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THE BANACH SPACES Fψ(Ω) OF RANDOM VARIABLES

UDC 519.21

YU. V. KOZACHENKO AND YU. YU. MLAVETS′

Abstract. Some properties of random variables and stochastic processes belonging
to the spaces Fψ(Ω) are studied.

1. Introduction

The Monte-Carlo method for the evaluation of the integrals

I(t) =

∫
. . .

∫
Rd

f(t, �x)p(�x) dx, t ∈ T,

is considered in the paper [1] (also see [2]), where p(�x) is the probability density of a
certain random vector. The integrals considered in [1] depend on a parameter t (the
particular case where the integrals do not depend on a parameter t is also considered
in [1]). Sufficient conditions are found in [1] to evaluate the integrals with a given accuracy
and reliability. The proofs of the results in [1] are based on the methods of the theory of
stochastic processes in Orlicz spaces.

It became evident that the methods used in [1] are more efficient if one uses the so-
called moment norms (more precisely, the Luxemburg norms) which are equivalent to
the usual norms in Orlicz spaces. One can also use the theory of the spaces Fψ(Ω) to
evaluate the integrals with a given accuracy and reliability. The norms in the spaces
Fψ(Ω) are given by

‖ξ‖ψ = sup
u≥1

(E |ξ|u)1/u

ψ(u)
,

where ψ(u) > 0 is a certain increasing function. The spaces Fψ(Ω) are introduced in the
paper [3].

The current paper is devoted to a study of some properties of the spaces Fψ(Ω) that
can be used for the Monte-Carlo method to evaluate the integrals with a given accuracy
and reliability. However, the study of the spaces Fψ(Ω) has its own interest in view of
several other applications, namely for constructing models of stochastic processes, their
approximations, etc.

In a forthcoming paper, we plan to apply the results obtained below for a study of
accuracy and reliability of Monte-Carlo methods.

The paper is organized as follows. Section 2 is devoted to the main properties of the
spaces Fψ(Ω). A relationship between some spaces Fψ(Ω) and Orlicz spaces is considered
in Section 3. Some bounds for the distributions of supremums are obtained in Section 4
for stochastic processes belonging to the spaces Fψ(Ω).
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106 YU. V. KOZACHENKO AND YU. YU. MLAVETS′

2. Fψ(Ω)-spaces

Definition 2.1. Let ψ(u) > 0, u ≥ 1, be an increasing continuous function such that
ψ(u) → ∞ as u → ∞. We say that a random variable ξ belongs to the space Fψ(Ω) if

sup
u≥1

(E |ξ|u)1/u

ψ(u)
< ∞.

It is proved in [3] that Fψ(Ω) is a Banach space with respect to the norm

(1) ‖ξ‖ψ = sup
u≥1

(E |ξ|u)1/u

ψ(u)
.

Remark 2.1. It is obvious that Fψ(Ω) is a normed linear space. The proof that Fψ(Ω)
is a Banach space is similar to the proof of a similar result that every Orlicz space of
random variables is a Banach space (see [4]).

Theorem 2.1. Let a random variable ξ belong to the space Fψ(Ω). Then

(2) P {|ξ| > x} ≤ inf
u≥1

‖ξ‖uψ (ψ(u))u

xu

for all x > 0.

Proof. The Chebyshev inequality implies that

P {|ξ| > x} ≤ E |ξ|u

xu
≤ E |ξ|u (ψ(u))u

(ψ(u))uxu
=

‖ξ‖uψ (ψ(u))u

xu

for all u > 0. �

Example 2.1. Let ψ(u) = uα and α > 0. We show that

P {|ξ| > x} ≤ exp

⎧⎨⎩−α

e

(
x

‖ξ‖ψ

)1/α
⎫⎬⎭

for x ≥ eα ‖ξ‖ψ. Indeed, let b = ‖ξ‖ψ/x. The minimum of the expression buuαu is

attained at the point u = e−1b−1/α. Substituting this number in inequality (2), we prove
the above bound.

Example 2.2. Similarly to Example 2.1, one can show that if ψ(u) = eau and a > 0,
then

P {|ξ| > x} ≤ exp

⎧⎪⎨⎪⎩−

(
ln x

‖ξ‖ψ

)2
4a

⎫⎪⎬⎪⎭
for all x ≥ e2a ‖ξ‖ψ.

Example 2.3. Let ψ(u) = eu
2

. An optimization procedure similar to that in Exam-
ples 2.1 and 2.2 proves that

P {|ξ| > x} ≤ exp

⎧⎪⎨⎪⎩−
2
(
ln x

‖ξ‖ψ

)3/2
33/2

⎫⎪⎬⎪⎭
for all x ≥ e3 ‖ξ‖ψ.
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Fψ(Ω)-SPACES 107

Definition 2.2. We say that Fψ(Ω) is a F̌ψ(Ω)-space if the function ψ(u) is such that

(3) sup
u≥1

ψ(u+ v)

ψ(u)
< ∞

for all v > 0.

Condition (3) obviously holds for the functions

1) ψ(u) = eau
β

if 0 < β ≤ 1 and a > 0,
2) ψ(u) = Auα if α > 0 and A > 0.

Definition 2.3 ([5, 4]). We say that a positive non-decreasing sequence (κ(n), n ≥ 1)
is an M -characteristic (a majorant) of a space Fψ(Ω) if

(4)

∥∥∥∥ max
1≤i≤n

|ξi|
∥∥∥∥
ψ

≤ κ(n) max
1≤i≤n

‖ξi‖ψ

for all random variables ξi, i = 1, 2, . . . , n, belonging to the space Fψ(Ω).

