УДК 658.562:621 В.В. Кузьма, В.С. Біланич, К. Flachbart, F. Lofaj, К. Csach, В.М. Різак ДВНЗ "Ужгородський національний університет", 88000, Ужгород, вул. Волошина, 54 e-mail: <u>kuzmavasil.v@gmail.com</u>

ФОТОІНДУКОВАНІ ЗМІНИ МІКРОТВЕРДОСТІ АМОРФНИХ ТОНКИХ ПЛІВОК СИСТЕМИ Ge-As-Se

Наведені результати досліджень кінетики фотоіндукованих змін мікротвердості аморфних плівок $Ge_xAs_ySe_{100-x-y}$ при опроміненні лазером потужністю 50 мВт з довжиною хвилі 655 нм. Показано, що інтенсивні (10%--27%) фотоіндуковані зміни твердості плівок спостерігаються протягом 25–30 хв. опромінювання: при включенні опромінювання мікротвердість експоненціально зменшується, а при виключенні – експоненціально зростає. Величина фотоіндукованих змін мікротвердості залежить від середнього координаційного числа Z і є максимальною при Z=2.8. Мінімальні фотоіндуковані зміни мікротвердості спостерігається в області топологічного структурного 2D-3D переходу при Z=2.67. Гігантське зростання фотоіндукованих зміни мікротвердості при Z>2.67 пояснено в рамках інтрамолекулярної структурної моделі фотоіндукованої пластичності в халькогенідних стеклах.

Ключові слова: мікротвердість, фотоіндуковані зміни, тонкі плівки, халькогенідні стекла, Ge-As-Se.

Вступ

Одним із напрямків практичного використання халькогенідних скловидних напівпровідників (XCH) є виготовлення тонких плівок на їх основі з подальшим застосуванням V якості реєструючих середовищ для оптичного запису інформації, фото- і електронної літографії, інтегральної та волоконної оптики. Вказані практичні застосування В основному ґрунтуються на унікальних, індукованих зовнішнім опроміненням, структурних змінах, які обумовлюють різноманітні зміни фізичних параметрів даних матеріалів [1,2]. Інтенсивність та кінетика індукованих змін фізичних параметрів суттєво залежить від хімічного складу ХСН. Крім змін оптичних і електрофізичних параметрів ХСН, при опроміненні лазером (в області власного поглинання) виявлено фотоіндуковані зміни механічних параметрів (мікро- та нанотвердості, модуля Юнга) плівок бінарних систем As_xS(Se)_{100-х} та встановлено їх концентраційні залежності [3-5]. Подальші дослідження механізмів та кінетики індукованих явищ є важливим фактором для розширення спектру практичного використання тонких плівок ХСН. У цьому аспекті перспективною є система Ge-As-Se, оскільки завдяки широкій області склоутворення можна отримати стекла з різним співвідношенням одно-, двох- і тривимірних структурних одиниць [6]. Враховуючи можливість отримання в системі Ge-As-Se стекол 3 різною структурною жорсткістю, представляють науковий і практичний інтерес дослідження фотоіндукованих змін мікротвердості аморфних плівок ХСН даної системи у широкому інтервалі зміни середнього координаційного числа Z. На даний момент такі дослідження зроблено для плівки Ge₃₂As₈Se₆₀ [5].

Метою даної роботи є дослідження фотоіндукованих змін мікротвердості аморфних плівок Ge_xAs_ySe_{100-х-у} під час і після опромінення лазером.

Методика експерименту

Для проведення досліджень були виготовлені халькогенідні плівки таких складів: Ge₄As₄Se₉₂, Ge₉As₉Se₈₂, Ge₈As₃₂Se₆₀, Ge₁₆As₂₄Se₆₀, Ge₂₄As₁₆Se₆₀, Ge₃₂As₈Se₆₀, Ge₄₀Se₆₀, Плівки одержували методом термічного випаровування стекол аналогічних складів у вакуумі

(10-3Па) на підкладки з кварцового скла використанням установки 3 ВУП-5. Вакуумну систему додатково охолоджували рідким азотом. Середня швидкість конленсації плівок становила 10нм/с. d Товщину плівок вимірювали за допомогою інтерферометра Лінника МИИ-4 [7]. Товщина отриманих плівок складала 1.4-1.6мкм.

