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1 Introduction

This paper is a continuation of the investigation started in the paper by Kozachenko and Mlavets [6]. In that
paper we developed a theory for finding reliability and accuracy for the calculation of integrals depending on
a parameter by the Monte Carlo method in the uniform metrics. Unlike the previous paper, where the theory
of Orlicz space of random variables had been used, here we utilized the theory of Fy(Q) spaces.

The choice of the space depends on particular integrals and allows one to find better accuracy. In this
paper, the accuracy is defined via the norm in the space L,(T). It is worth to note that by considering the
spaces Fy (Q) it is also possible to find the accuracy and reliability in C(T) space. But this is the subject of
future work.

There are many works devoted to the usage of the Monte Carlo method for calculation of integrals. Among
them are books by Yermakov [3] and Yermakov and Mikhailov [4].

But there are not so many works studying reliability and accuracy of the calculation of integrals via
Monte Carlo methods, especially, when the integral depends on a parameter. In the papers by Dmitrovskii and
Ostrovskii [2], Dmitrovskii [1], Voitishek and Prigarin [13], Voitishek [12], the conditions of weak convergence
to the integral value had been investigated and for the large n the accuracy and reliability were determined
if the estimates were Gaussian processes.

The paper by Kurbanmuradov and Sabelfeld [9] contains the estimate for the accuracy in the space C(T)
and the reliability of the calculation of integrals depending on a parameter if the set of integration is bounded.
To obtain these results the theory of sub-Gaussian processes had been used.

The space Fy,(Q) was introduced by Yermakov and Ostrovsky in the paper [5]. The paper [7] is devoted to
studying the properties of such spaces and there had been found the conditions of fulfilling the condition H in
this spaces. The condition H is necessary for finding the reliability and accuracy when we calculate integrals
by Monte Carlo methods.
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The paper is organized as follows. Section 2 contains the needed definitions and results from the theory of
spaces Fy (Q). In Section 3, we find the estimates for distribution of norms in L (T) of the stochastic processes
from the spaces Fy (Q). The reliability and accuracy for the calculation of integrals by the Monte Carlo method
are found in Section 4. Section 5 is devoted to finding the reliability and accuracy in the space L,(T) for the
calculation of integrals depending on a parameter.

2 Fy(Q) space

Definition 2.1 ([8]). Let )(u) > 0, u > 1 be a monotonically increasing and continuous function for which
Y(u) — oo as u — oo. A random variable £ belongs to the space Fy(Q) if

up (B
usl Pu)

A similar definition was formulated in the paper by Yermakov and Ostrovskii [5]. But there it was required
that E¢ = 0 as & € Fy(Q). Moreover, random variables were considered for which E|£|* = oo for some u > 0.
It had been proved in [5] that Fy(Q) is a Banach space with the norm

g
Ik =500 =gy

< 0

Let us provide some examples of random variables from the space Fy(Q).

Example 2.2. The random variable ¢ satisfying the condition |é| < C with probability one, where C > 0 is
some constant, belongs to every space Fy(Q). Herewith
(E|&]) M (C)/u C C
€]y = su <su =su = .
L S T R T B T 7Y
Example 2.3. The random variable with Laplace distribution (its density function is p(x) = %e"’(') belongs
to the space Fy (Q), where 1(u) = u. This follows from the equivalence v El.flk =Yk~ kask>1.

Example 2.4. The normally distributed random variable & = N(0, 1) belongs to the space Fy(Q), where
Yu) = ul/? since VEI&2! = YD/l ~ 112 as 1> 1.

Theorem 2.5 ([8]). Ifarandom variable & belongs to the space Fy(Q), then for any € > 0, the following inequal-
ity holds true:
s e
P> e} fnf =
Theorem 2.6 ([8]). If a random variable & belongs to the space F(Q) and y(u) = u®, where a > 0, then for any
€ > e*|¢lly, the following inequality is true:

P{|&] > €} < exp{—g(ﬁ)l/a}.