Theorem 2.2. The sequence

(5) κ(n) = sup
u≥1

inf
v>0

n
1

u+v
ψ(u+ v)

ψ(u)

is an M -characteristic (a majorant) of the space Fψ(Ω).

Proof. Let ξ1, ξ2, . . . , ξn be a sequence of random variables belonging to the space Fψ(Ω).
Then∥∥∥∥ max

1≤i≤n
|ξi|
∥∥∥∥
ψ

= sup
u≥1

(E (max1≤i≤n |ξi|)u)1/u

ψ(u)
≤ sup

u≥1

(
E (max1≤i≤n |ξi|)u+v

) 1
u+v

ψ(u)

≤ sup
u≥1

max
1≤i≤n

n
1

u+v

(
E |ξ|u+v

) 1
u+v

ψ(u+ v)
· ψ(u+ v)

ψ(u)

≤ max
1≤i≤n

‖ξi‖ψ sup
u≥1

n
1

u+v
ψ(u+ v)

ψ(u)

for all v > 0. Since v > 0 is an arbitrary number, bound (4) implies Theorem 2.2. �

Example 2.4. Let ψ(u) = eu
2

. Then a majorant of the corresponding space Fψ(Ω) is
equal to

κ(n) = exp

{
3

22/3
(lnn)

2/3 − 1

}
.

The minimum of the expression n
1

u+v ev
2+2uv is attained at the point v = ( 12 lnn)

1/3 − u.
Substituting this number in equality (5), we complete the proof.

The evaluation of a majorant κ(n) is simpler for the spaces F̌ψ(Ω).

Corollary 2.1. A sequence

(6) κ(n) = inf
v>0

z(v)n
1

v+1

is a majorant of the space F̌ψ(Ω), where

z(v) = sup
u≥1

ψ(u+ v)

ψ(u)
.
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108 YU. V. KOZACHENKO AND YU. YU. MLAVETS′

Proof. Indeed, equality (5) implies that

sup
u≥1

inf
v>0

n
1

u+v
ψ(u+ v)

ψ(u)
≤ inf

v>0
sup
u≥1

n
1

u+v
ψ(u+ v)

ψ(u)
= inf

v>0
z(v)n

1
v+1 . �

Example 2.5. Let ψ(u) = eau and a �= 0. Then a majorant is given by

κ(n) = e2
√
a lnn−a.

Example 2.6. Let ψ(u) = uα and α > 0. Then a majorant is given by

κ(n) = (lnn)α
( e
α

)α
.

Note that one obtains the same majorants for the spaces considered in Examples 2.5
and 2.6 irrespective of which formula is used for the evaluation, either formula (5) or (6).

Definition 2.4. Let {Sk} be an increasing sequence such that Sk ≥ 1 and Sk → ∞ as
k → ∞. Consider an increasing continuous function ψ(u) such that ψ(u) > 0, u ≥ 1,
and ψ(u) → ∞ as u → ∞. Then we say that a random variable ξ belongs to the space
FSk,ψ,r(Ω) if

sup
k≥r

(
E |ξ|Sk

)1/Sk

ψ(Sk)
< ∞.

Similarly to the preceding case, one can easily prove that the spaces FSk,ψ,r(Ω) are
Banach spaces with respect to the norms

(7) ‖ξ‖Sk,ψ,r = sup
k≥r

(
E |ξ|Sk

)1/Sk

ψ(Sk)
.

Theorem 2.3. Let condition (3) hold for a function ψ. Assume that there exists a
number Cr > 0 such that

ψ (Sk)

ψ (Sk−1)
≤ Cr, k ≥ r.

Then the spaces FSk,ψ,r(Ω) contain the same elements as the spaces F̌ψ(Ω) and the
norms (1) and (7) are equivalent.

Proof. Indeed,

‖ξ‖Sk,ψ,r ≤ ‖ξ‖ψ .

Now Lyapunov’s inequality implies that

(E |ξ|u)1/u

ψ(u)
≤

(
E |ξ|Sk

)1/Sk

ψ(u)
=

(
E |ξ|Sk

)1/Sk

ψ(Sk)
· ψ(Sk)

ψ(u)

≤ ‖ξ‖Sk,ψ,r ·
ψ(Sk)

ψ(u)
≤ ‖ξ‖Sk,ψ,r ·

ψ (Sk)

ψ (Sk−1)
≤ Cr ‖ξ‖Sk,ψ,r

for Sk−1 ≤ u ≤ Sk and k − 1 ≥ r.
Further, for 1 ≤ u ≤ Sr,

(E |ξ|u)1/u

ψ(u)
≤

(
E |ξ|Sr

)1/Sr

ψ(Sr)
· ψ(Sr)

ψ(u)
≤ C2 ‖ξ‖Sk,ψ,r ,

where

C2 = sup
1≤u≤Sr

ψ(Sr)

ψ(u)
.
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Fψ(Ω)-SPACES 109

Therefore

‖ξ‖ψ ≤ max (C2, Cr) ‖ξ‖Sk,ψ,r . �

Remark 2.2. Theorem 2.3 may fail if its main assumption does not hold.

The space corresponding to the sequence Sk = 2k is the most important among the
spaces FSk,ψ,r(Ω) for our purposes. We denote by

θ2,r(ξ) = sup
k≥r

(
E |ξ|2k

)1/2k
ψ(2k)

the norm in this space. It is clear that if condition (3) holds for a function ψ, then the
spaces F̌ψ(Ω) and F2k,ψ,r(Ω) coincide and the norms in these spaces are equivalent.

