b~ a)(?jl mEL <U§;k>i>fdv <
<2/t (ln (b_a)(g“jl _T’“))f - pi; (%j) Ikv—fdv -
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C? 1 2f

f fk 1-2f
. —aTory —T 9 2!
_9f-1 <1n(b a)(Tr11 k)) LCQ (ptor)
Ty ptok o

L _2f
_ of-1 <ln (b —a)(Ths1 — Tk))f n 205" (ptor) =

Cc? £ _ 2
e 1-73
Since
CE
tor = ox(cok) : 2 T
77 (n (e + 7257 ))
then
1 ptok (1)
— r(Ng(op 7 (v)))dv <
iy | T @)
chf T£ (hl (ea + 2vb—a ))f
¢ k Tro1—T,
< 9f—1 (In(Ts1 *Tk))f +— - 2 . k+1— Tk o
Tyepe (1 - %) cy
;
2/ 2vb—a o
=2/ | (I (Thpy — 1)) + ———— (m(eour)) ,
(nTiesr = 1) pE (1 - %) Tyyr — Tk
1< f<3.

In our case Inr(~1)(2) = z%, therefore, if f converge to one, we will get

<=

I
@
»
ol
—
Nk
2
=
ISHIEN]
(=]
=
VR
H‘H
OH
=
z
Q/\
|
=
=
<
~
VAN

k=1
2 2v/b —
o ()
p% (1 . ﬂ) f k+1 k
> 2P
< exp Z"Ykzok ln Tk+1 Tk) + ﬂ s (616)
di p={t—%
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where P = Sllip (ln (eo‘ + Til Ib:%k )) )
The proof of the theorem follows from (6.5) and the last inequality. <

Theorem 6.7. Assume that X(T,7) = pr(r) — p(1), ¢ = {c(T),T €
[A;+00)} is some continuous function and 0 < ¢(T') < 1.
Let us denote v, = maxre(r,;1,.,,) ¢(T)-

If the next conditions hold

1) 3702 ezok n(Thyr — Ti) < o0,
2) [T £200) (In(1 + [A])** dA < o0, a > 2,

than for arbitrary x > d/2 inequality

Pq sup |e(M)X(T,7)] >z <
(T,7)eT

x 2P x g V2 %~
éQeexp{—dﬁ—i- (1_%) (dﬁ) }(d) P5,

holds, where
d= ZI?-O:1 Yk 20k

pP= sup (ln (e“ + Ti; lb:;k )) ,
k

d5 = exp {é ey Yezok (L1 — Tk)} .

Proof. We will easily get our inequality, if we put p = dT‘/i (x > dv?2) in
(6.16) and use Chebyshev inequality and theorem 6.4. Indeed,

. _z(1-p)
P{(T?E)ETM(T)X(T,T) > x} < 2exp{ NG }x

2exp{d\m/§ <1d;/§>} <1+$;l/§<1d\f>>2x
2P z a
xexp{(_i)<d\/§) }<
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Q

Je)s

Theorem 6.8. Assume that X(T,7) = pr(7) — p(7) and let ¢(T) = %
be the function defined for all’T > €™, where m - some fixed number , m > 4
and 2 < B < 7.

If for some o > 2 the next condition holds

< 2eexp {—d\x/i + (12_]35) <d\z/§)

=

+oo
[ £200 (n(1 4 [A)* dA < o0,

then for arbitrary x > dv/2 inequality

P4 sup |e(M)X(T,7)] >z <
(T,7)eT

< 2eexp{—df/§ + Dy (df/i)g} (mfyD

holds, where

1
d = Cypez E?ﬂma -
Cy is known constant, which is determined through Ci and Cy :

C=(vDlol3
Co = 7 (i (e 555)) "+ 11272 | + 200l + 6+ €2)

x(e—1) (ln (e‘”‘ + ﬁ))av

a 2vb—a [eS) 1
2 (ln (6 + em(e—l))) Zk:l W
D, = 2 ) D = exp )
1-2)
Proof. Theorem follows from the previous one. Function
¢(T) > 0 is monotone increasing function with 8 < “‘TT Since g > 2, then

we choose for simplicity A = €™, m > 4. Let us verify if conditions of the
theory 6.7 is done and let us find the estimations for distribution