Theorem 2.7 ([8]). Ifarandomvariable & belongs to the space Fy(Q) and y(u) = e wherea > 0, B > 0, then
for any € > e®FD||g]|y, the following is true:

5 1 e \B+V/B
P> e el (g ) |

Theorem 2.8 ([8]). Letthe randomvariable & belong to the space Fy,(Q) where (u) = (In(u + 1)), A > 0. Then,
for any € > (eln 2)1||¢] lly, the following inequality holds true:

P{l&] > e} < & exp{—/\ exp{(ﬁ)lmé}}.



DE GRUYTER Y.V. Kozachenko and Y. Y. Mlavets, Reliability and accuracy in the space L,(T) —— 235

Definition 2.9 ([7]). We say that the condition H, for the Banach spaces B(Q) of random variables, is ful-
filled if there exists an absolute constant Cp such that for any centered and independent random variables
&1, &, ..., & from B(Q), the following is true:

>4
i=1

The constant Cj is called a scale constant for the space B(Q). For the space Fy(Q), we shall denote the con-
stants CF¢(Q) as Cy.

2 n
< Cp Y &%
i=1

Theorem 2.10 ([11]). For the space Fy(Q), where (u) = u®, a > 1/2, the condition H is fulfilled and the
following inequality is true:

n 2 n
Y&l <49t Y NGl
i=1 Y i=1
Note, that when a < 1/2, then the condition H is not fulfilled for this space.

Theorem 2.11 ([10]). Let Fy(Q) be the space defined by the function (u) = e““ﬁ, where a >0, 0 < < 1.
If 1/(2aP)/P = 1, then the condition H is fulfilled for the space Fy(Q) with the constant Cy = 4e?a, And if
1/(2aB)'/P > 1, then for Fy(Q) the condition H is true with the constant

4ea(2ﬂ+1)—1/2ﬁ

= Gapym

Lemma 2.12 ([8]). Let & € Fy(Q), p > 1. Then,

IE1SHy < 141ly-

3 Estimates in the norm L,(T) for the stochastic processes from
the spaces F,(Q)

Let us present a lemma that will be used further on.

Lemma 3.1. Let & be a random variable belonging to the space Fy(Q). Then, forp > 1,
_P®) (B

sup

TP wp YW
Proof. It follows from the Lyapunov inequality that

Y™ _ ) (Elﬂp)l/p.

1€y

e P PO o)
So,
_ (E|g™)H/ (E1&*)H/
ety =max{ s 2 )
P(p) (E|EP)HP (EIEYN _ p) (E| &™)t
< max{ S P gy ) S 50 e
The last inequality implies the statement needed. O

Theorem 3.2. Let v be the o-finite measure on the compact metric space (T, p) and X = {X(t), t € T} be a mea-
surable stochastic process from the space Fy,(Q). If for some p > 1 the following condition is true:

[ixcent; avee) < oo,
T
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then:
(1) theintegral ITlX (t)|P dv(t) exists with probability one and the following inequality holds true:
1/p 1/p
lli(p) D
( |X(t)|P dV(l‘)) < ( IXCOI, dV(l‘)> . (3.1
(I = ui(]
(2) For any € > 0, the following inequality holds:
1/p u/p
1 u
P{( le(t)lp dv(t)) > s} < ,142{ s_“(%) < JIIX(t)llf[, dV(t)) (P)*. (3.2)
T T

Proof. Since
E [IXOP dvie) = [ EXOP dv(e) < [pm)?IX(OI, dv(®) < oo,
T T T
it follows that ITIX (H)IP dv(t) exists with probability one. It follows from the generalized Minkowski inequality
that for u > p,

u/p u/p\ p/u\ u/p
E( jIX(t)lp dv(t)) - ((E( JIX(t)Ip dv(t)) ) )
T T

u/p
< ( j(E|X(t)|“>p/“ dv(t)) < ( an(t)nfz(l/)(u))p dv(t))
T

T

u/p

u/p
< (zp(u))"( qu(t)n{z dv(t)) : (3.3)

