УДК 771.5:535.5 РАСЅ 78.66.Qn DOI: https://doi.org/10.24144/2415-8038.2016.39.73-81 Д.А. Степанчиков¹, А.В. Савчук², О.Я. Корчемська^{2,3} ¹Житомирський державний університет імені Івана Франка, 10008, Житомир, вул. Велика Бердичівська, 40 ²Міжнародний центр "Інститут прикладної оптики" НАН України, 04053, Київ, вул. Кудрявська, 10-г

³Інститут фізики НАН України, 03028, Київ, пр. Науки, 46 e-mail: elkorch@hotmail.com

АНІЗОТРОПНА ФОТОСЕЛЕКЦІЯ МОЛЕКУЛ БАКТЕРІОРОДОПСИНУ В ПУРПУРНІЙ МЕМБРАНІ З ГЕКСАГОНАЛЬНОЮ КРИСТАЛІЧНОЮ РЕШІТКОЮ ТРИМЕРІВ

Досліджено зміну оптичної густини та наведення дихроїзму в полімерних плівках з бактеріородопсином (БР) під дією лінійно поляризованого світла. Аналіз одержаних результатів проведено в рамках моделі анізотропної фотоселекції молекул БР в пурпурній мембрані з гексагональною кристалічною решіткою тримерів з урахуванням впорядкованості БР молекул в тримері під кутами 120°. Показано, що встановлюючи спеціально підібрану інтенсивність збуджуючого світла, можна спрямовано створювати БР тримери з однією, двома чи трьома молекулами у найбільш довгоживучому інтермедіаті фотоциклу М412.

Ключові слова: органічний наноматеріал, бактеріородопсин, нелінійнооптичні методи, лінійно поляризоване світло, анізотропія наноструктур.

Вступ

Бактеріородопсин (БР) це фоторецептор і фотоактивний протонний насос, виявлений в пурпурних мембранах екстремальних галофільних мікроорганізмів Halobacterium salinarium [1], який є подібним до зорового пігменту родопсину. Молекули БР впорядковані в тримери В пурпурній мембрані Halobacterium salinarium та формують кристалічну двовимірну структуру комірками розміром близько 6 нм (рис.1). Така структура сприяє високій стабільності БР до теплового та хімічного впливів. БР відгукується на дію світла в широкому спектральному діапазоні від 700 до 350 нм з світлочутливістю на рівні декількох мВт/см². Працездатність БР зберігається в інтервалі температур від 80°С до температур рідкого азоту. Оптичні і функціональні властивості БР молекули зберігаються в ізольованих з клітини пурпурних мембранах частково навіть у сухих плівках. i

Це дозволяє виготовлення зразків з фрагментами пурпурних мембран для оптичної обробки інформації [2, 3].

У вихідному стані молекули БР у формі bR570 з *all-trans* ізомером хромофора ретиналя характеризуються широкою безструктурною смугою поглинання з максимумом на довжині хвилі 570 нм [1, 4]. Поглинання світла призводить до оборотних фототрансформацій БР, які супроводжуються ізомеризацією ретиналя, конформаційними змінами білка опсина та переносом протона крізь мембрану. Схема фото-

Рис.2. Схема фотохімічного циклу БР у водній суспензії.

циклу БР у водній суспензії зображена на рис.2. Один із найбільш довгоживучих інтермедіатів М412 з *13-сіs* ізомером хромофора ретиналя має максимум поглинання на довжині хвилі 412 нм. Час спонтанного повернення М412—bR570 знаходиться в межах від 10 мс у суспензіях до хвилин у полімерних плівках із БР.

Хоча БР було відкрито вже 40 років тому, зараз пурпурні мембрани з кристалічною структурою БР привернули величезну увагу як перший приклад успішного використання природного наноматеріалу [4, 5].

Більшість робіт пов'язано з видаленням БР з біліпідної пурпурної мембрани за допомогою хімічних методів для подальшого використання ліпідної наноструктури [6]. Повністю поза увагою залишаються можливості використання нелінійно-оптичних методів для створення і застосування біонаноматеріалу на основі БР.

Відомо, що ймовірність поглинання лінійно поляризованого світла молекулою БР залежить від кута орієнтації диполя молекули відносно напрямку поляризації збуджуючого світла [7]. Внаслідок цього в зразках БР виникає оптична анізотропія (дихроїзм та подвійне променезаломлення).