S ket TR
k=1 tm+k+1)P

T,7)eT

P{( sup |c¢(T)X(T,7)| > x}

200



Let us choose the points T} of partition in the following way:

T =e™tF k=1,2,.... In this case Ty — Tp = e™ ¥ (e — 1) > 1.
T2 em+2k+1
k+1
:CT = = 5 k:1,2,...,
Vi ( k+1) (1HTk+1) (m+k+ 1)5
; c
C C 0
2ok = max{dox, tor} = max { —, — 2 T 0= o
2 5 2/ b— e 2
Tk Ty (hl (ea + Thy1— ’;k))

where

1
Co =max<{ C7,

(o (e + 255))”
Ca = |7 (i (e 55)) 4 15127 | + 200l + 6+ )

x(e—1) (ln <e°‘ + m))a

Thus,
d227k20k200622m<007 apu B>1,
k=1 k=1
oo 00 1
1
Z'Ykzok In(Tyy1 — Tk) < Cpe2 ; m < oo, for f>2

k=1
i.e. condition 1) of the theorem 6.7 is done.

Let us estimate <I>5 and P.

- > > oret T
o5 = eXP{ E Yezok In(Thq1 — Tk)} < GXP{ kool ( +kJ1rl)ﬁ : )
Zk:l (m+k+1)P

k=1
P =max ( In eaJr”;a =(In ea+M .
k>m ekle—1) em(e—1)
Therefore,
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x x & xﬁ €
< 2ee ———+ D, | —= —_— D,
eXp{ dv2 <d\/§> }(d)
where

feY 2v/b—a ') 1
Da:Q(ln(e +6m(6_1))>’ D:exp{Zkzl(nH»kW}.

(1-2)

Theorem 6.8 enable us to construct criterion for testing of hypothesis about
correlation function of stochastic process.

K1 kDR
k=1 (m+k+1)#

6.4. Construction of the criterion for testing
hypotheses about the covariance functions of
stationary Gaussian stochastic process

Assume thaté = {£(¢),t > 0} is a real-valued continuous in mean square
stationary Gaussian stochastic process with spectral density f(\), F£(t) =0
and correlation function p(7) = E£(t + 7)&(t), a < 7 < b.

As an estimate of p(7) we consider pr(r) = %fng(t + 7)&(t)dt and we
assume, that T' > €™ (m > 4).

Let H be the hypothesis that for a < 7 < b the correlation function of
stochastic process £(t) equals p(7). To test the hypothesis H one can use
the following criterion.

Criterion 6.1. For some level of confidence v, 0 < v < 1, one can find
such z., that

— Ly Ly - x'y\/?% _
A(xﬂ,)Qeexp{erDa (m) }( d ) D =~,

where a > 2 is such, that fj:oo 2 (n(1 +|A))? < oo,
1voo
d = Coe? N3, iy

Cy is known constant, which is determined through C; and Cs,

2 (ln (ea + 62 g:a )) S
D, = V) p= exp{ k=1 Gr kTP } :

(1-2)

> bt GTETTP
k=1 (m+k+1)7

2<p <.
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The hypothesis H is accepted if for T' > e™

T
Sup ———=|pr(7) —pl7)| < T
S0 o) o) <
and hypothesis is rejected otherwise.

Remark 6.2. Note, that this criterion can be used for large enough T (for
simplicity we consider T' > e™, where m > 4), and the probability of the
first type’s error does not exceed 7y in this case. Using both, criterion 6.1
and criterion which was constructed earlier, enable us significantly reduce
the probability of the second type’s error.
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Chapter 7
Estimation of correlation function of
homogeneous and isotropic Gaussian random

field.

In the previous chapters, the problem of estimation of correlation functi-
on of Gaussian stochastic process was considered. In this chapter we wi-
Il consider the similar problem for Gaussian random field. Estimates of
the correlation functions of random fields were considered in the works of
Dychovychnyj A.A. [27], Rakhimov G.M. [116], Revenko A.O. [117]. In the
work of Dychovychnyj, for example, a random field is considered on a ball
and on a cube in R™.