Вимірювання мікротвердості Η допомогою мікротверпроводили за доміра ПМТ-З з використанням індентора Віккерса - алмазної правильної чотирикутної піраміди з кутом при вершині 136⁰. Оскільки халькогенідні плівки є м'якими матеріалами, навантаження на індентор підбиралося так, щоб вплив жорсткої підкладки 3 кварцового скла був мінімальний. Виконання вказаних умов поряд з достатньою точністю вимірювань мікротвердості для всіх плівок Ge_xAs_vSe_{100-х-v} було забезпечене використанням сили навантаження на індентор Р=50мН. Числові значення мікротвердості Н визначали за формулою [8]:

$$H = \frac{2P\sin\frac{\alpha}{2}}{d^2} = 1,854\frac{P}{d^2},$$
 (1)

де $\alpha = 136^{\circ}$, Р – сила навантаження на індентор, d – діагональ відбитку.

Для дослідження фотоіндукованих змін мікротвердості плівки Ge_xAs_vSe_{100-х-v} опромінювали протягом 4год. лазером з довжиною хвилі 655нм і потужністю 50мВт із одночасним нанесенням відбитків у освітленій області плівки. Після припинення опромінювання плівки, відбитки продовжували наносити на поверхню плівки протягом 4год. Схему експерименту наведено в роботі [5]. Таким чином, сформована матриця була відбитків індентора Віккерса при неперервному опромінюванні. Діагональ такої матриці складала близько 300мкм, а загальна освітлена площа поверхні плівки мала діаметр близько 4мм. Час індентування (контакту індентора з плівкою) складав 10с. Для кожного відбитка записували час, який пройшов з моменту початку її освітлення (час експозиції). Для отримання наступного відбитку столик з плівкою зміщувався на 25мкм. При цьому сусідні відбитки однаково освітлювалися лазером і знаходилися на достатній відстані один від одного, щоб не перекриватися. При таких дослідженнях мікротвердості процес опромінювання плівки лазером не переривався між циклами «навантаження – розвантаження» при мікроіндентуванні зразка.

Результати та їх обговорення

На рис.2 наведено зміну числових значень мікротвердості плівок системи Ge_xAs_vSe_{100-х-v} протягом певного часу 3 рис.1 видно, що усереднене значення мікротвердості з часом не змінюється. Вказані результати були використані для розрахунку похибок вимірювань та середніх значень мікротвердості Н плівок Ge_xAs_vSe_{100-x-v}. Параметри часових змін мікротвердості наведено у таблиці. На рис.2 наведено графіки часової зміни мікротвердості аморфних плівок $(Ge_4As_4Se_{92},$ $Ge_9As_9Se_{82}$ $Ge_8As_{32}Se_{60}$ $Ge_{24}As_{16}Se_{60}$. $Ge_{16}As_{24}Se_{60}$ $Ge_{32}As_8Se_{60}$. Ge40Se60) під час та після їх опромінення лазерним променем. З представлених результатів видно, що при включенні лазера мікротвердість суттєво зменшується протягом перших 25-30хв. У залежності від хімічного складу пониження мікротвердості складає 10-27%. Збільшення часу опромінення понад 30хв. приводить до стабілізації мікротвердості до значень Н₀. Абсолютні значення змін мікротвердості $\Delta H_1 = H_0 - H_0^I$ плівок Ge_xAs_ySe₁₀₀. _{х-v}, а також середня швидкість її зміни під час (V_1) і після опромінення (V_2) наведено таблиці. Часові v залежності мікротвердості досліджуваних плівок при можуть опроміненні бути проапроксимовані експоненційною залежністю виду:

$$H(t) = H_0^{I} + \Delta H_1 exp(-t/\tau_1), \quad (2)$$

де H_0^I – числове значення мікротвердості при опроміненні (4год.), ΔH_1 - величина мікротвердості зміни під час опромінювання, τ_1 - час релаксації мікротвердості В результаті фотоіндукованих змін, t - час експозиції. Аналогічною залежністю було про-

