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Abstract

The numerical solution of relativistic Dirac equation for mesons
with both equal and unequal quark masses is carried out. The ob-
tained results both for mass spectrum and for fine splitting are in
quite resonable agreement with experiment. We also investigate the
Lorentz structure of the potential, and obtain that most of the con-
finement part of the potential must be in the vector part of the
interaction potential.
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Quark potential models are still convenient tools for the calculation the
most of the properties of hadrons. Acceptable results are provided by rela-
tivistic (semirelativistic) and nonrelativistic approaches. The idea is soaring
in the air concerning the importance of relativistic effects even in the c¢ and
bb systems, therefore it would be interesting to account for these effects by
way of direct solving of Dirac equation. Recently exactly such approch was
discussed in several papers [1-4]. All abovementioned attemps use a certain
kind of ”QCD-motivated” two-body interaction. Most frequently discussed
is a potential which, consists of one-gluon exchange term V,(r) and confining
long range part V(r)

V(r) = Vy(r)+ Vi(r) = _%+,\-r+vo. (1)

Here o = 4/3a,, where a; is standerd strong coupling constant, V, is used
to fix the ground state of the spectrum.

For the relativistic models the Lorentz character of the potential has to
be specified

V(r)=W(r)+ Vs(r), (2)

where the one-gluon exchange term is usually treated as the vector part of
potential (V') and the confinement term is treated as the scalar part (Vs).

In general both relativistic as well as nonrelativistic approaches give
rather good description of radial and orbital excitations of mesons. Spin-
orbital effect in the quazyrelativistic models is obtained in the framework
of the so called Generalized Breit-Fermi approach [1], where it has the form

V. =

se(r) 2m?r dr

For Coulomb-like potential it gives 1/r® term which leads to the problem of
particle falling to the force center and therefore the fine structure of mesons
is calculated usually only in the perturbative approximation.
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The main purpose of the present work is to estimate spin-orbital splitting
of spectra of mesons, considered as bound Q§-systems, in the frame of the
one particle Dirac equation which should describe correctly this phenomena. .
Such model could be realistic for the hydrogen-like system of bounded hght
(q) and heavy (Q) quarks.

he application of one-particle Dirac equation to the two-quark system
has been recently actively discussed [5,6]. We have chosen a simplest variant
of reducing the relativistic two-body problem to single Dirac equation for
particle of reduced mass p = Mm/(M + m).

To understand why in the Dirac approach we do not encounter the prob-
lem of the particle falling to the force center as in the semirelativistic one
let us consider the Dirac equation for the radial functions f(r) and ¢(r) of
the Dirac spinor

f— -Ef—(E+m—Vv+Vs)g=0
g+ =g+ (E-m—W—Vo)f =0, (3)
_[E4+1, 5=£4+1)2
wheren—{_f’ j=0-1/2.
The system of differential equations of the first order (3) can be reduced to
the differential equation of the second order

A’ k(l—k) KA
" R 2 —
f Af+( z +AT+AB>f 0, (4)
where A=(e+m—Vyy 4+ Vs) and B =(F —m —Vy — Vs).

The substitution f = v/Ap transforms equation (4) to the Shrodinger-like
one

A’ k(l—k) kA

P — (ﬂ + 9 A3/2 + 3 + e +AB><,D= 0. (5)

One can see that the third term in brackets has the orbital origin
k(1 —« L+1
(—r) __te+)) “

r? r?
while taking into account the relation k = &l + 1, the fourth term can be
interpreted as the spin-orbital part of interaction

A’ { e m»E>V,
—_

Ar 7117'%’ Ve>m, V>E, (r—0),

(7)



—296 -

where in nonrelativistic limit (7a) one obtains 1/r® behavior for Coulomb-
like potential V(r) and 1/r? one in relativistic approach (7).
The radial functions f(r) and g(r) obey the boundary conditions

f(O)::O, f(OO)=0,

9(0)=0, g(o0)=0.

The first two boundary conditions are used as the starting conditions and
the second pair of boundary conditions can be used for selection of eigenval-
ues of energy in equation (3) under the numerical solution by Runge-Kutta
method.

We suggested the following Lorentz structure of potential [7]

W=V,+¢eV, and V5= (1-¢)V,

where € is parameter which indicates the part of confining interaction in the
vector sector of Lorentz structure of potential. The calculation show that
to obtain the correct sign of spin-orbital splitting in Dirac equation (3) with
potential (1) it is necessary to appropriate the confining part of potential
mainly to the vector sector of interaction. The following parameters are
used

a=10.5, A =10.19 GeV?,

which corresponds to the usually taken value for Cornell potential [1]. We
have also taken the current quark masses m, = my = 5 MeV, m, =
270 MeV, my = 4.7 GeV. Resulting masses of mesons were calculated ac-
cording to expresion M = m, + Mg + Ep, Eg = E — . The best values
of spin — orbital spliting are obtained with £ = 0.65. It is interesting to
note that Deoghuria and Chakrabarty [7] have came to the similar conclu-
sion concerning the Lorentz character, having in mind their definition of
interaction potential, notwithstanding that they were considering hyperfine
structure.

As we can see, the mass spectrum (Table 1) is obtained with quite
reasonable accuracy [8].

As for fine splitting, if one believes that in case when mg — oo the
SPh+1P — Py, and °P, 43P, P32 [9] then for si-system (Table 2) we
have splitting Ap = 124 MeV (108 MeV exp.) and Ap = 72 MeV (95 MeV
exp.) for P- and D-waves correspondingly. Other data (Table 3) can be
considered as a predictions.
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Table 1. Radial excitation of (¢7)-system (Masses are given in MeV).

bb

cc cs cu su
Mth Mezp Mth 'Me:cp Mth Mc:cp Mth Me:cp Mth Mezp
15| 9460 | 9460 | 3106 | 3096 | 2094 | 2110 | 2016 | 2010 | 884 | 892
25 | 10016 | 10023 | 3596 | 3686 | 2554 - 2448 - 1316 | 1410
35 | 10344 | 10355 | 3942 | 4040 ~ - 2787 ~ ~ -
4S5 | 10603 | 10580 - - - - - - - -
5S | 10826 | 10865 - - - - - - - -

Table 2. (s@)-system

(Masses are given in MeV).

Mezp Mth
1P | 1270
1113 P1/2
3F | 1350
14307
3P, | 1408
1237 | Py,
3P, | 1430
3D; | 1670 | 1412 | Dy,
3D, | 1770
1484 | Dy
3’D3 1780

Table 3. (ci) and (c3)-systems
(Masses are given in MeV).

cu

M.,

My

1 Pl
3P
3 Pl

3P2

2420

2430

2232

2355

1P1
3P0
3P1

3D2

2536

2477

2577




- 298 —

The problem of two-quark systems with different masses was also exam-
ined in [9] and excellent revue of situation is given in [10]. If we compare our
results with the results obtained in [9] we shall see the splitting in sii-system
are quite similar however the splitting in ci-system obtained in [9] are much
smaller. The absence of experimental data does not allow us to make the
final conclusion. It is interesting to note that both our and Godfrey’s and
Kokoski’s [9] results strongly suggest that the value of 3 Pysii-mass equal to
1430 MeV is too large and previous one of 1350 MeV [11] is preferable.
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