In this chapter homogeneous and isotropic mean-square continuous Gaussi-
an random field £(z) defined in R™ with E¢(x) = 0 is considered. The
spherical correlogram of random field is chosen as estimator of correlation
function. For this field the inequalities for distribution of spherical mean
deviation from its correlation function in Lo-metric are obtained. Based
on these inequalities the new criterion for testing of hypotheses about its
correlation function is constructed. Random field is observed on the ball in
R™.

7.1. The estimates for distribution of spherical mean
deviation from its correlation function in L,-metric

Assume that £(z) is homogeneous in wide sense random field defined in
R" (suppose that E£(x) = 0). It means that E|£(z)]? < +oo and E&(7)E(y)
depends only on the distance |« — y| between = and y. This implies that

B(z,y) = E§(x)¢(y) = B(|lz — yl).
Definition 7.1. [141] Let SO(n) be a group of rotations R™ around the
origin. A homogeneous random field £(z) is called isotropic if E¢(z)E(y) =

E¢(gz)é(gy) for all g € SO(n).

Correlation function B(xz,y) of homogeneous and isotropic random field
depends only on the distance between x and y and is known that

B(le —y|) = [ e*om9F(dN), (7.1)
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where F'(-) is a finite measure on o-algebra B,, Borel sets of R™.
Move to spherical coordinates in (7.1). We obtaine [141]

T Jn—2 (Ar)
n—2 n -
B(r)=2"7=21/(= —2———d®()N),
(r) (2)0f e
where
r = |z — y| is a distance between z and y, ®(\) = I F(dv),

Voot o2 <A
therefore ®(A) is nondecreasing function on [0,4o00) and f+°° dd(\) =
F(R™) < 4+o0.
Consider spherical Bessel function

n—2 n In_z2(z
Yo(z) = 2°5°T (5) Z( ) (7.2)
Then (7.1) can be written as
+oo
B(r) = j Y, (Ar)d®(N). (7.3)
0

In this section we deal with homogeneous and isotropic mean-square
continuous Gaussian random field £(z) defined in R™ with E¢(z) = 0.
Assume that sample paths of the field are continuous with probabi-
lity 1 on any bounded and closed area. The necessary and sufficient
conditions of this fact are considered in [141].

In the theorem 7.1 we will give sufficient conditions which are close to
the necessary conditions.

Theorem 7.1. [141] Suppose that for some € > 0 condition
jln”s(l +A)dB(N) < +oo

holds. Then the random field £(x) is continuous with probability one on any
bounded and closed area.

We denote by Sg(z) and Vg(z) sphere and ball of radius R centered at

a point x respectively.Let m%R)() be a Lebesgue measure on Sg(x).

Then

n

R'!L b3 RTL 7T
T, wa(R) =
ey =T

n
2

Un(R) =
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are the volume of ball and the surface area of the sphere of radius R in R™
respectively.
Consider a random field

1
o) = S s,

Theorem 7.2. [1/1] Random field nr(x) is homogeneous and isotropic.
Homogeneous and isotropic random fields nr(x) and £(x) are related each
other and the following equalities hold

+oo
Eng, (11)1r, (v2) = | Ya(AR)Ya(AR2)Ya (M0, )AB(N),  (7.4)
0
+oo
Ena(e)&@2) = [ YaAR)Yu(Ars,z,)dB(), (7.5)
0
where

o Y, (2) is defined in (7.2),
® ryu, = |21 — 2| is a distance between the points x1 and xs.
Let the random field £(x) be observed on the ball Vi, (0), » > 0, and

let the spectral function ®(A) of the field £(x) be absolutely continuous.
Let a spherical correlogram [14]

[ eymP ()| do =

Un(R) S (x)

VR (0)
be an estimator of correlation function in point r.
1

=0 ® VR{()) £y () da. (7.6)

Using (7.3) and the theorem 7.2, we obtain that E(r) is unbiased estimate
of B(r):

VR (0)

j TYH(Ar)Yn(o)dcb(A)dx:
Vr(0) O

1
Un(R)
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+oo
_ Y, (\r)d®(\)dz = B(r),
Un R> VRJ(‘O) bf

since Y, (0) = 1.
Calculate EB?(r) :

n2 — 1 -
EB <r>—E(Un(R) J £<x>m<x>da:) =

Vr(0)
1
- E U2(R) j f E(@)ne ()& (y) e (y)dady.
Va(0) Via(0)
By the Isserlis equality [19] and relationships (7.4),(7.5) we have

i | J B @B )+
"7 Va(0) VR(0)