Метою даної роботи є розробка методу спрямованої фотоактивації однієї, двох чи трьох БР молекул в тримері в залежності від інтенсивності та поляризації збуджуючого світла, що попадає в смугу поглинання вихідної форми фотоциклу БР.

1. Експериментальне дослідження нелінійної фотоіндукованої анізотропії зразків пурпурних мембран із вмістом БР

Для експериментального дослідження залежності оптичної густини та світлоіндукованого макроскопічного дихроїзму в желатиновій плівці з природним (WT) БР від інтенсивності збуджуючого світла була використана установка, схема якої наведена на рис.3.

Інтенсивність лінійно поляризованого збуджуючого пучка Не-Ne лазера, що випромінював на довжині хвилі λ=633 нм. могла плавно змінюватися в широких межах за допомогою системи з двох поляризаційних призм і контролювалася фотодіодом PD₃. Тестування здійснювалося слабким пучком іншого Не-Ne лазера, інтенсивність якого до плівки (I_{2}) та після плівки з БР (I_{1}) вимірювалася за допомогою фотодіодів PD₂ та PD₁, відповідно. Оптична густина плівки визначалася як $D = lg(I_2/I_1)$.

Площина поляризації тестуючого пучка могла повертатися за допомогою пластинки $\lambda/2$. В ході експерименту визначалася оптична густина зразка при паралельній (D_{\parallel}) та ортогональній (D_{\perp}) орієнтації поляризації тестуючого пучка відносно поляризації збудження.

На рис. 4 (точки) зображено залежність оптичної густини зразка D_{\parallel} та D_{\perp} від інтенсивності збуджуючого пучка. Як видно з одержаних результатів, під дією світла відбувається фотознебарвлення

желатинової плівки з WT БР, яке носить анізотропний характер.

Рис.4. Залежність стаціонарних значень оптичної густини D_{\parallel} та D_{\perp} желатинової плівки з WT БР від інтенсивності збуджуючого пучка I (точки – результати експерименту, криві – результати розрахунку).

Для характеристики оптичної анізотропії зразка визначався фотоіндукований макроскопічний дихроїзм $\Delta D = D_{\perp} - D_{\parallel}$, залежність якого від інтенсивності збуджуючого пучка зображено рис.5 (точки). При на збільшенні інтенсивності збудження дихроїзм спочатку зростає, досягаючи максимуму, а потім починає спадати внаслідок насичення середовища.

Рис.5. Залежність фотоіндукованого дихроїзму ΔD від інтенсивності лінійно поляризованого збуджуючого пучка на λ =633 нм (точки – результат експерименту, криві – результати

розрахунку при різних значеннях молекулярного дихроїзму).

2. Модель анізотропної фотоселекції БР молекул в пурпурній мембрані з гексагональною кристалічною решіткою тримерів з врахуванням впорядкованості БР молекул в тримері під кутами 120°

bR570 Інтермедіати i M412 v полімерних плівках із БР є найбільш заселеними. Це можливість да€ використовувати в більшості випадків фотоциклу, спрощену схему яка вихідної форми складається тільки 3 фотоциклу bR570 (B) та найбільш довгоживучого інтермедіата M412 (M) [5]. Під дією світла, що попадає тільки в смугу поглинання вихідної форми В, частина молекул переходить із форми В у інтермедіат Розподіл концентрації молекул між M. вихідною формою В (N^B) та інтермедіатом М (N^{M}) у цьому випадку описується наступним балансним рівнянням:

$$\frac{dN^B}{dt} = k_d N^M - k N^B, \qquad (1)$$

де
$$k = \sigma^B A^{B \to M} \frac{I\lambda}{hc}$$

фотоіндукованого переходу В \rightarrow М (σ^B – переріз поглинання молекул на довжині хвилі збуджуючого випромінювання для форми В; $A^{B\rightarrow M}$ – квантовий вихід переходу В \rightarrow M, $I\lambda/hc$ – густина потоку фотонів), а $k_d = 1/\tau$ – швидкість темнової релаксації М \rightarrow В (τ – час спонтанного переходу М \rightarrow В). У довільний момент часу $N^B + N^M = N_0$, де N_0 – повна концентрація молекул, що беруть участь у фотоциклі.