T
From Lemma 3.1 and inequality (3.3), we obtain

1 % u/py\1/u
Yp) _ (E[JX@OF dvd]"”)
p
I(JIX(t)I dv(t)) " = Y(1) ?EE P(u)
1p 1/p
Yp) @[ IXOk, dvO)"” ) ( , )
< Y(1) i‘i}? W(u) = %) JIIX(t)nlp av(t)| .
Inequality (3.1) has been proved and inequality (3.2) follows from Theorem 2.5. O

Example 3.3. Consider the space Fy(Q), where (u) = u%, a > 0. It follows from Theorems 3.2 and 2.6 that
for & > (ep)* ([ IX(OIIy, dv(eN'?,

1/p o e 1/a
P{<I|X(t)|P dv(t)) >e]» sexp{—e—< > 1/p) }
7 P ([IX @)1, dv(D)

Example 3.4. Consider the space Fy(Q), where (u) = ea“B, a > 0, > 0. It follows from Theorems 3.2 and
2.7 that if

5 1/p
ez e >( [, dv(t)) ,
T

then

{(J. ) 1/p ,8 1 e B+1)/B
P | X(0)] dv(t)) > e]» < exp{ - —( In ) }
) B\ B+17 atpon([LIX (DI, dv(t)'”

Example 3.5. Consider the space Fy(Q), where y(u) = (In(u + 1)), 1 > 0. According to Theorems 3.2 and
2.8, for £ > (log,(p + 1))"(jT||X(t)||$ dv(t))Y?, we can affirm that

1/p In2 3 v
Pi( |IX(OP dv(t <el {‘A { ( ) H
{( 1| (OIP dv( )) > e} < eexp exp eln(p + 1) (IT||X(t)||; dv(t))l/p
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Theorem 3.6. Let v be a o-finite measure on a compact metric (T, p) and Y = {Y(¢), t € T} be the stochastic
process from the space Fy(Q) and assume that the condition H is fulfilled for this space with the constant Cy.
Let

EY()=m(0) and Zy(®)= ¥ (Yi(0) - m(0),
k=1

where Yi(t) are independent copies of Y(t). Then, the following inequality holds for all p > 1:
1/p 1/p
2VC
”( [izacor dv(t)) <2V, M( v dv(t)) , (3.4)
T T

Vi (1)
and for every € > 0, the following estimate is true:

1/p u/p
o 1 2VCy P(p)\* u
P{< _T[lzn(f)lp dV(t)> > 8} < erlf —( N W) < J"Y(l‘)llf}, dV(U) (Pu))“. (3.5)

¥

Proof. It follows from Definition 2.9 and Lemma 2.12 that

1

1 z 1 4
||Zn(t)||$ < FCIIJ 1;1 Y (8) - m(t)lli = ECIIJ"Y(t) - m(t)lli < HCI/;(IlY(t)Ilzp +Im(0)lp)* < EclpllY(l‘)lli.
Theorem 3.2 implies the interrelations
1/p 1/p
Y) »
p
H( [z dv(t)) - w(l)( [nzucons dv(t))
T T
< “’(1’(1( AIYoly) ave ) = St inm)nw avty)
Therefore, inequality (3.4) holds true and inequality (3.5) follows from Theorem 2.5. O

Example 3.7. Let us consider the space Fy(Q), where (u) = u®, a > 0. Then, it follows from Theorems 3.6
and 2.6 that if

2y p
e> (ep)“w‘”( [ivor, dv(t)) ,
T

then

{<J " v a € La
p |Zn ()] dV(l‘)> > e} < exp{——( > }
T P\ 2 ([ ol dvo)”

Example 3.8. Consider the space Fy(Q), where y(u) = e““ﬁ, a >0, > 0, then according to Theorems 3.6

and 2.7, for
2VCy 1p
£ eﬂ(ﬂ+pﬁ)wlp( Jn Y@l dv(t)) :

we can conclude that

e
P |Zn(0)] dv(t)) > s} < exp{——/< In o ) }
: AP 2B ([ ol avie)

Example 3.9. Consider the space Fy(Q), where (u) = (In(u + 1))A, A > 0, then according to Theorems 3.6
and 2.8, fore > (eln(p + 1))"2C¢1/2n’1/2(fT|| Y(8)IP dv(t))Y/P, we get the estimate

J 1/p A In2 € B
P{( |Zn(t)IP dv(t)) > S} se eXp{‘Aexp{ ( ) H
eI+ DA DZ (v avin)'?