Рис. 1. Залежності мікротвердості стекол Ge_xAs_ySe_{100-х-у} від часу індентування без опромінення.1-Ge₄As₄Se₉₂, 2–Ge₉As₉Se₈₂, 3–Ge₈As₃₂Se₆₀, 4–Ge₁₆As₂₄Se₆₀, 5–Ge₂₄As₁₆Se₆₀, 6–Ge₃₂As₈Se₆₀, 7–Ge₄₀Se₆₀.

Рис. 2. Залежності мікротвердості плівок системи $Ge_xAs_ySe_{100-x-y}$ від часу під час та після опромінення лазером (стрілка \uparrow - момент включення лазера, стрілка \downarrow - момент виключення лазера, • - результат апроксимації, \circ – експеримент). 1–Ge₄As₄Se₉₂, 2–Ge₉As₉Se₈₂, 3–Ge₈As₃₂Se₆₀, 4–Ge₁₆As₂₄Se₆₀, 5–Ge₂₄As₁₆Se₆₀, 6–Ge₃₂As₈Se₆₀, 7–Ge₄₀Se₆₀.

апроксимовано криву H(t) в інтервалі 0-30хв. після виключення лазера. В даному часовому проміжку проходить відновлення (зростання) твердості плівок і залежність H(t) описується рівнянням:

 $H(t) = H_0 - \Delta H_2 \cdot \exp(-t/\tau_2), \qquad (3)$

де ΔH_2 - величина зміни мікротвердості після виключення лазера, H_0 - числове значення мікротвердості після опромінювання (через 4год.), τ_2 - час релаксації мікротвердості після опромінення.

Результати апроксимації залежностей H(t) для плівки $Ge_{40}Se_{60}$, наведені на рис.3. Аналогічна апроксимація була проведена для плівок інших складів. Параметри апроксимації наведені у таблиці.

Рис.3. Релаксація мікротвердості плівки Ge₄₀Se₆₀ після включення (а) та після виключення (б) лазера: • - експеримент, суцільна лінія – результат апроксимації.

3 рис.3 і таблиці видно, що максимальні фотоіндуковані зміни мікротвердості спостерігаються y складі Ge₄₀Se₆₀, а мінімальні – у Ge₂₄As₁₆Se₆₀. Приведені значення мікротвердості числові при включенні i виключенні опромінення добре корелюють теоретично 3 розрахованими $N_{0(BKII)}$ i При N_{0(викл}). зростанні середнього координаційного числа Z в інтервалі 2.12–2.48 величина ∆Н змінюється досить слабо. При подальшому зростанні Z величина ΔH зменшується і при Z=2.67 спостерігаються мінімальні фотоіндуковані зміни мікротвердості. При зростанні Z від 2.67 до 2.80 величина ΔH стрімко зростає приблизно у 7 разів. Наявність вказаних інтервалів величини фотоіндукованих змін мікротвердості плівок Ge_xAs_vSe_{100-х-v} корелює з положенням областей стекол з різною структурною жорсткістю на діаграмі склоутворення в системі Ge-As-Se [9]. Оскільки точка Z=2.67 є точкою топологічного структурного 2d-3d переходу [10] можна стверджу-

максимальні фотоіндуковані ЩО вати, зміни механічних параметрів ХСН системи Ge-As-Se відбуваються у стеклах з тривимірною структурою. Дану особливість можна пояснити в рамках інтрамолекулярної структурної моделі фотоіндукованої пластичності халькогенідних стекол [11]. Можна допустити, що в Ge_xAs_ySe_{100-x-y} структурі плівок при Z > 2.67 під дією лазерного опромінення проходить розрив гомополярних зв'язків (As-As, Ge-Ge) i трансформація утворюваних ними об'ємних (З-вимірних) структурних одиниць у планарні плоско орієнтовані комплекси. В результаті таких процесів розмірність структури та її структурна жорсткість понижуються. Тому і мікротвердість максимально зменшується при опроміненні. Такий механізм трансформації високосиметричної молекули As₄S₄ (реальгар) в аналогічну молекулу планарного типу (орпімент) покладено в основу моделі фотоіндукованої пластичності в склі As₂S₃ запропонованої на осно-