В загальному випадку анізотропно поглинаюча молекула може бути апроксимована двома взаємоортогональними лінійними осциляторами. При збудженні лінійно поляризованим світлом залежність перерізу поглинання молекули від кута φ між довгою віссю поглинання молекули та вектором напруженості електричного поля набуває вигляду (рис. 6):

$$\sigma^{B}(\varphi) = \sigma_{\parallel}^{B} \cos^{2} \varphi + \sigma_{\perp}^{B} \sin^{2} \varphi , \qquad (2)$$

де σ_{\parallel}^{B} і σ_{\perp}^{B} – перерізи поглинання світла, поляризованого паралельно та перпендикулярно до довгої осі поглинання молекули, відповідно.

Рис.6. Переріз поглинання молекулою БР лінійно поляризованого світла.

Анізотропне поглинання молекулою описується за допомогою молекулярного дихроїзму $K^{B} = \sigma_{\perp}^{B} / \sigma_{\parallel}^{B}$.

У вихідному стані анізотропно поглинаючі молекули формі В В рівномірно розподілені за усіма можливими орієнтаціями в площині плівки (плівка ізотропна) і питома кутова концентрація молекул БР становить:

$$n_0 = \frac{\partial N^B}{\partial \varphi} = \frac{N_0}{2\pi} \,. \tag{3}$$

Оскільки імовірність фототрансформації В \rightarrow М залежить від орієнтації молекул БР в площині зразка, то під дією лінійно поляризованого світла у стаціонарному стані ($\frac{dN^B}{dt} = 0$) встановлюється неоднорідний розподіл питомої кутової концентрації молекул БР у формі В:

$$n_B(\varphi) = \frac{n_0}{1 + a \cdot \left(\cos^2 \varphi + K^B \sin^2 \varphi\right)}, \qquad (4)$$

де $a = k/k_d$ – безрозмірний параметр, що визначає співвідношення між швидкостями фотоіндукованого переходу В \rightarrow М та темнової релаксації М \rightarrow В і пропорційний інтенсивності збуджуючого випромінювання.

Таким чином імовірність знаходження молекули в вихідному стані bR570 буде визначатися орієнтацією довгої осі

поглинання молекули БР відносно поляризації збудження:

$$p^{B}(\varphi) = \frac{n^{B}(\varphi)}{n_{0}}.$$
(5)

Оскільки фрагменти пурпурних мембран, а отже і тримери в них, хаотично орієнтовані, то для розрахунку оптичної густини можна вважати, що і молекули БР хаотично орієнтовані у площині плівки. Оптична густина плівки при цьому визначається як:

$$D_{\parallel} - D_{sat} = \frac{2(D_0 - D_{sat})}{N_0} \frac{1}{1 + K^B} \times \\ \times \int_0^{2\pi} n^B(\varphi) (\cos^2 \varphi + K^B \sin^2 \varphi) d\varphi, \qquad (6)$$

$$D_{\perp} - D_{sat} = \frac{2(D_0 - D_{sat})}{N_0} \frac{1}{1 + K^B} \times \\ \times \int_0^{2\pi} n^B(\varphi) (\sin^2 \varphi + K^B \cos^2 \varphi) d\varphi, \qquad (7)$$

де D_{\perp} і D_{\parallel} – оптичні густини зразка при променем, поляризованим тестуванні перпендикулярно паралельно та до наведеної оптичної осі, відповідно; К^В – молекулярний дихроїзм; $D_0 = N_0 \sigma_{\parallel}^B (1 + K^B) d_0 / \ln 10$ оптична густина зразка в незбудженому стані (d_0 – D_{sat} – товщина зразка); залишкове поглинання в стані глибокого насичення. Інтегрування (6) та (7) дає:

$$D_{\parallel} - D_{sat} = \frac{2(D_0 - D_{sat})}{a(1 + K^B)} \times \left(1 - \frac{1}{\sqrt{(1 + a)(1 + K^B a)}}\right),$$
(8)
$$D_{\perp} - D_{sat} = \frac{2(D_0 - D_{sat})}{a(1 + K^B)} \times \left(\frac{1 + a + K^B a}{\sqrt{(1 + a)(1 + K^B a)}} - 1\right).$$
(9)

На рис. 4 (криві) зображено розраховану згідно (8) та (9) залежність оптичної густини зразка D_{\parallel} та D_{\perp} від параметра a, пропорційного інтенсивності збудження. Деякі розходження між результатами розрахунку та експерименту можуть бути пов'язані із залежністю часу τ темнового спонтанного переходу $M \rightarrow B$ від інтенсивності збуджуючого випромінювання, що попадає в смугу поглинання вихідної форми В [8].

