УДК 539.186.188 В.В. Грицько, О.О. Боровик

Інститут електронної фізики НАН України, 88017, Ужгород, вул. Університетська, 21 e-mail: shargov11@gmail.com

ЕКСПЕРИМЕНТАЛЬНА УСТАНОВКА ДЛЯ ДОСЛІДЖЕННЯ ЕЛЕКТРОННИХ СПЕКТРІВ АТОМІВ ЛУЖНОЗЕМЕЛЬНИХ МЕТАЛІВ

Для досліджень з високотемпературними парами лужноземельних атомів на експериментальній установці «Електронний спектрометр» розроблена нова конструкція джерела атомного пучка, яка розрахована на температури випаровування до 700°С. Проведені перші контрольні виміри електронних спектрів атомів барію в діапазоні енергій зіткнень 15-110 еВ з енергетичною роздільною здатністю 0,05-0,08 еВ та моноенергетичністю первинного електронного пучка 0,25-0,3 еВ. Здійснена спектроскопічна ідентифікація ліній, які спостерігалися в спектрах розсіяних та ежектованих електронів.

Ключові слова: атомний пучок, автоіонізація, електрон, ежектовані електрони, електронні спектри.

Вступ

Процеси автоіонізації та резонансного збудження можуть суттєво впливати на параметри різних типів плазмових середовищ. Відомо [1], що домінуючу роль у припороговому збудженні автоіонізаційних станів (AIC) атомів лужних металів відіграють резонанси негативних іонів. У більш складних за будовою зовнішніх електронних оболонках атомів лужноземельних металів, де кореляційні процеси значно ефективніші, роль негативних іонів у збудженні автоіонізаційних станів повинна бути ще вагомішою. Вплив на зарядовий та енергетичний баланс низькотемпературної плазми [2] та вирішальна роль процесу автоіонізації в іонізації та збудженні атомів вказує на прикладне значення таких досліджень.

Відомі два найбільш поширені напрямки експериментальних досліджень автоіонізації атомів. Перший включає в себе вимірювання параметрів утворення, другий – параметрів розпаду АІС. У першому випадку застосовується метод фотопоглинання та спектроскопія втрат енергій розсіяних електронів, у другому - радіаційна, електронна і мас-спектрометрія. Оскільки для більшості типів АІС домінує електронний канал розпаду, головну роль у цих дослідженнях відіграє саме електронна спектроскопія. Використання цього методу разом із технікою атомного і електронного пучків, що перетинаються, дає можливість отримати різноманітну інформацію про процес збудження і розпаду AIC атомів та іонів. Слід зазначити, що процес збудження атомів електронним ударом при великих енергіях зіткнень, за своїм характером подібний до фотонного збудження. Це робить можливим порівняння електронних спектрів зі спектрами фотопоглинання.

У проведених раніше експериментах [3, 4] було досліджено і проаналізовано спектр поглинання 4р оболонки атомів Ва в інтервалі довжин хвиль 10-200 Å. У роботі [5] з невеликою роздільною здатністю було вивчено спектр ежектованих електронів атомів барію, збуджених електронним ударом у діапазоні енергій 20-500 eB.

У даній роботі представлено опис експериментальної установки «Електронний спектрометр», методику експерименту та перші результати вимірів електронних спектрів атомів барію.

Експериментальна установка та методика експерименту

Установка «Електронний спектро-

метр» складається з таких основних вузлів: системи вакуумної відкачки, джерела первинних електронів, аналізатора енергій електронів, електростатичного монохроматора енергії електронів, джерела атомного пучка та системи детектування корисного сигналу (див. рис. 1). В основу методики досліджень покладені електронна спектроскопія та техніка електронного і атомного пучків, що перетинаються під кутом 90°.