+E¢(z )E(y)Em( e (y) + EE(x)n:(y) EE(y)ne ()] dedy =
+o0 2

j (f Yn(Ar)Yn(O)d@()\)> +
0

VR (0) VR(O
+B(|jw - y)) j Y20 YoMz — y)d®(A)+

EB%(r) =

“+o0
+ [ Yan)Ya(Az = yl)de(x jY ()Y Mz — y))d®(\) | dedy =
0

1
)

Vr(0) Vr(0)

<I Y, (Ar) Yo (Az — y|)dP (A )) ] dxdy =

+B2(r)+U21(R) [

Vr(0) Vr(0)

2
(j Y (AP Y, (N — y|)d® (A )) ]dxdy.

B2(r) + B(|z — y]) j Y2 Yu(Az = y))d®(\)+
0

+oo
Blle —y)) [ Y2Or)Ya(Az = y))de()+
0
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Therefore,

£ (B(r) - Br)) = EB(r) - BX(r) =

1
:U2(R)j J

Vr(0) Vr(0)

(I Yo (Ar) Y, (Az — y|)d®(A )) ] dxdy.

Consider ¢(r) = B(r) — B(r), 0 <r < B, 0 < B < +00.

¢(r) is a square Gaussian random process, since B(r) is a limit of integral
sums

+oo
Bllz —yl) [ Y200 Ya(Alz — y)dd(N)+
0

ﬁ ;nk(xk)ﬁ(ﬁfk)Amka

n

E¢(r)=0
B/~ 2
Let n = [, (B(r) — B(T)) dr,0<r<T.
It is clear that 5 = Li.m.,—oo > (2 (k) ATy

En= fE (E(r) —B(r))er =

w11

Vr(0) Vr(0)

B(lz —yl) f Y2(Ar)Ya(Aa — y|)d®(\)+

( j Yo (Ar) Yo (N — y|)d® (A )) ]dmdydr. (7.7)

Theorem 7.3. For estimator B(r) of correlation function B(r) of homogeneous
and isotropic continuous in mean square random field £(z) the following
inequalities hold

B 9 B 2
P {J (B(r) - B(T)) dr > xJDB(T)dr} >1—g(u)exp {uQm} (7.8)
0 0

foru>0,0<x<721nu792(“),
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2

where g(u) = % fjoo; exp {7%} (dis and

1+32u2)%
B ) B oiyl
P {f (B(r) - B(T)) dr > ijB(r)dr} <2 (19
0 0

fory > %
Remark 7.1. The inequalities (7.8),(7.9) enable us to construct confidence
sets for correlation function B(r) in Ly (0, B) space.

Let H be the hypothesis that the covariance function of homogeneous
and isotropic continuous in mean square Gaussian random field £(x) equals

B(r), for 0 < r < B. As an estimator for B(r) we choose E(r) defined in
(7.6). To test the hypothesis H one can use the following criterion.

Criterion 7.1. For some level of confidence o, 0 < o < 1, we can find such
positive z, and y,, that

s(xa,u) + f(ya) = Q,

where N
st u) = o) exp {52} u >0, fla) = G2

The hypothesis H is accepted if

~ 2

fOB (B(r) — B(r)) dr
< .

E | (B(r) — B(r)) dr

and hypothesis is rejected otherwise.

< Yo

(o3

Remark 7.2. The probability of the first type’s error does not exceed o when
we use this criterion.

7.2. Construction criterion for testing hypothesis
about the covariance function of the homogeneous
and isotropic random field

Let £(z) be a continuous in mean square homogeneous and isotropic

Gaussian random field in R™ with zero-mean. Without any loss of generality,
we can assume that the sample paths of the field £(z) are continuous with
probability one on any bounded and closed set.

Let the random field £(z) be observed on the ball Vi,(0), 7 > 0 and
let the spectral function of the field ®(A) be absolutely continuous.
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Theorem 7.4. Let a spherical correlogram

B(r) = Unt 3 f 369 (wnl(r)si,) Etymly) (dt)) de =

= 0@ va<0> &(x)ne(x)de  (7.10)

be an estimator of the covariance function B(7). Then the following inequali-
P
ty holds for all € > (% ++/ (5 + l)p) Cp

4 1/p\/2 3
{IB pdT>5}<2 1+€ {exp — T 0
0 Cy V207

1 A 0o
“-mm| ] ( (= yl) [ Y2 Or)Ya e = () +

fY (AT) Yo (Alz — y[)d® ()

) dxdydr

and 0 < A < oo.