T
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4 Accuracy and reliability for the calculation of integrals by the
Monte Carlo method

Let{S, A, u} beameasurable space, u be a o-finite measure and p(s) > 0, s € 8, beameasurable function such
that Is p(s)du(s) = 1.Let P(A), A € Abethe measure P(A) = fA p(s) du(s). The measure P(A) is a probability
measure and the space {8, A, P} is a probability space.

Let f(s) be a measurable function on {8, A, u}. Consider Is f(s)p(s) du(s) = I. Suppose, that this integral
exists.

Remark 4.1. We can consider the integral of the form J s @(s) du(s). If p(s) > 0 is a probability density func-
tion in the space {8, A, u}, then

[ o) duts) - j (())p(S)du(S) [ 5206 duco)
3

s
where f(s) = @(s)/p(s).

We can consider f(s) = ¢ as random variables on {8, A, P} and Is f(s)p(s) du(s) = Is f(s)dm(s) = E¢.

Let §;,i=1,...,n, be the independent copies of the random variable ¢ and Z, = % Z;’zl ¢;. Then, ac-
cording to the strong law of large numbers Z,, — E&; = I with probability one. We consider Z, as an estimate
for I.

Definition 4.2. We state that Z,, approximates I with reliability 1 - 6 (0 < § < 1) and accuracy € > O if the
following inequality holds:
P{lZ, -1 > €} < 6. (4.1)

Theorem 4.3. Let &1, &5, ..., &, be independent and identically distributed random variables from the space
F,(Q) which fulfills the condition H. Let Y, = \/Lﬁ 2?21(.{1- —I), where I = E¢;. Then, for any € > 0, the following

inequality holds true:

P{IYal > ¢} < inf © P (4.2)

where L = ||&; - Ily VCy and Cy, is the constant from Definition 2.9.

Proof. It follows from Definition 2.9 that
2

1[|& 1 L
1¥ally, = Z(& 1) =X =D) < Cy Y 16— Tl = Cyliéa — Il
i=1 W i=1
Inequality (4.2) follows from Theorem 2.5. O
Corollary 4.4. Assume that the conditions of Theorem 4.3 are true. Then, for any € > 0, the following inequality
holds: n
1 e LY ()"
P{|= i — et <inf ————.
{ln 1;%’1 } u>1 (\/ﬁg)u
Proof. The proof of Corollary 4.4 is similar to the proof of [6, Corollary 3.2]. O

Remark 4.5. It is evident that
161 = Illy < 20181 lly.
Indeed, from Lemma 2.12, it follows that
161 = E&1lly < 1610l + I1ES1lly < 20&11ly-
Corollary 4.6. Let all the conditions of Theorem 4.3 hold. Then, for any € > 0, the following inequality is true:

1o, T )
P{ni;f’ E}Sg{ ey

where L = ||&1 1y VCy.
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Proof. Corollary 4.6 follows from Corollary 4.4 and Remark 4.5. O

Example 4.7. Consider the space Fy(Q), where i(u) = u®, a > 1/2. Then, taking into account Example 2.10,
we get that for this space the condition H is fulfilled with the constant Cy = 4 - 9%. Then, Corollary 4.6 and
Theorem 2.6 imply that if £ > 4(3e)*||&1[ly/+/n, then

n Ja
P«“% i;& —I| > 8} < exp{—%(l‘ﬁ?—?iﬁ)l }

Example 4.8. Consider the space Fy(Q), where (u) = e““ﬂ, a>0,0 < f < 1.According to Theorem 2.11 we
have two choices. In the first case when 1/(2a)'/# = 1 the condition H is fulfilled for the space Fy(Q) with
the constant Cy = 4e?"a_ Then, Corollary 4.6 and Theorem 2.7 imply