Рис. 1. Блок-схема експериментальної установки «Електронний спектрометр» для дослідження електронних спектрів атомів металів: ВСВ – вакуумна система відкачки, ВК - вакуумна камера, ЕМ – електростатичний монохроматор, КЗ – камера зіткнень, АЕЕ – аналізатор енергій електронів, ДАП – джерело атомного пучка, ПЕ – приймач електронів, АСР – автоматизована система реєстрації, СЖ – система живлення.

Система вакуумної відкачки складається з механічного форвакуумного насоса НВР-16Д, дифузійного паромасляного насоса НВД-0.15 і магніторозрядного насоса НМД-0.4.1. Така система забезпечує робочий тиск у камері спектрометра ≤ 10⁻⁷ Тор.

Як джерело первинних електронів 127° циліндричний використовується електростатичний монохроматор. Електрони, утворені вольфрамовим катодом, скеровувались вхідною електронно-оптичною системою на вхід 127° електростатичного конденсатора і після енергетичної селекції через вихідну лінзу потрапляли до камери зіткнень. Кутове розходження пучка електронів на виході не перевищує 4° в робочому діапазоні енергій 5-110 eB. Енергетична роздільна здатність монохроматора сягає 0.12 еВ.

Для енергетичного аналізу ежектованих та розсіяних електронів використовується 127° електростатичний аналізатор, розташований під кутом 54.7° до первинного пучка електронів. Енергетична роздільна здатність аналізатора становить 0.05-0.08 eB.

Конструкція джерела атомного пучка представлена на рис. 2. Нова конструкція резистивного нагрівача, система теплових розв'язок та екранів дає збільшення робочої температури вище 600°С. Використання біфілярного типу намотування нагрівача та наявність транспортного каналу дозволили мінімізувати власне магнітне поле джерела.

Рис. 2. Конструкція джерела атомного пучка: 1 – колімаційний канал; 2 – транспортний канал; 3,4,5,12 – теплові екрани; 6 – нагрівач; 7 – робоча речовина; 8 – несучий фланець; 9 – виводи нагрівача; 10 – термопара; 11 – система охолодження атомної гармати.

Система детектування корисного сигналу складається з канального детектора електронів (ВЕП-6), попереднього широкосмугового підсилювача, формувача стандартного TTL сигналу і системи накопичення імпульсів (інтерфейсна карта SI 8255 та персональний комп'ютер) [6].

На рис. З показано взаємне розташування основних вузлів спектрометра. Методика роботи з установкою полягає у наступному. Після одержання в камері спектрометра робочого вакууму, проводилось налаштування монохроматора з метою одержання стабільного електронного пучка з необхідною інтенсивністю та моноенергетичністю, а також аналізатора енергій розсіяних електронів. Температура джерела атомного пучка також поступово підвищується. Первинні електрони в камері зіткнень перетинаються з атомним пучком під кутом 90°. Подальше збільшення температури джерела атомного пучка призводить до появи в спектрах енергетичних втрат електронів ліній, що відповідають збудженню найнижчих рівнів досліджуваних атомів. Розсіяні та ежектовані електрони під кутом 54.7° до напрямку пучка первинних електронів потрапляли у вхідну електронно-оптичну систему 127° аналізатора енергії електронів. Після енергетичного аналізу електрони потрапляли на вхід вторинного електронного помножувача, з якого корисний сигнал потрапляв автоматичної ДО системи реєстрації.

Для перевірки працездатності нової конструкції джерела атомного пучка проведені дослідження електронних спектрів атомів барію в діапазоні енергій первинних електронів $E_0=15-110$ еВ. Концентрація нейтральних атомів у зоні зіткнень становила 10^{12} ат/см³, вакуум протягом вимірів був не гірше 10^{-7} Тор.

Рис. 3. Основні елементи спектрометра: К – катод; L1,..,L6 – система електронно-оптичних лінз; АГ – атомна гармата; ПЕ – приймач електронів; ВЕП – вторинний електронний помножувач.