Remark 7.3. Since the sample paths of the field {(z) are continuous with
probability one on the ball Vg, (0), B() is a Riemann integral.

Proof. Consider

E(B(r) - B(1))* = E(B(1))* - B(r).

From the Isserlis equality for jointly Gaussian random variables and relati-
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onships 7.4 and 7.5 it follows that

EB?(r) =

[ (Be(@)n: (@) Ee(@)n, (2)+

Vr(0) Vr(0)
+ E&(2)E(y)Eny (2)n-(y) + EE(2)n- (y)EE (y)n-(2)) dedy =
2

+

UZ(R)

[ YaOn)Ya(0)da(y)

I
Vr(0) Vr(0) 0

B(lz —y) [ Y2O7)Ya(Nz — y)d@(\)+
0

Uz(R)

o0

+ [ YaOn) Ve = y)d2() [ ¥ (n)Ya (Ao = yd(x ))dxdyz
0 0

= Uzl( ), f f <B2(7) + B(lz — yl) f YAV (N — y[)d®(N)+
0

n R
Vi (0) Vi (0)

fY (A7) Yo (N — y|)d® ()

2
) dxdy = B*(1)+

aw ) ) (B“x‘y)f Y2 () Ya(Ale — y])d(3) +

VEr(0) Vr(0)
) dxdy.

j f (B(|x—?J|)TYf(AT)Yn(AIx—de(I)(/\H
0

Vr(0) Vr(0)

fY (AT Y, (A — y|)d® (A )Ddxdy. (7.11)

fY (A7) Yo (N — y|)d® ()

Therefore,

Since B(t) — B(7) is a square Gaussian random field (see Lemma 3.1,
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Chapter 6 in book [19]), then it follows from the Theorem 3.4 that

A
P {f(B(T) — B(r))Pdr > 5} <2

0

Applying equality (7.11) we get

A

= UgtR)f ] <B(|$ —yl) [ Y2O0)Ya (e - y)do () +
0 Va(0) Vi (0) 5

jyn(mynmx - y|)d<I>(/\)] ) dadydr. &

+
0
Denote
El/p\/i g%
gle) =2 T—exp g — ;
Ccy V20

p
From the Theorem 3 it follows that if € > 2z, = C), (% + /(5 + l)p) then

A
P {I(B(T) — B(r))Pdr > s} < g(e).
0

Let 5 be a solution of the equation g(¢) = 4, 0 < § < 1. Put S5 =
max{es, zp }. It is obviously that ¢(Ss) < § and

A
P {j(é(r) — B(r))Pdr > 55} <6 (7.12)

0

Let H be the hypothesis that the covariance function of homogeneous
and isotropic continuous in mean square Gaussian random field £(x) equals
B(7) for 0 < 7 < A. From the Theorem 7.4 and (7.12) it follows that to
test the hypothesis H one can use the following criterion.

Criterion 7.2. For a given level of confidence § the hypothesis H is accepted
if

A

[(B(r) = B(r)ydu(r) < S

0
otherwise hypothesis is rejected.

Remark 7.4. The equation g(e) = § has a solution for any ¢ > 0, since g(¢)
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is a monotonically decreasing function. We can find the solution of equation
using numerical methods.

Remark 7.5. One can easily see that Criterion 7.2 can be used if C), — 0 as
R — o0.