1 & B 1 Vne (B+1)/B
Pil= ) &-1 >£}sexp{——( In - ) ,
{In,; l allB\B+1"" 4e?a|& |y

for & > 429" +B D& |y /v,
For the second case 1/(2aB)/? > 1, the condition H is fulfilled for the space Fy(Q) with the constant
Cy = 4,e42"+1)=1/2B /(2 q B)1/2B, Then, it follows from Corollary 4.6 and Theorem 2.7 that

n 1/48 B+1)/B
P”% Z{i—l > 8} < exp{— B ( ! In Vne(2ap) ) },
i=1

alB\B+17 4ot @y
where
4ea(2ﬂ-l+/3+3/2)7$ 1€l
Vn(2ap)1/4B
Theorem 4.9. Let I = Is f(s)p(s) du(s), &(s) be a random variable, s € {8, A, u}, p(s) be a density for &, ¢&;,
i=1,2,...,n, be independent copies of the random variable ¢ and Z,, = % Z?ﬂ ¢;. If the random variable ¢

belongs to the space Fy(Q) satisfying the condition H with the constant Cy, and n is such that

2ULH(P(u))4
inf ———— < §, 4.3
w1 (y/ne) “3)
then Z,, approximates I with reliability 1 — § and accuracy ¢ (L in estimate (4.3) is determined in Corollary 4.6).
Proof. Theorem follows from Corollary 4.6 and inequality (4.1). O

Example 4.10. Consider the space Fy(Q), where (u) = u%, a > 1/2. Taking into account Example 4.7 and
Theorem 4.9, when € > 4(36)“II§II¢/\/ﬁwe have that

o 2Y L)t [ a( ne 1/“}
o — nen ‘eXp{ 3e<4||€||¢> :

So, inequality (4.3) holds true if
exp{_g(ﬂ)”“} <5
3e\ 4|¢lly B
4 2 2a
n> (—"‘f""’> (cm8)2)
£ a

n> (%)2 max(l, (_1:5)20().

Example 4.11. Let us consider the space Fy(Q), where (u) = e“”ﬁ, a >0, 0 < f < 1. Taking into account
Example 4.8 and Theorem 4.9, we shall consider two cases. First, if 1/ (2aﬁ)1//3 = 1, then inequality (4.3)

Then,

and
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holds when the following inequality is true:

ox _i( 1 ln \/ﬁe (ﬁ+1)/ﬁ <6
Pl aB\B+1 " 4e?ape, =

Then, , ,
4e2 &y allB\B/(B+1)
nz(T> exp{Z(ﬁ+1)((—ln6)7) ]»
and . X
2la 1/B \B/(B+1)
n> <w> max(ez(ﬁ+1),exp{2(ﬂ+1)<(—1n5)aT> })

Second, if 1/(2aB)'/? > 1, then inequality (4.3) is fulfilled when

jap \ B+VIB
exp{— B( ! 1 Vie(2ap) ) }<5.

alP\B+1"" 4ot @ Das g, )
Then,
202k41)- L 2
Le? 45”{"¢ al/ﬂ B/(B+1)
(B ) Lo ()
( G P{2(8+ 1((-In&) =
and

42k+1)-% 2
te 7l 2a(B+1) al/B\BI(B+D)
> (W max/| e“4P* » €XpP 2(B+1)<(—1n6)7> .

Example 4.12. Consider the integral of the following type:

+00 +00

j J cx, y)(x +y) tePXe™® dx dy,
0O O

where |c(x, y)| < 1, v > 3/2. We use the following notation:

+00 +00

j cx, y)(x +y)'pePXge? dx dy.
0

~
Il

Sl

© e,

Let ¢ and 1 be independent random variables distributed exponentially

1-eP% x>0,
P{& < x} =
{5 } {0, x <0,
1-e 7% y>0,
P{n<y}=
{n <y} {0’ ) <o
where p(x) = pe”P* and p(y) = qe™?. So,
1 +00 +00 1
IZ_J JC(x, )(x +y) " 'peP*qe™® dxdy = —Ec(&, )& +n)" .
pa )| (x+y)" " pePq Y= 04 &M +n

