ТЕОРЕТИЧЕСКАЯ И ЭКСПЕРИМЕНТАЛЬНАЯ ХИМИЯ

Том 20, № 6

ОТДЕЛЬНЫЙ ОТТИСК

 Boehm H., Schneider M., Arendt F. Der Wassergehalt «getrockneter» Siliciumdioxid-Oberflächen. — Z. anorg. und allgem. Chem., 1963, 320. N 1/4, S. 43—53.
 Unger K., Gallei E. Hydroxylgruppenbestimmung an Silicageloberflächen. — Kolloid. Z. und Z. Polym., 1970, 237, N 2, S 358—364.
 Folman M. Infra-red studies of NH3 adsorption on chlorinated porous Vycor glass. — Trans. Faraday Soc., 1961, 57, N 11, p. 2000—2006.
 Тертых В. А., Павлов В. В. Проблемы реакционной слособности молекул, атакующих фиксированный центр. — Адсорбция и адсорбенты, 1978, вып. 6, с. 67—75.
 Boehm H., Schneider M. Über die Hydroxylgruppen an der Oberfläche des amorphen siliciumdioxyd «Aerosil» und ihre Reaktionen. — Z. anorg. und allgem. Chem., 1959, 301, N 5/6, S. 326—335. 301, N 5/6, S. 326—335. 9. Гузикевич А. Г., Горлов Ю. И., Чуйко А. А. Применение метода РВ X_{α} к изучению

структуры дегидроксилированной поверхности кремнезема. — Теорет. и эксперим. химия, 1980, 16, № 4, с. 458—464.

10. Uytterhoeven I., Hoveau H. Cloruration d'un del de silice par le clorure de thionile.-Bull. Soc. chim. France, 1962, N 1, p. 89-99.

Институт физической химии им. Л. В. Писаржевского АН УССР, г. Киев Получено 26.03.84

УДК 541.49

В. Г. Головатый, В. И. Староста, В. П. Шабельников, Э. Н. Король

ИССЛЕДОВАНИЕ ТРОЙНЫХ ХАЛЬКОГЕНИДНЫХ СОЕДИНЕНИЙ МЕТОДОМ ДЕСОРБЦИОННО-ПОЛЕВОЙ МАСС-ЄПЕКТРОМЕТРИИ

В последние годы резко возрос интерес к получению и исследованию свойств различных полупроводниковых материалов с необходимыми свойствами. В этом отношении определенный интерес представляют тройные халькогенидные соединения, образующиеся на квазибинарных разрезах тройных систем Tl—Ge(Sn)—S, сведения о которых в литературе весьма ограничены. В качестве метода исследования был выбран метод десорбционно-полевой масс-спектрометрии (ДПМС), успешно зарекомендовавший себя в органической и неорганической химии, бионеорганической химии, медицине [1-4], но не применявшийся при изучении полупроводниковых кристаллических соединений.

В настоящей работе представлены результаты исследования тройных соединений Tl₂Ge₂S₃, Tl₂GeS₃, Tl₄GeS₄, Tl₂SnS₃ методом ДПМС. Синтез указанных соединений осуществляли сплавлением элементарных компонентов высокой степени чистоты (содержание основного вещества не менее 99,999 %) в вакуумированных до 0,1 Па кварцевых ампулах. Первое и третье из перечисленных соединений образуют кристаллическую решетку моноклинной сингонии, а второе и четвертое — триклинной. Данные о кристаллической структуре этих веществ приведены в [5, 6]; по результатам дифференциально-термического анализа получены значения температур плавления, равные соответственно: 868, 763, 677 и 699 К.

Масс-спектры полевой десорбции указанных соединений были получены на лабораторном полевом масс-спектрометре Института физической химии АН УССР [2]. В качестве эмиттера ионов применяли тонкую (12 мкм) вольфамовую проволоку с вы ращенными на ней золотыми микродендритами [2]. Для нанесения образца на эмиттер некоторое количество вещества растирали в агатовой ступке в мелкодисперсный порошок и затем приготавливали взвесь этого порошка в этиловом спирте. Каплю полученной взвеси наносили с помощью микрошприца на эмиттер.