Example 7.1. Let the hypothesis H is such that the covariance function
of a homogeneous and isotropic Gaussian stochastic field {(z) equals to

B(r) = Q\f“](if)sc/z), where Js/5(cT) is Bessel functions of the first kind,
¢>0,0< 7 < A It is known that for B(7) exist the spectral function in
the following form

<I>(,\):{ (%)3, as0<A<e

1, as A > c.
We will estimate the value of C), from the Theorem 7.4. Consider the followi-
ng integrals Iy = [ Y, (A7)Y,(Az — y[)d®(N) and I, = f Y21 Y, (Ao —
0
y[)d®(X). We will choose n = 3 and we will evaluate the mtegral I
L] =

[ a0 —)dwO | = |5 [ Y0 — a0 <
0

3 &
< 5 [ 00| ¥ (M = y)] A%dx.
0

We will estimate the value of |Y3(A7)|. We will use an estimate of Bessel
functions of the first kind that was obtained in the paper [133], namely

1
[Ji(u)] < 2177

o (7.13)

For simplicity we choose o = 1. Then

VR e (3) - ()

YSAT|_‘IF

Similarly, we obtain that

¥an/Jo — u)| <= 2v2aT (g) Nl
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Then
| < ijmﬂrr( )szﬂrr( )Wvdx_
=2 (3) vl [ 20ar=exr? (3) il

Consider the integer irTerpas Io

oo

j (AT Y5(Alz — y))dP(N)| =
0

|Io] =

N

= V2 OmYs e - gty
0

3 C
< 5 [ 0D ¥z — gl Xax.
0

Using the similar estimates as in calculating of the integral I; we obtained
that

|12|\—3f (xﬂrf( >ﬁ> 2\f7rr< )WAQdA_

0

= e () i jv/%m O ore (3) /=i

Now we consider the following integral

|| 27\Ff ij Jaalle — o)) TY AT)Ya(Az — y])dB(\)+
3| = 7T |.’L' _ y|3/2 T 3 xr — yl
0 _\/R2_22 0

ng (AT)Y3(Alz — y])dP (A )) dzxdy| <

27/ f R}IQ (

J3/a(|z —

W [ V20| WAl — gl Vot

f [Y3(AT)|1Y3(Alz — y)| >\2d/\> dzxdy.

0
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Taking into account the estimates for I; and I, and (7.13) we will get

VIS eyl 2m [96v2 3
|Z5] SQ'?\/EI j PRI 5 ( 5 373 <2> T\/|$_y|03/2+
0 Rz 22

+ 61 2r2< >cfm)dydx—36w3fcr2< )

(96\[ ( )T\f+67>j \/Tdydz.
VRT=2Z

in this case we will obtained

/2 /2

2f VR2 — 22dz = 2R? f V1 — cos? tsin tdt = 2R? f sin? tdt =

/2 2
1 —cos2t TR

= 2 2 == .
R Oj Tt = =

I3 < 18R?*m*\/mcT? (3) (96\[ ( )T\[-I-GT)

Then

9

We will estimate the value of C),. From the Theorem 7.4 and above menti-
oned it follows that

C, < U:ftR)Of(lSRQ 4\ /e r2<2) (96‘[ (2 T\f+67>> /QdTg

)
s (e (3)) "o (50 2) )
)"

p/2, 2L I8RP o 2
+ 6P/°r )dT Up(R) Vel

p+3
§ _|_ P/2 2A
2 +2 p+3 |’

D, x
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where
D, = 1, asO0<p<l,
2P asp> 1.

Taking into account the value of U} (R) we will get
18T (3) (4 =2 (3))""
Cp, < B3/ (71' el (2>> D, x

p/2 _ pyo pt3
2 2A 2A
(Wﬂ-l" (g) \/E) 2 + 6]9/272

9 p+2 p+3

7.3. Estimation of homogeneous and isotropic
Gaussian random field’s correlation function when
the values of field are observed on a ball

As before, we will use the following notations:
e Sr(x), Vr(x) sphere and ball of radius R centered at a point x;
e U,(R,) wy(R) the volume of ball and the surface area of the sphere of

radius R;

o mglR)( -) a Lebesgue measure on Sg(z);

e ®(\) the spectral function ®(A) of the field £(x).
Consider a random field

Zf o) ASy, (7.14)
)i

wﬂ

where

xy, points on the sphere S,.(z);

AS), square of the k-th element of sphere’s partition;

Ba(r) = Y, AS

Theorem 7.5. Random field 0,-(z) is homogeneous and isotropic.
Homogeneous and isotropic random fields 0,-(x) and &(x) are homogeneously
and isotropically related each other and the following equalities hold

B, (1), (22) j Yo (1) Y (A7) Yo (AP 0 ) AD(N), (7.15)
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By (21)€ j Yo (AF) Yy, (AT, )dB(N), (7.16)

where
Tz = |T1 — T2| is a distance between the points x1 and xa.
Y, the spherical Bessel function, introduced in (7.2).