Assume that the function ¥ (u) = u’~1. Then, since v > 3/2, we get

1

v-1\u\1/u u(v-1)\ - \V-1 uv-1)\ i \ V-1
1D(E(c(f, mE+n)' 1)) < sup (E(lc(&, mI(€ + muv-D)w-n) < sup (E((& +mutv-D)ue-m)

u>1 uv-t u=1 uv-t u=1 uv-t
((Eé'u(v_l))u(vl—l) L (Erlu(v—l))ﬁ)v—l
< sup — .
u=1 u
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Consider

+00
Eé-u(v—l) _ J Xu(v—l)pe—px dx.
0
Let us make the substitution of variables in this integral, namely px = t. Then,

+00 +00

u(v-1)., ,—px _ —tu(v-1) — _
[ X pe P dx = SHD J et dt = pu(v_l)l"(u(v 1) +1).
0 0

So, )
(

(Efu(v—l))l/(u(v—l)) — }_9 T(u(v-1)+ 1))1/(11(1'—1))‘

Similarly, we can find
(Eqt0-DyH/e-1) %(F(u(v 1)+ 1)) Y-,

Thereby,

sup (E((§ + n)vl‘l)")l/” < sup (T(uv-1)+ 1))1/:(1/19 +1/q)¥? .
u>1 uv- u>1 uv-

Since I'(z) < e 2z771/2C,, where C, = v2mel/(129 we have that
C(u-1) + 1)) < eV (yv - 1) + 1) 72 ()Y,
where z = u(v - 1) + 1. Note that C, < S = v2re!/18, This implies that

(E((€ + 1))

su

uzllj uv-1
< sup e e u(yy - 1)+ 1) H(uv-1) + 1)1/(2“)(5)1/”(1/p +1/q)" 1
T ousl uv-1
B e‘("‘l)< 1 . 1 )"‘1 (S)l/” W lv=1+1/u) w0y -1+ 1/u)/@
B p q usi\e uv-1

-1 1 —141/(2 v-1
< e’("*l)<l + l>v Sup<§> /uul/(Zu)(v -1+ 1>V e < e"v-Dr1/@2e)yv=1/2 <l + l) .
p q u>1\€ u b q
That is,

I I L
"pq y  Dq P q

Taking into account Example 4.10, we get the following:

v—1,1/(2€),,v-1/2 v-11\2 2(v-1)
s (4(3) e v (1/p+1/q) ) max(l, (_ Iné ) )
pge v-1

5 Reliability and accuracy in the space L,(T) for the calculation of
integrals depending on a parameter

Let us consider the integral Is f(s, t)p(s) du(s) = I(t) assuming that it exists. Let the function f{s, t) depend
on the parameter t € T, where (T, p) is some compact set and assume that the function f{(s, t) is continuous
with regard to t.

Suppose f(s, t) is a stochastic process on {8, A, P} and which we denote as &(s, t) = &(t) and

1) = jf(s, BP(s) du(s) = jf(s, t) dm(s) = E&(b).

S S
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Let &;(t),i=1, 2, ..., n, bethe independent copies of the stochastic process &(t) and Z,(t) = % Y, &(t). So,
according to the strong law of large numbers Z,(t) — E&(t) = I(t) with probability one for any ¢ € T.

Definition 5.1. We say that Z,(t) approximates I(¢) in the space L,(T) with reliability 1 — § > 0 and accuracy
€ > 0if the following inequality holds true:

1/p
P{( JIZ,,(t) -I(HP dy(t)) > S} <é.