Indeed, according to Theorem 2.3,

(8) θ2,r(ξ) ≤ ‖ξ‖ψ .

Note that

sup
k≥r

ψ(2k)

ψ(2k − 2)
= sup

k≥r

ψ(2k − 2 + 2)

ψ(2k − 2)
≤ sup

u≥r

ψ(u+ 2)

ψ(u)
= ψr < ∞,

that is

(9) ‖ξ‖ψ ≤ ψ̂rθ2,r(ξ),

where

(10) ψ̂r = max
{
ψr, C2

}
.

The proof of the following result is similar to that of Theorem 2.1.

Theorem 2.4. Let a random variable ξ belong to the space FSk,ψ,r(Ω). Then

(11) P {|ξ| > x} ≤ inf
k≥r

‖ξ‖Sk

Sk,ψ,r (ψ(Sk))
Sk

xSk

for all x > 0.

In particular, if Sk = 2k, then

P {|ξ| > x} ≤ inf
k≥r

‖ξ‖2k2k,ψ,r (ψ(2k))
2k

x2k

according to Theorem 2.3.

Theorem 2.5. The sequence

(12) κ(n) = sup
k≥r

inf
v>0

n
1

Sk+v
ψ(Sk + v)

ψ(Sk)

is an M -characteristic (majorant) of the space FSk,ψ,r(Ω).
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110 YU. V. KOZACHENKO AND YU. YU. MLAVETS′

Proof. Similarly to the proof of Theorem 2.2 consider a sequence of random variables ξ1,
ξ2, . . . , ξn in the space FSk,ψ,r(Ω). Then∥∥∥∥ max

1≤i≤n
|ξi|
∥∥∥∥
Sk,ψ,r

= sup
k≥r

(
E (max1≤i≤n |ξi|)Sk

)1/Sk

ψ(Sk)
≤ sup

k≥r

(
E (max1≤i≤n |ξi|)Sk+v

) 1
Sk+v

ψ(Sk)

≤ sup
k≥r

max
1≤i≤n

n
1

Sk+v

(
E |ξ|Sk+v

) 1
Sk+v

ψ(Sk + v)
· ψ(Sk + v)

ψ(Sk)

≤ max
1≤i≤n

‖ξi‖Sk,ψ,r sup
k≥r

n
1

Sk+v
ψ(Sk + v)

ψ(Sk)

for all v > 0. The latter inequality and bound (4) complete the proof of Theorem 2.5. �
Below we list some examples of random variables belonging to the spaces Fψ(Ω).

Example 2.7. If a random variable ξ is bounded, that is, if |ξ| < const with probability
one, then ξ belongs to all of the spaces Fψ(Ω).

Example 2.8. Every random variable with the Laplace distribution (the density of the
Laplace distribution is p(x) = 1

2e
−|x|) belongs to the space Fψ(Ω) for ψ(u) = u. Indeed,

k

√
E |ξ|k =

k
√
k! ∼ k.

Example 2.9. Every normal random variable ξ = N(0, 1) belongs to the space Fψ(Ω)

if ψ(u) = u1/2. Indeed,

2l

√
E |ξ|2l = 2l

√
(2l)!

2ll!
∼ l1/2.

Definition 2.5 ([1]). We say that a Banach space B(Ω) of random variables possesses
property H if there exists an absolute constant CB such that

(13)

∥∥∥∥ n∑
i=1

ξi

∥∥∥∥2 ≤ CB

n∑
i=1

‖ξi‖2

for all n ≥ 1 and all independent centered random variables ξ1, ξ2, . . . , ξn belonging to
the space B(Ω).

Our aim is to find conditions for the processes F̌ψ(Ω) to possess property H and to
evaluate the corresponding constant CB.

Theorem 2.6. Let ξ1, ξ2, . . . , ξn be independent centered random variables belonging to
the space F̌ψ(Ω). Assume that the ξk are symmetric random variables for k ≥ max(r, 2)
and that

(14) C2l
2k

(ψ(2l))2l (ψ(2k − 2l))2k−2l

(ψ(2k))2k
≤ Cl

k, l = 1, . . . , k − 1.

Then

(15) θ22,r

( n∑
i=1

ξi

)
≤

n∑
i=1

θ22,r (ξi) .

If the random variables ξ1, ξ2, . . . , ξn are not necessarily symmetric, then condition (14)
implies that

(16) θ22,r

( n∑
i=1

ξi

)
≤ 4

n∑
i=1

θ22,r (ξi) .
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Fψ(Ω)-SPACES 111

If ξ1, ξ2, . . . , ξn are not symmetric random variables and

(17) C2l
2k

(
1 +

k

3

)
(ψ(2l))2l (ψ(2k − 2l))2k−2l

(ψ(2k))2k
≤ Cl

k, l = 1, . . . , k − 1,

then

(18) θ22,r

( n∑
i=1

ξi

)
≤

n∑
i=1

θ22,r (ξi) .

We need some auxiliary results to prove Theorem 2.6.

Lemma 2.1. Let ξ and η be random variables belonging to a space F̌ψ(Ω). If ξ and η
are independent and E η = 0, then

(19) ‖ξ‖ψ ≤ ‖ξ − η‖ψ .