Перед та після вимірювання спектрів ежектованих електронів проводились виміри тестових спектрів при фіксованому зна-

ченні енергії первинних електронів E₀. Таким чином контролювалась стабільність параметрів експерименту. Якщо умови експерименту змінювалися, то порівняння тестових спектрів давало змогу вводити корекційні фактори для визначення істинних інтенсивностей ліній в основних спектрах ежектованих електронів.

Результати досліджень та їх обговорення

На рис. 4 представлений електронний спектр атомів барію для значень енергії налітаючих електронів $E_0 = 41,62$ eB. Спектр має складну структуру, зумовлену щільним розташуванням ліній. Лише лінії 5, 11, 18 і 35 досить чітко розділені. У спектрі ідентифіковано 28 ліній. Лінії від 5 відповідають розпалу іонних по 35 автоіонізаційних станів, тоді як лінії від 37 відображають розпад атомних по 79 автоіонізаційних станів. Спектроскопі чна ідентифікація деяких з цих станів зроблена на основі даних [7] і приведена в таблиці 1.

Рис. 4. Спектр ежектованих електронів атомів Ва при енергії зіткнень 41,62 еВ.

Зі спектра видно, що найкраще розділені лінії, які відносяться до розпаду іонних автоіонізаційних станів 5р5n111n212. Лінії з номерами від 5 по 18 а також 22, 35, 48 і 60 відповідають розпаду автоіонізаційних станів у основний 5р6 ${}^{1}S_{0}$ - стан.

На рис. 5 представлений спектр ежектованих електронів атомів барію при енергії зіткнень $E_0=101,62$ еВ. В діапазоні енергій ежектованих електронів $E_{ex} = 6-14$ еВ у спектрі спостерігається 63 лінії.

Нами на основі даних роботи [7] проведена ідентифікація і спектроскопічна класифікація ліній, що спостерігаються в електронних спектрах атомів барію. Результати наведені в таблиці 1.

Зауважимо, що лінії 18, 35 є найбільш інтенсивними та добре розділеними і вони ототожнені з Оже-переходами $5p^{5}6s^{2}{}^{2}P_{3/2,1/2} \rightarrow 5p^{61}S_{0}$.

Таблиця 1

Енергії збудження Е_{еж} (eB) та спектроскопічна класифікація ліній, що спостерігаються в електронних спектрах атомів барію при енергіях зіткнень 15-110 eB