При цьому в полімерних плівках із БР під дією лінійно поляризованого світла наводиться макроскопічний дихроїзм:

$$D_{\perp} - D_{\parallel} = \frac{4(D_0 - D_{sat})}{a(1 + K^B)} \times \left(\frac{2 + a + K^B a}{2\sqrt{(1 + a)(1 + K^B a)}} - 1\right).$$
 (10)

Рис.7. Орієнтація молекул тримера відносно поляризації збуджуючого світла.

На рис.5 (криві) наведено результат розрахунку залежності наведеного макроскопічного дихроїзму $D_{\perp} - D_{\parallel}$ від параметра а, пропорційного інтенсивності збудження, декількох при різних значеннях молекулярного дихроїзму WT БР у вихідній формі В. Найкраще узгодження результатів розрахунку та експерименту досягається при $K^{B} = 0.04$.

3. Спрямоване фотоактивування однієї, двох чи трьох БР молекул в тримері

Позначимо молекули БР у тримері індексами *a*, *b* та *c* (рис. 7). Будемо визначати орієнтацію тримера за орієнтацією молекули а. Нехай між поляризацією збудження та напрямком поглинання довгої oci молекули а утворюється кут ф_{tr}. Оскільки молекули b та с будуть повернуті додатково на кути $2\pi/3$ $4\pi/3$. імовірність та то знаходження молекул а, b та с тримера в вихідному стані В визначається як:

$$p_x = p^B (\varphi_{tr} + 2\pi i/3), \qquad (11)$$

де i = 0,1,2 при x = a,b,c, відповідно.

В плівці утворюється чотири типи тримерів – з усіма молекулами у вихідному стані В та з однією, двома та трьома молекулами в інтермедіаті М. Концентрація таких тримерів визначається як:

$$n_0^{tr}(\varphi_{tr}) = \frac{1}{3} p_a p_b p_c n_0; \qquad (12)$$

$$n_{1}^{tr}(\varphi_{tr}) = \frac{1}{3} [p_{a}p_{b}(1-p_{c}) + \dots + p_{b}p_{c}(1-p_{a}) + p_{a}p_{c}(1-p_{b})]n_{0}; \quad (13)$$

Рис.8. Залежність імовірності знаходження в тримері однієї, двох та трьох молекул в інтермедіаті М від кута повороту тримера φ_{tr} при збудженні лінійно поляризованим пучком Не-Ne лазера з інтенсивністю, що відповідає максимуму фотоіндукованого дихроїзму.

$$n_{2}^{tr}(\varphi_{tr}) = \frac{1}{3} [p_{a}(1-p_{b})(1-p_{c}) + \dots + p_{b}(1-p_{c})(1-p_{a}) + \dots ; (14) \dots + p_{c}(1-p_{a})(1-p_{b})]n_{0}$$

$$n_{3}^{tr}(\varphi_{tr}) = \frac{1}{3} (1-p_{a})(1-p_{b})(1-p_{c})n_{0} . (15)$$

Оскільки В різних фрагментах пурпурних мембран тримери будуть повернуті на різні кути по відношенню до поляризації збуджуючого напрямку променя, то загальна концентрація тримерів певного типу визначається як:

$$N_i^{tr} = \int_0^{2\pi} n_i^{tr} (\varphi_{tr}) d\varphi_{tr} , \qquad (16)$$

де i = 0,1,2,3 — кількість молекул в інтермедіаті М у тримері.

На рис.8 наведено розрахунок залежності імовірності знаходження в тримері однієї,

двох та трьох молекул в інтермедіаті М від кута повороту тримера ϕ_{tr} при збудженні лінійно поляризованим пучком Не-Ne лазера з інтенсивністю, що відповідає максимуму фотоіндукованого макроскопічного дихроїзму у желатиновій плівці WT БР (a=3.85). Видно, що для всіх значень φ_{tr} імовірності фотоактивування однієї, двох та трьох БР молекул в тримері суттєво відрізняються. Це надає змогу спрямованого фотоактивування однієї, БΡ двох чи трьох молекул В

Рис.9. Розрахунок залежності імовірності знаходження в тримері WT BR однієї, двох та трьох молекул в інтермедіаті M від інтенсивності збуджуючого лінійно поляризованого пучка He-Ne лазера.