Proof. The Fubini theorem implies that

(20) E |ξ − η|u = Eξ (Eη |ξ − η|u)

for u > 1, where the symbol Eξ stands for the conditional mathematical expectation
with respect to ξ. Similarly, Eη denotes the conditional mathematical expectation with
respect to η. The Lyapunov inequality implies that

Eξ |ξ − η|u ≥ (Eξ |ξ − η|)u ≥ |Eξ (ξ − η)|u = |ξ − Eξ η|u = |ξ|u

for u ≥ 1.
Hence (20) implies that

E |ξ − η|u ≥ E |ξ|u .

Relation (19) obviously follows from the latter inequality. �

Proof of Theorem 2.6. Let ξ1, ξ2, . . . , ξn be symmetric random variables. Then all odd
moments are equal to zero. Thus

E (ξ1 + ξ2)
2k = E ξ2k1 +

2k−2∑
s=2

Cs
2k E ξs1ξ

2k−s
2 +E ξ2k2 = E ξ2k1 +

k−1∑
r=1

C2r
2k E ξ2r1 E ξ2k−2r

2 +E ξ2k2 .

Since E |ξi|2k ≤ (ψ(2k))
2k

θ2k2,r (ξi), we get

E (ξ1 + ξ2)
2k

(ψ(2k))2k
≤ θ2k2,r (ξ1) +

k−1∑
r=1

C2r
2k (ψ(2r))

2r (ψ(2k − 2r))2k−2r θ2r2,r (ξ1) θ
2k−2r
2,r (ξ2)

(ψ(2k))2k

+ θ2k2,r (ξ2)

≤ θ2k2,r (ξ1) +

k−1∑
r=1

Cr
kθ

2r
2,r (ξ1) θ

2k−2r
2,r (ξ2) + θ2k2,r (ξ2)

=
(
θ22,r (ξ1) + θ22,r (ξ2)

)k
.

The latter inequality implies (15) for n = 2.
Now let ξ1, ξ2, . . . , ξn be independent centered random variables belonging to the

space F̌ψ(Ω) and let ξ∗1 , ξ
∗
2 , . . . , ξ

∗
n be independent of ξi, i = 1, . . . , n, jointly indepen-

dent random variables such that ξ∗i has the same distribution as ξi. Then the random
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112 YU. V. KOZACHENKO AND YU. YU. MLAVETS′

variables ξi − ξ∗i are symmetric. Lemma 2.1 implies that

θ22,r

( n∑
i=1

ξi

)
≤ θ22,r

( n∑
i=1

(ξi − ξ∗i )

)
≤

n∑
i=1

θ22,r (ξi − ξ∗i )

≤
n∑

i=1

(θ2,r(ξi) + θ2,r(ξ
∗
i ))

2
= 4

n∑
i=1

θ22,r (ξi) ,

where θ2,r (ξi) = θ2,r (ξ
∗
i ). The proof of inequality (16) is complete.

The proof of inequality (18) is similar to that of (15). Since

E (ξ1 + ξ2)
2k

= E ξ2k1 +

2k−2∑
s=2

Cs
2k E ξs1ξ

2k−s
2 + E ξ2k2

and ∣∣E ξk1 ξ
2k−s
2

∣∣ ≤ 1

2

(
E |ξ1|s+1 E |ξ2|2k−s−1 + E |ξ1|s−1 E |ξ2|2k−s+1

)
for even s, we have

E (ξ1 + ξ2)
2k ≤ E |ξ1|2k +

k−1∑
l=1

R2l
2k E |ξ1|2l E |ξ2|2k−2l

+ E |ξ2|2k ,

where

R2
2k = R2k−2

2k = C2
2k+

1

2
C3

2k, R2l
2k = C2l

2k+
1

2

(
C2l+1

2k + C2l−1
2k

)
, l �= 1, l �= k−1.

It is easy to prove that R2l
2k ≤

(
1 + k

3

)
C2l

2k. Therefore

C2k E (ξ1 + ξ2)
2k ≤ E |ξ1|2k

(ψ(2k))2k

+

k−1∑
l=1

C2l
2k

(
1 +

k

3

)
(ψ(2l))2l (ψ(2k − 2l))2k−2l

(ψ(2k))
2k

(
E |ξ1|2l
(ψ(2l))2l

)

×
(

E |ξ2|2k−2l

(ψ(2k − 2l))2k−2l

)
+

E |ξ2|2k

(ψ(2k))2k

≤ θ2k2,r (ξ1) +

k−1∑
l=1

Cl
kθ

2l
2,r (ξ1) θ

2k−2l
2,r (ξ2) + θ2k2,r (ξ2)

=
(
θ22,r (ξ1) + θ22,r (ξ2)

)k
.

The latter inequality implies (15) for n = 2 and thus Theorem 2.6 is proved. �

Theorem 2.6 and inequalities (8) and (9) yield the following result.

Corollary 2.2. Let ξ1, ξ2, . . . , ξn be independent centered random variables belonging to
a space F̌ψ(Ω). Assume that the ξk are symmetric random variables for k ≥ max(r, 2)
and that

C2l
2k

(ψ(2l))
2l
(ψ(2k − 2l))

2k−2l

(ψ(2k))2k
≤ Cl

k, l = 1, . . . , k − 1.
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Fψ(Ω)-SPACES 113

Then ∥∥∥∥ n∑
i=1

ξi

∥∥∥∥2
ψ

≤ ψ̂2
r

n∑
i=1

‖ξi‖2ψ,

where ψ̂2
r is defined by (10).