	Е _{еж}				E _{eж}		
Лінія	Наші	дані	Класифікація [7]	Лінія	Наші	дані	Класифікація [7]
	дані	[7]	-		дані	[7]	-
1	5.46	-	?	41	10.32	10.33	?
2	5.58	-	?	42	10.43	10.45	$5p^{5}n_{1}l_{1}n_{2}l_{2}\rightarrow 5p^{6}{}^{1}S_{0}$
3	5.69	-	?	43	10.56	10.60	$5p^{3}6s^{2}5d^{3}P_{1} \rightarrow 5p^{6}6d^{2}D$
4	5.79	5.81	$5p^{3}5d(^{3}P)6s^{4}P_{3/2} \rightarrow 5p^{0}S_{0}$	44	10.66	-	?
5	5.93	5.90	$5p^{3} 5d(^{3}P)6s^{4}P_{3/2} \rightarrow 5p^{6} ^{1}S_{0}$	45	10.84	10.87	?
6	5.96	5.96	$\frac{5p^{5}n_{1}l_{1}n_{2}l_{2} \rightarrow 5p^{5} S_{0}}{55}$	46	10.93	-	?
7	6.05	6.03	$5p^{\circ} 5d({}^{\circ}P)6s^{\circ}P_{1/2} \rightarrow 5p^{\circ} {}^{\circ}S_{0}$	47	11.07	11.10	$5p^{\circ}n_{1}l_{1}n_{2}l_{2} \rightarrow 5p^{\circ}S_{0}$
8	6.20	6.20	$5p^{\circ} 5d({}^{\circ}P)6s^{\circ}F_{7/2} \rightarrow 5p^{\circ} 1S_0$	48	11.16	-	?
9	6.32	6.29	$5p^{\circ} 5d({}^{\circ}P)6s^{\circ}F_{5/2} \rightarrow 5p^{\circ} 1S_0$	49	11.24	11.25	$5p^{\circ}5d6s^{2}P_{1/2,3/2} \rightarrow 5p^{\circ}^{-1}S_{0}$
10	6.44	6.47	$\frac{5p^{\circ} 5d({}^{\circ}P)6s^{\circ}P_{3/2} \rightarrow 5p^{\circ} S_0}{5p^{\circ} 5p^{\circ} S_0}$	50	11.30	11.32	?
11	6.51	6.54	$\frac{5p^{*}n_{1}l_{1}n_{2}l_{2} \rightarrow 5p^{*}S_{0}}{5p^{*}s_{0}}$	51	11.41	11.39	?
12	6.67	6.64	$5p^{*}n_{1}l_{1}n_{2}l_{2} \rightarrow 5p^{*}S_{0}$	52	11.53	11.56	?
13	6.80	6.82	$5p^{-}5d(-F)\delta S F_{5/2} \rightarrow 5p^{-}S_{0}$	55	11.01	11.64	<u> </u>
14	0.89	0.88	$\frac{5p^{\circ}n_{1}l_{1}n_{2}l_{2} \rightarrow 5p^{\circ}S_{0}}{5r^{5}r_{1}l_{1}r_{1}l_{2} \rightarrow 5r^{6}l_{2}S_{0}}$	54	11.70	-	$\frac{1}{5\pi^5(-2/2\mathbf{D})}$ and $5\pi^6(7-2\mathbf{C})$
15	7.07	7.08	$\frac{5p n_1 n_1 n_2 n_2 \rightarrow 5p S_0}{5n^5 n_1 n_1 \dots 5n^6 n_1 S}$	55	11./8	11./0	$\frac{\text{Sp os (} P_{3/2})\text{nd} \rightarrow \text{Sp /s } S_{1/2}}{2}$
10	7.17	7.20	$\xrightarrow{\text{ sp } n_1 n_2 n_2 \rightarrow \text{ sp } s_0}_2$	50	11.8/	-	<u>'</u>
17	7.20	- 7.52	$5n^{5}6a^{22}\mathbf{P} \rightarrow 5n^{61}\mathbf{S}$	59	12.04	-	$5n^{5}6a^{2}5d^{3}D$ $5n^{6}5d^{2}D$
10	7.51	1.55	$\frac{3p \text{ os } \mathbf{r}_{3/2} \rightarrow 5p \text{ s}_0}{2}$	50	12.04	12.05	$5p \text{ os } 5d r_1 \rightarrow 5p 5d D_{3/2}$