тримері за допомогою зміни інтенсивності поляризованого лінійно збуджуючого світла [9]. На рис.9 показано результат розрахунку залежності імовірності фотознебарвлення (знаходження в інтермедіаті М) однієї, двох та трьох молекул у БР тримері від інтенсивності збудження. При невеликих інтенсивностях збудження переважають тримери з однією молекулою y інтермедіаті M. I3 інтенсивності збільшенням збудження кількість молекул загальна V Μ i відповідно імовірність появи тримерів з двома збудженими молекулами зростає. При високих інтенсивностях, шо відповідають глибокому насиченню, більшість молекул переходить у М, що відповідає переважно тримерам з трьома збудженими молекулами. Дуже важливим

що внаслідок насичувального € те, анізотропної нелінійності характеру можна виділити області інтенсивностей в яких виникає переважно певний тип тримерів [10]. Таким чином, встановлюючи спеціально підібрану інтенсивність світла, можна збудити в плівці з БР тримери певного типу з однією, двома чи трьома молекулами в інтермедіаті М. При збуджені плівки з WT БР лінійно поляризованим пучком Не-Ne лазера з інтенсивністю до 20 мВт/см² будуть утворені переважно тримери з однією молекулою в інтермедіаті М, при збуджені з інтенсивністю близькою до 250 мBt/cm^2 тримери 3 лвома молекулами в М, а при збуджені з інтенсивністю більш ніж 2000 мВт/см² – з трьома молекулами в М.

З іншого боку, безрозмірний параметр (рис.9) залежить не тільки a віл збудження, інтенсивності але i від швидкості темнової релаксації М→В, що визначається часом τ спонтанного темнового переходу М→В. Час темнової релаксації т відрізняється у WT БР та його генетичних мутантах і також залежить від оточення БР молекули [11]. Таким чином, впливати на імовірність спрямованого фотоактивування однієї, двох чи трьох БР молекул тримері можна в i використовуючи генетичні мутанти БР або модифікуючи оточення БР молекули.

Висновки

1. Імовірність поглинання лінійно поляризованого світла молекулою БР залежить від кута орієнтації диполя молекули відносно напрямку поляризації збуджуючого світла.

2. Розроблена модель анізотропної фотоселекції БР молекул в пурпурній мембрані з гексагональною кристалічною решіткою тримерів з врахуванням впорядкованості БР молекул в тримері під різними кутами.

3. Показано, що встановлюючи спеціально підібрану інтенсивність збуджуючого світла, можна спрямовано створювати БР тримери з однією, двома чи трьома молекулами в інтермедіаті М412. Таким чином, утворюється двовимірна гексагональна кристалічна решітка з

періодом 62 Å, в вузлах якої управління кількістю фотоактивованих молекул здійснюється за допомогою

випромінювання малопотужних газових чи напівпровідникових лазерів.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- Oesterhelt D. Rhodopsin-Like Protein from the Purple Membrane of Halobacterium Halobium / D. Oesterhelt, W. Stoeckenius W. // Nat. New Biol. – 1971. – Vol.233. – P.149-152.
- Vsevolodov N.N. Biomolecular Electronics. An Introduction via Photosensitive Proteins / N. N. Vsevolodov. – Boston: Birkhauser, 1998. – 275 p.
- Dyukova T. Optical and Electrical Characterization of Bacteriorhodopsin Films / T. Dyukova, B. Robertson, H. Weetall // Biosystems. – 1997. – Vol.41. – P.91-98.
- 4. Balashov S. P. Bacteriorhodopsin/ S. P. Balashov, J. K. Lanyi // Microbial Bionanotechnology (Edited by B. Rehm). Horizon Press, London, 2006. P.339-365.
- Hampp N. Nanobiotechnology Enables New Opportunities in Material Sciences: Bacteriorhodopsin as a First Example/ N. Hampp N. // Bionanotechnology: Proteins to Nanodevices. (Eds.: V. Renugopalakrishnan, R. V. Lewis) – Springer, Dordrecht, Netherlands, 2006. – P.209-216.
- Wu A. Simultaneous Removal of Thiolated Membrane Proteins Resulting in Nanostructured Lipid Layers/ A. Wu, Z. Jia, A.Schaper, F. Noll, N. Hampp // Langmuir. – 2006. – Vol.22. – P.5213-5216.
- 7. Korchemskaya E. Mechanism of Nonlinear Photoinduced Anisotropy in

Стаття надійшла до редакції 12.05.2016 р.