Proof. The proof of this theorem is similar to corresponding theorem in

[141] ¢

Consider homogeneous and isotropic continuous in mean square Gaussi-
an random field {(z) in R™ with mean zero and correlation function B(r).
Assume that B(r) can be presented as (7.3). Suppose that the spectral
function ®(A) of this field is absolutely continuous, random field is observed
on a ball Vg1,(0), 0 < r < B, and value of field is known only in some a
points on the ball. _

Consider N spheres on the ball Vg(x) with radiuses %, 1<i<N,
% < r, and centers in 0.

As an estimator of correlation function in point r will use

B (

(i) AS;, (7.17)

11]1

where
e x;; - points on the sphere Sm( );

o AS;; - the surface area of the j-th element of sphere’s S in (0) partition;
o Oy (B) = 5L ASiy:

- N M
o Un(R) =354 Zj:l AS;.

By (r) is unbiased estimate:

M
EBy(r) = Z (24T (i) AS;; =

Y, (Ar)d®(A\)AS;; = B(r).

N
B,
1 N M +oo
=22 f Y (M) Y5, (0)d®(N)AS;; =
+Ooo
> |

Using the Isserlis formula and equalities (7.15),(7.16) one can calculate
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2
EBN( =F (U ZZE xlj 777 xz] ASU) =

11]1

ll: N M N M
- ZZZZ [EE (i) (i5) EE(2p0) e (Tp1)+
=1

=1
Nr(wp1) + E& (i) (2p1) EE(2p0) 1 (245)] ASijASp =
M

o 2
< f Yn()\r)Yn(O)d@()\)> +

+ j Bl|as; — 2p]) f Y2 O Ya (Mg — 2] )dD () +

+ f Yo (AP)Yn(Alzi; — 2 ])d® (A j Y2(OAr) Yo (Mzi; — 2p|)d®(N) |
N M N M
GYYYY
i=1 j=1p=1 [=1

+oo
x [ YO (i — ) d®(O)+
0

—+00

j (ij — )

xAS;iASy = B*(r) + =

+oo 2
+< f Yn()\r)Yn(MxUxpl|)d<1>()\)> AS;AS,,.

Then
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+o0 2
T ( j Y, (Ar) Yo (M —xpl|)d<1>(/\)> AS;;AS,,.
0

Consider ((r) = EN(T) —B(r),0<r<B,0< B < +o0.
Since B ~n(r) is a quadratic form of Gaussian vectors, therefore ((r) is Square
Gaussian random process and E¢(r) = 0.

Let n = fOB (EN(T') —B(r))er. Since 1 is a mean square limit of
quadratic forms of the type Y., ¢*(ry)Ary, where r, € [0,B], then the
next theorem holds.
Theorem 7.6. For the estimator By (r) of correlation function B(r) homogeneous
and isotropic continuous in mean square Gaussian random field {(x) the
following inequalities hold

B R 9 B R )
P{f (BN(T)—B(’I")) d’l">.’1)fDBN(’I“)d7"} 21—g(u)exp{u2x}
0 0

foru>0,0<x<—2lnu792(u),
_ 1 +o0 s2 ds
where g(u) = E J’ioo exp {75} m, and
P{[ (B 501) sy [ DB b < 22
N(r) — r) r>y N(r)dr » <
0 0 Ch( %7%)

Let H be the hypothesis that for 0 < r < B the covariance function
of homogeneous and isotropic continuous in mean square Gaussian random

field £(x) equals B(r). As an estimator for B(r) we choose §N(r)7 defined
in (7.17). To test the hypothesis H one can use the following criterion.

Criterion 7.3. For some level of confidence o, 0 < v < 1, one can find
such positive z,, and y,, that

$(Ta,u) + f(ya) = o,
where ) 11
s(z,u) = g(u) exp{“Tm} yu>0, f(z) = Ch(i;*igi%)
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The hypothesis H is accepted if

JZ (By(r) ~ B@) dr

EIOB <§N(r) - B(?“))2 dr

Lo < < Ya

and hypothesis is rejected otherwise.

Remark 7.6. The probability of the first type’s error does not exceed o when
we use this criterion.
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