If the random variables ξi are not necessarily symmetric, then condition (14) implies
that ∥∥∥∥ n∑

i=1

ξi

∥∥∥∥2
ψ

≤ 4ψ̂2
r

n∑
i=1

‖ξi‖2ψ.

If the ξi are not necessarily symmetric random variables and

C2l
2k

(
1 +

k

3

)
(ψ(2l))

2l
(ψ(2k − 2l))

2k−2l

(ψ(2k))
2k

≤ Cl
k, l = 1, . . . , k − 1,

then ∥∥∥∥ n∑
i=1

ξi

∥∥∥∥2
ψ

≤ ψ̂2
r

n∑
i=1

‖ξi‖2ψ.

Below are some examples of the spaces Fψ(Ω) for which the above results hold.

Lemma 2.2. The inequality

C2l
2k ≤ Cl

k

kk

ll(k − l)k−l

1√
2
exp

{
1

8

(
1

k
+

1

k − 1
+ 1

)}
holds for k ≥ 2 and 1 ≤ l ≤ k − 1.

Proof. Since

C2l
2k = Cl

k

C2l
2k

Cl
k

and n! =
√
2πnnne−neθn by Stirling’s formula, where |θn| < 1

12n , we have

C2l
2k

Cl
k

=
(2k)! l!(k − l)!

(2l)!(2k − 2l)! k!
=

k2kll(k − l)k−l

√
2l2l(k − l)2(k−l)kk

exp {θ2k + θ2l + θk + θl + θk−l}

≤ kk

ll(k − l)k−l

1√
2
exp

{
1

24k
+

1

24l
+

1

24(k − l)
+

1

12k
+

1

12l
+

1

12(k − l)

}
≤ kk

ll(k − l)k−l

1√
2
exp

{
1

8

(
1

k
+

1

k − 1
+ 1

)}
. �

Example 2.10. Consider the space Fψ(Ω) for ψ(u) = uα and α ≥ 1
2 . We show that

property H holds in this case. Indeed,

C2l
2k

(2l)2lα(2k − 2l)(2k−2l)α

(2k)2kα
= C2l

2k

(
l2l(k − l)(2k−2l)

k2k

)α

≤ Cl
k

l(2α−1)l(k − l)(2α−1)(k−l)

k(2α−1)k

1√
2
exp

{
1

8

(
1

k
+

1

k − 1
+ 1

)}
.

It is obvious that inequality (14) holds for α ≥ 1
2 and k > 2, that is, the space Fψ(Ω)

possesses the property H if ψ(u) = uα. One can also show that a space Fψ(Ω) does not
possess property H if α < 1

2 .

Example 2.11. Lemma 2.2 implies that the space Fψ(Ω) possesses propertyH if ψ(u) =
eau and a > 0.
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3. A relationship between the spaces Fψ(Ω) and Orlicz spaces

Definition 3.1 ([4]). We say that an even continuous function U = (U(x), x ∈ R) is a
C-function if U(0) = 0 and U(x) is increasing for x > 0.

Definition 3.2 ([4]). Let U be an arbitrary C-function. Consider the family of random
variables such that, for every ξ ∈ LU (Ω), there exists a constant rξ > 0 for which
EU(ξ/rξ) < ∞. This family is called the Orlicz space of random variables and is denoted
by LU (Ω).

An Orlicz space LU (Ω) is a Banach space with respect to the norm

‖ξ‖U = inf

{
r > 0;EU

(
ξ

r

)
≤ 1

}
.

This norm is called the Luxemburg norm.
Consider an Orlicz C-function

(21) U(x) =

{(
eα
2

)2/α
x2, if |x| ≤ xα,

exp {|x|α} , if |x| > xα,

where xα = (2/α)1/α, 0 < α < 1. Then LU (Ω) is called the Orlicz space generated by
the function U(x).

Consider the function U1(x) = exp {|x|α}, 0 < α ≤ 1. Let SU1
(Ω) denote the family

of random variables ξ for which there exists a number r such that EU1

(
ξ
r

)
< ∞. In the

space SU1
(Ω), consider the functional

〈〈ξ〉〉U1
= inf

{
r > 0;EU1

(
ξ

r

)
≤ 2

}
.

Lemma 3.1. A random variable ξ belongs to an Orlicz space LU (Ω) if and only if
ξ ∈ SU1

(Ω) and

‖ξ‖U ≤
(
e2/α+2

)
〈〈ξ〉〉U1

,

〈〈ξ〉〉U1
≤ ‖ξ‖U

(
e2/α + 1

)1/α
.

Proof. Let r > 0. Then

EU

(
ξ

r

)
= EU

(
ξ

r

)
I

{
|ξ|
r

≤ xα

}
+ EU

(
ξ

r

)
I

{
|ξ|
r

> xα

}
≤ U (xα) + E exp

{∣∣∣∣ξr
∣∣∣∣α}

= e2/α + E exp

{∣∣∣∣ξr
∣∣∣∣α} .

Now let r = 〈〈ξ〉〉U1
. Then EU(ξ/〈〈ξ〉〉U1

) ≤ e2/α + 2. Since U(αx) ≤ αU(x) for
0 < α < 1 (see [4, Lemma 2.2.2]),

EU

(
ξ

〈〈ξ〉〉U1
(e2α + 2)

)
≤ 1

e2α + 2
EU

(
ξ

〈〈ξ〉〉U1

)
≤ 1.