Таблиця

Склад	Н ₀ , Па	∆Н, Па	v _{1,} Па∕хв	v ₂ , Па/хв	τ ₁ , хв	τ ₂ , хв	Н ^I ₀ , Па
Ge ₄ As ₄ Se ₉₂	2130±75	200	5,7	5	39	41	1927
Ge9As9Se82	2460±90	250	8,4	5,2	32	48	2226
Ge ₈ As ₃₂ Se ₆₀	2480±120	290	10,4	7,5	28	39	2170
Ge ₁₆ As ₂₄ Se ₆₀	2250±80	275	6,4	4,1	43	67	1934
Ge ₂₄ As ₁₆ Se ₆₀	3620±80	200	6,06	4,76	33	42	3320
Ge ₃₂ As ₈ Se ₆₀	3530±100	580	27	17,3	21	17	2910
Ge ₄₀ Se ₆₀	4380±110	1180	21,6	16,6	50	60	3059

Параметри фотоіндукованої зміни мікротвердості плівок Ge_xAs_ySe_{100-x-y}

ві КР-спектроскопічних досліджень указаного явища [11].

Зменшення відносних фотоіндукованих змін твердості при Z<2.67 може бути обумовлено низькою розмірністю структури вихідних плівок Ge_xAs_ySe_{100-х-у} до опромінення.

Висновки

Під час опромінення аморфних плівок Ge_xAs_ySe_{100-х-у} лазерним променем з

довжиною хвилі з області їх власного поглинання відбувається експоненціальне зменшення їх мікротвердості. Максимальні фотоіндуковані мікротвердості зміни спостерігаються в плівці Ge₄₀Se₆₀, а мінімальні – в області топологічного структурного переходу при Z=2.67. Показано, що структурні фотоіндуковані зміни плівок Ge_xAs_vSe_{100-х-у} можуть бути трансформацією пояснені структурних комплексів з пониженням їх розмірності в результаті розриву гомополярних зв'язків.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. Семак Д. Г. Фото- і термоструктурні перетворення халькогенідів. / Д.Г.

Семак, В.М. Різак, І.М. Різак. – Ужгород: Закарпаття, 1999. – 392 с.

- Kolobok A. V. Photoinduced Phenomena in Amorphous Chalcogenides: From Phenomenology to Nanoscale / A. V. Kolobov, K. Tanaka, – San Diego: Academic Press, 2001. – 47 p.
- Trunov M.L. Polarization-dependent photoplastic effect in As₅₀Se₅₀ chalcogenide glasses. // M.L. Trunov, V.S. Bilanich – Journal of Optoelectronics and Advanced Materials – 2004. Vol. 6, No.1. – P.157-162.
- Трунов М.Л. Гигантский фотопластический эффект в стеклообразных полупроводниках, наблюдаемый в окрестности перколяционного перехода жесткости. / М.Л. Трунов, В.С. Биланич, Дуб С.Н., Р.С. Шмегера // Письма в ЖЭТФ. – 2005. т. 82, №8. – С. 562 – 566.
- Кузьма, В. В. Фотоіндуковані зміни мікротвердості тонких плівок Ge₃₂As₈Se₆₀. / В. В. Кузьма, В.С. Біланич, В.Ю. Лоя, В.М. Різак // Науковий вісник Ужгородського університету. Серія Фізика. – 2014. №35. – с.51 – 56.
- 6. Wang Y. Glass structure, rigidity transitions and the intermediate phase in

Стаття надійшла до редакції 01.10.2014

the Ge-As-Se ternary, Europhys. / Y. Wang, P. Boolchand, M. Micoulaut // – Europhys. Lett. – 2000. – N_{2} 52. – P. 633 – 639.