20	7.80	- 7.00	$\frac{1}{5n^5n\ln 1}$ $\frac{1}{n\ln 1}$ $\frac{1}{n^5n^66n^2}$ P	59	12.14	12.11	$\frac{5p^{5}n_{1}n_{1}n_{2}n_{2}}{5p^{5}n_{1}n_{1}n_{1}n_{2}} \xrightarrow{5p^{6}} S_{0}^{2}$
20	8.03	7.90	$\frac{5p}{11}\frac{11}{11}\frac{11}{12}\frac{12}{11}\frac{11}{11}\frac{13}{11}\frac$	61	12.21	12.22	$3p n_1 n_2 n_2 n_3 n_3 \rightarrow 3p op r_{1/2}$
21	8.03	8 10	$5n^5n_1l_nl_r \rightarrow 5n^{61}S_2$	62	12.57		2
22	8.28	0.10	<u> </u>	63	12.34 12.70	12.69	$5n^{6}6s^{2}(^{2}P_{1,2})5d^{3}P_{2} \rightarrow 5n^{6}6s^{2}S_{1,2}$
23	8.41	8 4 4	· · ?	64	12.70	12.07	$5p^{6}6s^{2}(^{2}P_{12})nd[3/2]_{1} \rightarrow 5p^{6}7s^{2}S_{1/2}$
25	8 54	8.51	$\frac{1}{5n^5} \frac{1}{n_1 l_1 n_2 l_2 [n_5]_1 \rightarrow 5n^6 6n^2 P_{2/2}}$	65	12.03	-	?
26	8.68	-	?	66	12.99	12.96	$5p^5n_1l_1n_2l_2\rightarrow 5p^66p^2P_{1/2}$
27	8.73	8.73	$5p^5n_1l_1n_2l_2 \rightarrow 5p^{6}S_0$	67	13.07	13.05	$5p^{6}6s^{2}(^{2}P_{1/2})nd[3/2]_{1} \rightarrow 5p^{6}6d^{2}D$
28	8.87	8.85	?	68	13.17	-	?
29	8.94	8.96	?	69	12.30	12.31	$5p^{5}6s^{2}(^{2}P_{3/2})5d^{3}D_{1} \rightarrow 5p^{6}6p^{2}P_{1/2}$
30	9.03	9.05	?	70	13.35	-	?
31	9.11	9.12	?	71	13.51	13.52	$5p^{5}n_{1}l_{1}n_{2}l_{2}n_{3}l_{3} \rightarrow 5p^{6}6p^{2}P_{3/2}$
32	9.19	9.19	?	72	12.69	12.69	$5p^{5}6s^{2}(^{2}P_{1/2}) 5d^{3}P_{1} \rightarrow 5p^{6}6s^{2} S_{1/2}$
33	9.27	-	?	73	13.43	13.41	$5p^5 n_1 l_1 n_2 l_2 n_3 l_3 \rightarrow 5p^6 6p^2 P_{3/2}$
34	9.34	9.31	?	74	13.58	13.60	$5p^{5}6s^{2}(^{2}P_{1/2})5d^{1}P_{1} \rightarrow 5P^{6}p^{2}P_{3/2}$
35	9.53	9.54	$5p^56s^2P_{1/2} \rightarrow 5p^6{}^1S_0$	75	13.79	13.81	$5p^{5}6s^{2}(^{2}P_{1/2})5d^{1}P_{1} \rightarrow 5p^{6}6p^{2}P_{1/2}$
36	9.79	-	?	76	13.90	13.92	$5p^5n_1l_1n_2l_2n_3l_3 \rightarrow 5p^6nl$
37	9.95	9.98	$5p^5 n_1 l_1 n_2 l_2 [ns]_1 \rightarrow 5p^6 5d^2 D_{3/2}$	77	14.15	14.14	$5p^{5}6s^{2}(^{2}P_{3/2})5d^{3}D_{1} \rightarrow 5p^{6}5d^{2}D_{5/2}$
38	10.02	10.02	$5p^{5}n_{1}l_{1}n_{2}l_{2}n_{3}l_{3} \rightarrow 5p^{6}7s^{2}S_{1/2}$	78	14.72	14.71	$5p^{5}6s^{2}(^{2}P_{3/2})nd \rightarrow 5p^{6}5d^{2}D_{3/2}$
39	10.14	10.15	$5p^{5}6s^{2}5d^{3}{}^{2}P_{1} \rightarrow 5p^{6}6p^{2}P_{1/2}$	79	14.91	14.90	$5p^5n_1l_1n_2l_2n_3l_3 \rightarrow 5p^6nl$
40	10.21	-	?				