Bacteriorhodopsin and its Derivatives / E. Korchemskaya, D. Stepanchikov, A. Druzhko, T. Dyukova // Journal of Biological Physics. – 1999. – Vol.24. – pp.201-215.

- Korchemskaya E.Y. Dynamic Polarization Holography for Exploring Photoinduced Reactions in Bacteriorhodopsin / E.Y. Korchemskaya, D.A. Stepanchikov // Optical Memory and Neural Networks. – 2001. – Vol.10, No.3. – P.137-146.
- 9. Korchemskaya E. Optical Nanobiomaterial Bacteriorhodopsin for Dynamic Information Processing E. Korchemskaya, Stepanchikov, D. N. Burykin, A. Savchuk, S. Balashov // Works of Scientific the Eleventh International Young Scientists Conference "Optics & High Technology Material Science" – Kiev, Ukraine, 2010. – P.244.
- 10. Savchuk A. Adjustment of Native Nanostructure of Bacteriorhodopsin Molecules by Low-Power CW Gas Laser Irradiance/ A. Savchuk, D. Stepanchikov, Burykin, E. Korchemskava N. Proceedings of the XIII International Conference on Physics and Technology of Thin Films and Nanosystems. - Ivano-Frankivsk, Ukraine, 2011. - Vol.2. - P. 195-196.
- Korchemskaya E. Photoinduced Anisotropy in Chemically-modified Films of Bacteriorhodopsin and its Genetic Mutants / E. Korchemskaya, D. Stepanchikov, T. Dyukova // Optical Materials. – 2000. – Vol.14. – P.185-191.

Д.А. Степанчиков¹, А.В. Савчук², Е.Я. Корчемская^{2,3}

¹Житомирский государственный университет, 10008, Житомир, ул. Большая Бердичевская 40 ²Международный Центр «Институт прикладной оптики» НАН Украины, 01054, Киев, ул. Кудрявская 10г

³Институт физики НАН Украины, 03028, Киев, пр. Науки 46

АНИЗОТРОПНАЯ ФОТОСЕЛЕКЦИЯ МОЛЕКУЛ БАКТЕРИОРОДОПСИНА В ПУРПУРНОЙ МЕМБРАНЕ С ГЕКСАГАНАЛЬНОЙ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКОЙ ТРИМЕРОВ

Исследовано изменение оптической плотности и наведение дихроизма в полимерных пленках с бактериородопсином (БР) под действием линейно поляризованного света. Проведено анализ полученных результатов в рамках модели анизотропной фотоселекции молекул БР в пурпурной мембране с гексагональной кристаллической решеткой тримеров с учетом упорядоченности молекул БР в тримере под углами 120°. Показано, что устанавливая специально подобранную интенсивность возбуждающего света, можно целенаправленно создавать БР тримеры с одной, двумя или тремя молекулами в наиболее долгоживущем интермедиате фотоцикла М412.

Ключевые слова: органический наноматериал, бактериородопсин, нелинейнооптические методы, линейно поляризованный свет, анизотропия наноструктур.

PACS 78.66.Qn

D.A. Stepanchikov¹, A.V. Savchuk², E.Ya. Korchemskaya^{2,3} ¹Zhytomir State University, 10008, Zhytomir, 40 Velyka Berdychivska St. ²International Center "Institute of Applied Optics" NAS Ukraine, 01054, Kiev, 10g Kudryavskaya St. ³Institute of Physics NAS Ukraine, 03028, Kiev, 46 Prospect Nauki.

ANISOTROPIC PHOTOSELECTION OF THE BACTERIORHODOPSIN MOLECULES IN THE PURPLE MEMBRANE WITH HEXAGONAL CRYSTALLINE LATTICE OF TRIMERS

Introduction: In the purple membrane fragment, bacteriorhodopsin (BR) molecules are arranged at 120 degrees into trimers forming a two-dimensional hexagonal crystalline lattice with a space of 62 Å. BR has gained acceptance as the multifunctional nanomaterial. However, the potentials of a light impact on the creation of nanostructures with BR were not considered previously.