Масс-спектры указанных соединений представлены в таблице. Для наглядности вместо значений масс ионов приведены их формулы; интенсивности пиков ввиду их изменения с температурой и от вещества к веществу в таблице не приведены. Анализ данных, помещенных в таблице, позволяет сделать следующие выводы: а. Наиболее распространенными в масс-спектрах полевой десорбции всех соединений являются ионы Tl+, что объясняется, по-видимому, весьма малой величиной потенциала ионизации этого элемента (6,1 В); причем в соединениях с Ge связь Tl в решетке оказывается более прочной, чем в Tl_2SnS_3 . б. В целом решетка Tl₂SnS₃ является более прочной, так как ее фрагменты появляются в спектре лишь при достаточно высоких температурах и среди них наблюдаются довольно тяжелые фрагменты. в. Особенности стехиометрии Ge-содержащих халькогенидов (Tl₂S · 2GeS₂, $Tl_2S \cdot GeS_2$; $2Tl_2S \cdot GeS_2$) проявляются и в характере масс-спектров полевой десорбции: так, халькогениды таллия в спектре соединения Tl₄GeS₄ появляются уже при низких температурах, в спектре Tl₂GeS₃ — при средних и в спектре $Tl_2Ge_2S_5$ — только при высоких температурах, в то время как ионы типа $TlGe^+$ наблюдаются в масс-спектрах всех трех соединений при примерно одинаковых условиях.

Формулы ионов, полученных при полевой десорбции тройных халькогенидных

соединении "				
Температура эмиттера	Tl ₂ Ge ₂ S ₅	Tl ₂ GeS ₃	Tl ₄ GeS ₄	Tl ₂ SnS ₃
50—70°C		TlGe+	Tl ₄ S ₂ + Tl ₂ Ge+ Tl ₂ S ₄ +	T1S ₂ +
200 °C	TlGe+	TIS+ TIGe+	Tl ₄ GeS ₃ + Tl ₄ S ₂ +	Tl+
300 °C	TlGe+	TIS+, TIGe+ TI+	Ti+; Tl ₄ S ₂ + Tl ₄ S ₄ +	TI+
400 °C	(Tl ₂ Ge ₂ S ₅ +Ge)+ Tl ₂ Ge ₂ S ₂ + Tl ₂ Ge ₂ S ₃ +; Tl+	$Ge_2S^+; Tl^+$ $(Tl_2GeS_3+Ge)^+$	(Tl ₄ GeS ₄ +Ge)+ Tl ₃ GeS ₄ + Tl ₄ S ₂ ; Tl+	T]+
500—600 °C	$Tl_2Ge_2S_3^+$ $Tl_2Ge_2S_2^+$ Tl^+	Ge ₂ S+; Tl+; TlS+; TlS ₃ +; TlS ₄ +; TlS ₅ +	Tl ₃ GeS ₃ + Tl+ Tl ₄ S ₃ +	(TlSn) ₂ + Tl ₂ S+ Tl+
900 °C	- s	-	<u>_</u>	$Tl+; Tl_2S+; Tl_2S_2+$ $(TlSn)_2+$ $(Tl_2SnS_3+Sn_2S_4)+$ $(Tl_2SnS_3+Sn_2S_5)+$

^{*} Прочерк означает, что ионных токов уже (или еще) нет.

Проведенные исследования демонстрируют принципиальную возможность использования метода ДПМС в исследованиях сложных кристаллических веществ и получения с его помощью качественных данных об их структуре и относительной прочности химических связей в решетке.

- 1. Beckey H.-P. Principles of field ionization and field desorption mass-spectrometry. —
- Вескеу Н.-Р. Principles of field ionization and field desorption mass-spectrometry. Oxford: Pergamon press, 1977.—335 р.
 Головатый В. Г., Бондаренко Р. Н., Король Э. Н. Применение нитевидных эмиттеров для исследования веществ с помощью полевого масс-спектрометра. Теорет. и эксперим. химия, 1975, 11, № 1, с. 349—355.
 Исследование органо-кобальт (III)-комплексов и их производных методом десорбционно-полевой масс-спектрометрии / К. Б. Яцимирский, Е.-Г. Егер, Э. Н. Король и др. Докл. АН СССР, 1983, 263, № 1, с. 169—172.
 И Король В. Н. Физические основы метода подевой лесорбции и его применение в масс-
- 4. Король Э. Н. Физические основы метода полевой десорбции и его применение в масс-
- Король З. П. Физические основы метода полевой десороший и его применение в масс-спектрометрии. Автореф. дис. ... д-ра физ.-мат. наук. М., 1981.—29 с.
 Ецепьегдег G. Ternäre Thallium-chalkogenide mit Tl₄Ge₂S₆ Struktur. Monatsh. Chem., 1982, 113, N 8, S. 859—867.
 Eulenberger G. Tetrathallium(1)-di-Sn-thiotetrathiodigermanat. Acta cristallogr. B, 1978, 34, N 8, p. 2614—2616.

Институт физической химии им. Л. В. Писаржевского АН УССР, г. Киев Получено 26.04.84