Рис. 5. Спектр ежектованих електронів атомів Ва при енергії зіткнень 101,62 eB.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- Боровик А.А. Разработка методики, аппаратуры и исследование электронных спектров автоионизационных состояний атомов при электронно-атомных столкновениях. – Ужгород, дис. канд. ф.-.м.н., 1980. – 176 с.
- 2. Голант В.Е., Жилинский А.М., Сахаров С.А., Основы физики плазмы. М.: Атомиздат, 1977. 384 с.
- 3. Connerade J.P. and Mansfield M.W.D. Observation of an 'Atomic Plasmon' Resonance in the Ba I Absorption Spectrum between 10 and 200 angstrom // Proc. R. Soc. A 1974. V. 341. P.267-75.
- 4. Hansen J.E., Flifter A.W. and Kelly H.P. The position of the 4d⁹4f¹P level relative to the ionization limit in Ba I // J.Phys. B:

Стаття надійшла до редакції 01.06.2013

V.V. Hrytsko, A.A. Borovik

Висновки

Модернізовано установку «Електронний спектрометр» для роботи з високотемпературними парами барію. Розроблено та виготовлено нову конструкцію джерела атомного пучка, яке дозволяє працювати з високотемпературними парами атомів металів.

Проведені виміри спектрів ежектованих електронів у діапазоні енергій зіткнень 15-110 еВ. Здійснена ідентифікація ліній, які спостерігалися в електронних автоіонізаційних спектрах.

Встановлено, що головна особливість спектрів ежектованих електронів атомів лужноземельних металів полягає у багатоканальності розпаду АІС, що значно ускладнює структуру і класифікацію спектрів.

Atom. Molec. Phys. – 1974. – V. 8. – P. L127-9.

- Rassi D. and Ross K.J. The ejected-electron spectrum of barium vapour autoionising and Auger levels excited by 20-500 eV electrons // J. Phys. B: At. Mol. Phys. -1980. – V. 13. – P. 4683.
- 6. Borovik A.A. *et al.* Electron impact excitation of the $(3p^54s^2)^2P_{3/2,1/2}$ autoionizing states in potassium // J. Phys. B. – 2005. – V. 38. – P. 1081.
- Боровик А.А., Алексахин И.С., Братцев В.Ф., Купляускене А.В. Возбуждение и электронный распад автоионизационных состояний щелочноземельных атомов. Барий // Опт. и спектр. – 1985. -Т. 58. – в. 3. – С. 988.

Institute of Electron Physics, National Academy of Sciences of Ukraine, 88017, Uzhhorod, Universitetska Str., 21

EXPERIMENTAL APPARATUS FOR INVESTIGATION OF ELECTRONIC SPECTRA OF ALKALINE-EARTH ATOMS

For research on high-temperature alkali-earth vapor atoms on an experimental equipment "Electronic Spectrometer" developed a new atomic beam source design, which is designed for the evaporation temperature to 700°C. Conducted the first test measurements of electronic spectra of barium atoms in the collision energy range 15-110 eV, energy resolution 0,05-0,08eV and FWHM primary electron beam 0,25-0,3 eV. Carried spectroscopic identification of the lines observed in the spectra of scattered and ejected electrons.

Keywords: atomic beam, autoionization, electron, ejected electrons, the electronic spectra.

В.В. Грицко, О.О. Боровик

Институт электронной физики НАН Украины, 88017, Ужгород, ул. Университетская, 21 e-mail: shargov11@gmail.com

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ЭЛЕКТРОННЫХ СПЕКТРОВ АТОМОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Для исследований высокотемпературных паров щелочноземельных атомов на экспериментальной установке «Электронный спектрометр» разработана новая конструкция источника атомного пучка, которая рассчитана на температуры испарения до 700°С. Проведены первые контрольные измерения электронных спектров атомов бария в диапазоне энергий столкновений 15-110 эВ с энергетическим разрешением 0,05-0,08 эВ и моноэнергетичностью первичного электронного пучка 0,25-0,3 эВ. Осуществлена спектроскопическая идентификация линий, наблюдавшихся в спектрах рассеянных и эжектированных электронов.

Ключевые слова: атомный пучок, автоионизация, электрон, испущенные электроны, электронные спектры.