Purpose: The aim of this work is to develop a method of the directed photobleaching of one, two or three molecules in the BR trimer through the variation of intensity of linearly polarized light beam.

Methods: We experimentally studied the optical density changes and photoinduced dichroism in the BR films as a function of the intensity of linearly polarized light beam which excites the initial form of photocycle bR570.

Results: An experimental dependence of the macroscopic photoinduced dichroism was modeled taking into account the trimer orientation angle relatively to the direction of the exciting beam polarization. From a value of the macroscopic photoinduced dichroism, we determine a quantity of the photobleaching BR molecules in trimers at given light intensity.

Conclusion: Thus a probability of a transformation to the intermediate M412 of one, two or three molecules in BR trimers is a function of intensity of the linearly polarized exciting light beam. We found that control of a quantity of BR molecules

Науковий вісник Ужгородського університету. Серія Фізика. Випуск 39. – 2016

in the M412 intermediate at sites in the hexagonal crystalline lattice with a space of 62 Å could be performed by the low-power cw He-Ne laser irradiance. **Keywords:** organic nanomaterial, bacteriorhodopsin, nonlinear optical methods, linearly polarized light, nanostructure anisotropy. PACS Number: 78.66.Qn

REFERENCES

- 1. Oesterhelt, D., Stoeckenius, W. (1971), "Rhodopsin-Like Protein from the Purple Membrane of Halobacterium Halobium", Nat. New Biol, Vol.233, pp.149-152.
- Vsevolodov, N.N. (1998), Biomolecular Electronics. An Introduction via Photosensitive Proteins, Birkhauser, Boston, 275 p.
- 3. Dyukova, T., Robertson, B., Weetall, H. (1997), "Optical and Electrical Characterization of Bacteriorhodopsin Films", Biosystems, Vol.41, pp.91-98.
- Balashov, S.P., Lanyi, J.K. (2006), "Bacteriorhodopsin", Microbial Bionanotechnology (Edited by B. Rehm), Horizon Press, London, pp.339-365.
- Hampp, N. (2006), "Nanobiotechnology Enables New Opportunities in Material Sciences: Bacteriorhodopsin as a First Example", Bionanotechnology: Proteins to Nanodevices. (Eds.: V. Renugopalakrishnan, R. V. Lewis), Springer, Dordrecht, Netherlands, pp.209-216.
- Wu, A., Jia, Z., Schaper, A., Noll, F., Hampp, N. (2006) "Simultaneous Removal of Thiolated Membrane Proteins Resulting in Nanostructured Lipid Layers", Langmuir, Vol.22, pp.5213-5216.
- Korchemskaya, E., Stepanchikov, D., Druzhko, A., Dyukova, T. (1999), "Mechanism of Nonlinear Photoinduced Anisotropy in Bacteriorhodopsin and its

Derivatives", Journal of Biological Physics, Vol.24, pp.201-215.

- Korchemskaya, E.Y., Stepanchikov, D.A. (2001), "Dynamic Polarization Holography for Exploring Photoinduced Reactions in Bacteriorhodopsin", Optical Memory and Neural Networks, Vol.10, No.3, pp.137-146.
- 9. Korchemskaya, E., Stepanchikov, D., Burykin, N., Savchuk, A., Balashov, S. (2010),"Optical Nanobiomaterial Bacteriorhodopsin for Dynamic Information Processing", Scientific Works of the Eleventh International Young Scientists Conference "Optics & High Technology Material Science", Kiev, Ukraine, p.244.
- 10. Savchuk, A., Stepanchikov, D., Burykin, N., Korchemskaya, E. (2011) "Adjustment of Native Nanostructure of Bacteriorhodopsin Molecules by Low-CW Gas Laser Irradiance", Power Proceedings of the XIII International Conference on Physics and Technology of Thin Films and Nanosystems, Ivano-Frankivsk, Ukraine, Vol.2, pp. 195-196.
- 11. Korchemskaya, E., Stepanchikov, D., Dyukova T. (2000), "Photoinduced Anisotropy in Chemically-modified Films of Bacteriorhodopsin and its Genetic Mutants", Optical Materials, Vol.14, pp.185-191.

© Ужгородський національний університет