- Мешалкин А. Ю. Цифровой метод измерения толщины нанометровых пленок на базе микроинтерферометра МИИ-4. / А.Ю. Мешалкин [и др.] // Электронная обработка материалов. – 2012. – № 48(6). – С. 114–118.
- Металлы и сплавы. Измерения твердости по Виккерсу. Часть 1. Метод измерения: ГОСТ Р ИСО 6507-1-2007. – [Введ. 01.08.08.]. – Москва, 2008. – 21 с.
- Micoulaut M. The Intermediate Phase in Ternary Ge_xAs_xSe_{1-2x} Glasses. / M. Micoulaut, Tao Qu, D.G. Georgiev, P. Boolchand // Philos. Mag. – 2005. – № 85. – P 875 – 884.
- Tanaka K. Structural phase transitions in chalcogenide glasses // Phys. Rev. B. – 1989. – № 39. – P. 1270 – 1279.
- Yannopoulos S. N. Intramolecular Structural Model for Photo-induced Plasticity in a Chalcogenide Glass. // Phys. Rev. B. – 2003. – № 68. – P. 064206:1 – 064206:7

V.V. Kuzma, V.S. Bilanych, K. Flachbart, F. Lofaj, K. Csach, V.M. Rizak Uzhhorod National University, 88000, Uzhhorod, Voloshin Str., 54

PHOTOINDUCED CHANGES IN MICROHARDNES OF AMORPHOUS THIN FILMS OF THE Ge-As-Se SYSTEM

The results of experimental studies of the kinetics of photoinduced changes in microhardness of amorphous films $Ge_xAs_ySe_{100-x-y}$ under the irradiation with a laser of 50 mW power and 655 nm wavelength are presented. It is shown that the intense (10-27%) photoinduced changes of hardness of the films are observed for 25-30 minutes exposure: when the irradiation is enabled the microhardness decreases exponentially, and when it's disabled - increases exponentially. The value of photoinduced changes of microhardness depends on the average coordination number Z and has maximum at Z = 2.8. Minimum of the photoinduced microhardness the topological structural 2D-3D transition at Z = 2.67 was observed. Giant growth of photoinduced changes of microhardness at Z > 2.67 is explained within the intramolecular structural model of photoinduced plasticity in chalcogenide glasses.

Keywords: microhardness, photoinduced changes, thin film, chalcogenide glass, Ge-As-Se.

В.В. Кузьма, В.С. Биланич, К. Flachbart, F. Lofaj, К. Csach, В.М. Ризак Ужгородский национальный университет, 88000, Ужгород, ул. Волошина, 54

ФОТОИНДУЦИРОВАННЫЕ ИЗМЕНЕНИЯ МИКРОТВЕРДОСТИ АМОРФНЫХ ТОНКИХ ПЛЕНОК СИСТЕМЫ Ge-As-Se

Приведены результаты исследований кинетики фотоиндуцированных изменений микротвердости аморфных пленок $Ge_xAs_ySe_{100-x-y}$ при облучении лазером мощностью 50 мВт с длиной волны 655нм. Показано, что интенсивные (10% - 27%) фотоиндуцированные изменения твёрдости плёнок наблюдаются в течение 25 - 30 мин. облучения: при включении облучения микротвердость экспоненциально уменьшается, а при выключении - экспоненциально увеличивается. Значение фотоиндуцированных изменений микротвердости зависит от среднего координационного числа Z и является максимальным при Z = 2.8. Минимальные фотоиндуцированные изменения микротвердости наблюдаются в области топологического структурного 2D-3D перехода при Z = 2.67. Гигантский рост фотоиндуцированных изменений микротвердости при Z>2.67 объяснено в рамках интрамолекулярной структурной модели фотоиндуцированной пластичности в халькогенидных стеклах.

Ключевые слова: микротвердость, фотоиндуцированные изменения, тонкие плёнки, халькогенидные стекла, Ge-As-Se.