Hence

(22) ‖ξ‖U ≤
(
e2/α+2

)
〈〈ξ〉〉U1

.
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Now we prove the second inequality. It is easy to see that

E exp

{∣∣∣∣ξr
∣∣∣∣α} = E exp

{∣∣∣∣ξr
∣∣∣∣α} I

{
|ξ|
r

< xα

}
+ E exp

{∣∣∣∣ξr
∣∣∣∣α} I

{
|ξ|
r

≥ xα

}
≤ exp {(xα)

α}+ EU

(
ξ

r

)
.

Putting r = ‖ξ‖U , we obtain

(23) E exp

{∣∣∣∣ ξ

‖ξ‖U

∣∣∣∣α} ≤ e2/α + 1.

Using the inequality exp {|ax|} − 1 ≤ a (exp {|x|} − 1) for 0 < a ≤ 1, we get

E exp

{∣∣∣∣ ξ

‖ξ‖U

∣∣∣∣α 1

e2/α + 1

}
− 1 ≤ 1

e2/α + 1

(
E exp

{∣∣∣∣ ξ

‖ξ‖U

∣∣∣∣α}− 1

)
.

Thus bound (23) implies that

E exp

{∣∣∣∣ ξ

‖ξ‖U

∣∣∣∣α 1

e2/α + 1

}
− 1 ≤ 1

e2/α + 1

(
E exp

{∣∣∣∣ ξ

‖ξ‖U

∣∣∣∣α}− 1

)
≤ 1

e2/α + 1

(
e2/α + 1− 1

)
=

e2/α

e2/α + 1
.

As a result we obtain

E exp

{∣∣∣∣∣ ξ

‖ξ‖U
(
e2/α + 1

)1/α
∣∣∣∣∣
α}

≤ e2/α

e2/α + 1
+ 1 ≤ 2.

This implies that 〈〈ξ〉〉U1
≤ ‖ξ‖U

(
e2/α + 1

)1/α
. �

Lemma 3.2. If 0 < α < 1, then

〈〈ξ〉〉U1
≥ α1/αe1/α

(
sup
n≥1

(E |ξ|n)1/n

n1/α

)
.

Proof. Since

xn exp {−xα} ≤
(n
α

)n/α
exp

{
−n

α

}
and

xn ≤ exp {xα}
(n
α

)n/α
exp

{
−n

α

}
,

we get
E |ξ|n

rn
≤ E exp

{(
|ξ|
r

)α}(n
α

)n/α
exp

{
−n

α

}
,

E |ξ|n ≤ 〈〈ξ〉〉nU1
2
(n
α

)n/α
exp

{
−n

α

}
,

(E |ξ|n)1/n ≤ 〈〈ξ〉〉U1
21/n

(n
α

)1/α
exp

{
− 1

α

}
.

In view of the inequality 〈〈ξ〉〉U1
= inf {r > 0;E exp {(ξ/r)α}} ≤ 2, we obtain

〈〈ξ〉〉U1
≥ (E |ξ|n)1/n 1

21/n
(
n
α

)1/α
exp

{
− 1

α

} ≥ (E |ξ|n)1/n

n1/α
α1/αe1/α. �

Lemma 3.3. If 0 < α < 1, then

〈〈ξ〉〉U1
≤
(
1 +

e1/12√
2π

)1/α

e1/α

(
sup
n≥1

(E |ξ|n)1/n

n1/α

)
.
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Proof. The Lyapunov inequality implies that

E |ξ|nα ≤ (E |ξ|n)α

for 0 < α < 1.
Put Jα = E exp {|ξ|α/rα} − 1. Then

Jα =
∞∑

n=1

E |ξ|nα

n! rαn
≤

∞∑
n=1

(E |ξ|n)α

n! rαn
.

Let

ẑ = sup
n≥1

(E |ξ|n)1/n

n1/α
.

Since E |ξ|n ≤ ẑnnn/α, we conclude that

Jα ≤
∞∑

n=1

ẑnαnn

n! rαn
.

By Stirling’s formula,

Jα ≤
∞∑

n=1

(
ẑαe

rα

)n
e1/12n√
2πn

≤ e1/12√
2π

∞∑
n=1

(
ẑαe

rα

)n

.

Let r = ẑe1/α/s1/α, where 0 < s < 1. Then

Jα ≤ e1/12√
2π

∞∑
n=1

sn =
e1/12√
2π

s

1− s
.

If s =
(
1 + e1/12/

√
2π
)−1

, then

E exp

{
|ξ|α(

1
s1/α

ẑe1/α
)α
}

≤ 2.

This completes the proof of Lemma 3.3. �

Theorem 3.1. Let a function U(x) be defined by equality (21). Then the Orlicz space
LU (Ω) contains the same elements as the spaces Fψ(Ω) for ψ(u) = u1/α. Moreover, the
norms in these spaces are equivalent.

Theorem 3.1 follows from Lemmas 3.1, 3.2, and 3.3 and Theorem 2.3.
Other cases where the Orlicz spaces and Fψ(Ω) are equivalent are considered in the

book [4] and in the paper [6].

4. Stochastic processes

Definition 4.1. Let F∗
ψ(Ω) denote one of the following Banach spaces of random vari-

ables: either Fψ(Ω) or F̌ψ(Ω) or FSk,ψ(Ω). The norm in the space F∗
ψ(Ω) is denoted

by ‖·‖.