T

Theorem 5.2. Let I(t) = E&(t) = Js f(s, )p(s) du(s), &(t) be the stochastic process which belongs to the space
F(Q) satisfying the condition H with the constant Cy. Let also

Zu(0) = - Y60 - 1),
i-1

where &;(t) are the independent copies of the stochastic process &(t). Then, for all p > 1, the following inequality

holds true: Y y
p p
7 2VCy Y(p) ( )
Zn(OP du(t _—“’-—I OIF du(t) )
H(! 2O du( )) SR O o
and Z,(t) approximates I(t) with reliability 1 — § and accuracy ¢ in the space Ly(T) for such n that
12Ty Y)\ oo N
inf (5250 luat)u au(o) W) <o, (5.1
Proof. The theorem follows from Theorem 3.6 if inequality (5.1) is fulfilled. O

Example 5.3. Consider the space Fy(Q), where y(u) = u®, a > 1/2. Then, Example 2.10 implies that the con-
dition H is fulfilled for this space with the constant Cy = 4 - 9%. It follows from Example 3.7 and Theorem 5.2
that if
43pe)* ([ IE0IE, du()'?
E >

= '\/ﬁ >

1/2VCy () u( )u/p { a( \ne )1/(1}
f= s IEOIP du(t) ) (Pp)" < expi-— .
u>1 g”( \/ﬁ l/)(l)) J ‘f H ll) u exp e 4(3pe)a(.|_T”£(t)”$; d].l(t))l/p

So, inequality (5.1) holds, if it is true that

then

xp{_ﬁ( Vine )1/a} )
e\ 43pe)*([LIEOI, du(t)”

for

403 o t pd t 1/p | 2 a
nz( Bpre)* ([ IWOI, du(t)) >((_ln5)§)z.

£
Then,

4Gp)*([LIEDOIE, du()'? \2 a
nz( GP)*([ DI, du(®)) ) max<1,( ln5>2 )

&

Example 5.4. Consider the space Fy(Q), where (u) = e and a > 0, 0 < B < 1. Then, it follows from
Theorem 2.11 that two cases are possible. In the first case, when 1/ (2aﬁ)1/ﬁ = 1 the condition H is satisfied
for the space Fy(Q) with the constant Cy = 4e?"a, Therefore, Example 3.8 and Theorem 5.2 imply that

1 2\/C_¢lli(p) u( )u/P y
inf = W> Jllé“(t)llpdy(t) (W)

B+1)/B
Sexp{_li/< 1 In Vne 1/> }
atlP\B+1"" geatnh ([ 1EO)IE du(t)'?
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So, inequality (5.1) holds if

B 1 , Vne (B+1)/B s
SXP\ T 1B B+1 n a(2b-1+ph-1) P 1/p =0
4ea@ PP ([LIEOI, du(t))

Assuming that

allB )ﬁ/(ﬁﬂ)}

N e juat)u”d (t) " 2(8 1)(( In 6)%
=\z e " U exp + T
T

then

) Upi 2 al/B\BIB+)
nz(%l;e“(zﬁ +P‘*-1>(j||£(t)||fbdu(t)) ) max( b eXP{Z(ﬂ”)(( )% D
T

In the second case, when 1/(2aB)/# > 1, we get that

u ulp
inf L ( 2Cy M) ( ju.f(t)u" du(t)) (W)
T

uzl €\ yno P()
% (B+1)/B
1 2 B
Sexp{_£<ﬁ+l n a@B1iph- 1/2)\/;8( aﬁ) ) y ) }
b ([N, du)”?

and inequality (5.1) holds if the following estimate is true:

B 1, VAE(2ap) ™ (B+1)/p .
lam B+1 ! 4”@ P-4 P 1/p =
g (IO, du®)

for
a@B-14pB-1/2)-

he zw % 1/p
*“—gapm— (15O, du(0) al/B\BIB+1)
nz( (2ap)/ek IT'f u(0) ) exp{z(ﬁ+1 (( ln6) ) 1}.
(2ap)ie B

Then,

@F14pP-1/2)-
4a +p

“5 14 1/p
“—gaprmr— 15O, du(®) 2 al/B\B/(B+1)
nx ( Qap) (14 H(o) ) max( a(p+1) exp{2(ﬁ+ 1)(( 1n5)—> })

(Zaﬁ)ﬂﬁs B

6 Conclusion

Estimates for the distribution of norms in L, (T) of the stochastic processes from Fy(Q) spaces, accuracy and
reliability for the calculation of integrals by Monte Carlo methods and reliability and accuracy in L,(T) space
for calculation of integrals dependent on the parameter have been found in this paper.
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