Let X = {X(t), t ∈ T} be a stochastic process, let T = (T, ρ) be a compact metric
space, and let ρ be a metric in T. Let N(u) denote the metric capacity of the space
(T, ρ). If γ = σ

(
supt,s∈T ρ(t, s)

)
, then we put εk = σ(−1)

(
γpk
)
for k = 0, 1, 2, . . . and

p ∈ (0, 1).
Let Vεk be the set of centers of a minimal {εk} net. We say that a set of closed balls

is called a minimal {εk} net if the radiuses do not exceed εk, if the balls cover (T, ρ),
that is, V =

⋃∞
k=0 Vεk , and if the set contains the minimal number of balls with the

latter two properties.
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If k = 0, then

ε0 = σ(−1)(γ) = σ(−1)

(
σ

(
sup
t,s∈T

ρ(t, s)

))
= sup

t,s∈T
ρ(t, s).

Definition 4.2. We say that a stochastic process X belongs to the space F∗
ψ(Ω) if the

random variable X(t) belongs to the space F∗
ψ(Ω) for all t.

Theorem 4.1. Let X(t) be a separable stochastic process in (T, ρ) that belongs to the
space F∗

ψ(Ω). Assume that

sup
ρ(t,s)≤h

‖X(t)−X(s)‖ ≤ σ(h),

where σ(h) is a continuous increasing function such that σ(0) = 0. If∫ ε

0

κ

(
N
(
σ(−1)(u)

))
du < ∞

for all ε > 0 and if supt∈T |X(t)| ∈ F∗
ψ(Ω), then∥∥∥∥sup

t∈T
|X(t)|

∥∥∥∥ ≤ B(p),

where

B(p) = inf
t∈T

‖X(t)‖+ 1

p(1− p)

∫ γp

0

κ

(
N
(
σ(−1)(u)

))
du

and where κ(n) is a majorant of the space F∗
ψ(Ω).

Proof. Given an arbitrary u > 1, we get

P {|X(t)−X(s)| > ε} ≤ E |X(t)−X(s)|u

εu
≤

∥∥X(t)−X(s)
∥∥u
Fψ

(ψ(u))u

εu

≤ σ(ρ(t, s))(ψ(u))u

εu
.

Hence

P {|X(t)−X(s)| > ε} → 0 as ρ(t, s) → 0

for all ε > 0. Thus the stochastic process X is continuous in probability, whence we
conclude that V is a set of separability, that is,

sup
t∈T

|X(t)| = sup
t∈V

|X(t)| .

Consider the mapping αk(t), t ∈ V, such that αk(t) is a point of Vεk for which
ρ(t, αk(t)) ≤ εk (if t ∈ Vεk , then αk(t) = t).

Let t be an arbitrary point of V. If t ∈ Vεm for some integer number m, then we put
tm = t and tm−1 = αm−1(tm), tm−2 = αm−2(tm−1), . . . , t1 = α1(t2), t0 = α0(t1), and
accordingly

X(t) = X(tm)

= X(tm)−X(tm−1) +X(tm−1)−X(tm−2) +X(tm−2)− . . .

−X(t1)−X(t0) +X(t0),

|X(t)| ≤ |X(tm)−X(tm−1)|+ |X(tm−1)−X(tm−2)|+ · · ·+ |X(t1)−X(t0)|+ |X(t0)|
≤ max

t∈Vεm

|X(t)−X(αm−1(t))|+ max
t∈Vεm

|X(t)−X(αm−2(t))|+ . . .

+ max
t∈Vεm

|X(t)−X(α(t0))|+ |X(t0)| .
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Since

sup
t∈T

|X(t)| = sup
t∈V

|X(t)| ≤ |X(t0)|+
m∑
l=1

max
t∈Vεl

|X(t)−X(αl−1(t))|

≤ |X(t0)|+
∞∑
l=1

max
t∈Vεl

|X(t)−X(αl−1(t))| ,

we conclude that∥∥∥∥sup
t∈T

|X(t)|
∥∥∥∥ ≤ ‖X(t0)‖+

∞∑
l=1

∥∥∥∥max
t∈Vεl

|X(t)−X(αl−1(t))|
∥∥∥∥ ,

whence we deduce that∥∥∥∥sup
t∈T

|X(t)|
∥∥∥∥ ≤ inf

t∈T
‖X(t)‖+

∞∑
l=1

κ (N(εl)) max
t∈Vεl

‖X(t)−X(αl−1(t))‖

≤ inf
t∈T

‖X(t)‖+
∞∑
l=1

κ (N(εl))σ(εl)

≤ inf
t∈T

‖X(t)‖+
∞∑
l=1

κ

(
N
(
σ(−1)(γpk)

))
γpk−1.

Next ∫ γpk

γpk+1

κ

(
N
(
σ(−1)(u)

))
du ≥ κ

(
N
(
σ(−1)(γpk)

)) (
γpk − γpk+1

)
= κ

(
N
(
σ(−1)(γpk)

))
γpk−1(p− p2),

whence we establish that

γpkκ
(
N
(
σ(−1)(γpk)

))
≤
∫ γpk

γpk+1 κ
(
N
(
σ(−1)(u)

))
du

p(1− p)
.

Substituting this result in the preceding inequality, we get∥∥∥∥sup
t∈T

|X(t)|
∥∥∥∥ ≤ inf

t∈T
‖X(t)‖+

∞∑
l=1

1

p(1− p)

∫ γpl

γpl+1

κ

(
N
(
σ(−1)(u)

))
du

= inf
t∈T

‖X(t)‖+ 1

p(1− p)

∫ γp

0

κ

(
N
(
σ(−1)(u)

))
du. �

Corollary 4.1. Let X = {X(t), t ∈ T} be a stochastic process and assume that

sup
t∈T

|X(t)| ∈ F∗
ψ(Ω).

Then

P

{
sup
t∈T

|X(t)| > ε

}
≤ inf

u≥1

Bu(p)(ψ(u))u

εu

for all ε > 0.

Example 4.1. If ψ(u) = uα and α > 0, then

P

{
sup
t∈T

|X(t)| > x

}
≤ exp

{
−α

e

(
x

B(p)

)1/α
}

for x ≥ eαB(p).
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Example 4.2. If ψ(u) = eau and a > 0, then

P{|ξ| > x} ≤ exp

⎧⎪⎨⎪⎩−

(
ln x

B(p)

)2
4a

⎫⎪⎬⎪⎭
for all x ≥ e2aB(p).

Example 4.3. If ψ(u) = eu
2

, then

P {|ξ| > x} ≤ exp

⎧⎪⎨⎪⎩−
2
(
ln x

B(p)

)3/2
33/2

⎫⎪⎬⎪⎭
for all x ≥ e3B(p).

Corollary 4.2. Let X = {X(t), t ∈ [0, T ]}, T > 0, be a separable stochastic process
belonging to the space F∗

ψ(Ω). Assume that

(24) sup
|t−s|≤h

∥∥X(t)−X(s)
∥∥ ≤ σ(h),

where σ = {σ(h), h > 0} is a continuous increasing function such that σ(0) = 0. If∫ z

0

κ

(
T

2σ(−1)(u)
+ 1

)
du < ∞

for all z > 0, then

sup
t∈[0,T ]

|X(t)| ∈ F∗
ψ(Ω)

with probability one and

(25)

∥∥∥∥∥ sup
t∈[0,T ]

|X(t)|
∥∥∥∥∥ ≤ B̃(p)

for all 0 < p < 1, where

B̃(p) = inf
t∈[0,T ]

‖X(t)‖+ 1

p(1− p)

∫ γp

0

κ

(
T

2σ(−1)(u)
+ 1

)
du

and γ = σ(T ). Moreover,

(26) P

{
sup

t∈[0,T ]

|X(t)| > ε

}
≤ inf

u≥1

B̃u(p)(ψ(u))u

εu

for all ε > 0.

Proof. Corollary 4.2 follows from Theorem 4.1 since the metric capacity of the interval
[0, T ] is such that

N(u) ≤ T

2u
+ 1. �

Corollary 4.3. Let X = {X(t), t ∈ [0, T ]}, T > 0, be a separable stochastic process
belonging to the space F∗

ψ(Ω). Assume that

(27) sup
|t−s|≤h

∥∥X(t)−X(s)
∥∥ ≤ C(

κ
(

T
2h + 1

))1/β
for some β < 1. Then

sup
t∈[0,T ]

|X(t)| ∈ F∗
ψ(Ω)
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with probability one and∥∥∥∥∥ sup
t∈[0,T ]

|X(t)|
∥∥∥∥∥ ≤ inf

t∈[0,T ]
‖X(t)‖+ Cβ

(1− β)

(
Cβ

κ
(
3
2

))(1−β)/β
(1 + β)β+1

ββ
= B̃.

Moreover,

(28) P

{
sup

t∈[0,T ]

|X(t)| > ε

}
≤ inf

u≥1

B̃u(ψ(u))u

εu

for all ε > 0.

Proof. Corollary 4.3 follows from Corollary 4.2. Indeed,

σ(h) =
C(

κ
(

T
2h + 1

))1/β
and thus

1

p(1− p)

∫ γp

0

κ

(
T

2σ(−1)(u)
+ 1

)
du =

1

p(1− p)

∫ γp

0

Cβ

uβ
du =

Cβ

1− β
γ1−β 1

(1− p)pβ
.

Minimizing the right hand side of the latter inequality with respect to p, we derive
Corollary 4.3 from inequality (25). �

Set

B(β) =
Cβ

(1− β)

(
Cβ

κ
(
3
2

))(1−β)/β
(1 + β)β+1

ββ
.

Example 4.4. Consider the space Fψ(Ω) for ψ(u) = uα. Put

σ(h) =
C(

ln
(

T
2h + 1

)
e
α

)α/β .
Then ∥∥∥∥∥ sup

t∈[0,T ]

|X(t)|
∥∥∥∥∥ ≤ inf

0≤t≤T
sup
u≥1

(E |X(t)|u)1/u

uα
+B(β) = Buα .

Moreover,

P

{
sup

t∈[0,T ]

|X(t)| > x

}
≤ exp

{
−α

e

(
x

Buα

)1/α
}

for all x > 0.

Example 4.5. Consider the space Fψ(Ω) for ψ(u) = eau, where a > 0. Put

σ(h) =
C

exp
{(

2
√
a ln

(
T
2h + 1

)
− a
)

1
β

}
and ∥∥∥∥∥ sup

t∈[0,T ]

|X(t)|
∥∥∥∥∥ ≤ inf

0≤t≤T
sup
u≥1

(E |X(t)|u)1/u

eau
+B(β) = Beau .

Then

P

{
sup

t∈[0,T ]

|X(t)| > x

}
≤ exp

⎧⎪⎨⎪⎩−

(
ln x

Beau

)2
4a

⎫⎪⎬⎪⎭
for all x > e2aBeau .
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5. Concluding remarks

Some properties of random variables and stochastic processes belonging to the spaces
Fψ(Ω) are studied in this paper. In a forthcoming publication, we plan to apply the
results obtained in the current paper to the Monte-Carlo method for the evaluation of
multiple integrals with a given accuracy.
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