АКАДЕМИЯ НАУК СССР

ИЗВЕСТИЯ АКАДЕМИИ НАУК СССР

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ

(ОТДЕЛЬНЫЙ ОТТИСК)

12

MOCKBA · 1986

УДК 546.123.2+548.55

Переш Е. Ю., Лазарев В. Б., Староста В. И.

СВОЙСТВА СОЕДИНЕНИЙ, ОБРАЗУЮЩИХСЯ В СИСТЕМАХ ТІ₂С^{VI} — В^{IV}С₂^{VI}

Значительные области прозрачности в видимой и ИК областях спектра, большие показатели преломления, анизотропия свойств, несложные условия получения, способность к поляризации и ряд других свойств обусловливают интенсивное развитие химии и технологии халькогенидных соединений.

Определенный научный и практический интерес представляют сложные халькогениды, образующиеся в системах $Tl_2C^{v_1}-B^{i_v}C_2^{v_1}$ ($B^{i_v}-Si$, Ge, Sn; $C^{v_1}-S$, Se). В [1-5] имеются сведения о фазовых равновесиях в системах $Tl_2S(Se)-Ge(Sn)S_2(Se_2)$. Однако отсутствовали данные о полу-

чении и исследовании свойств монокристаллов соединений этих систем, фазовых равновесиях в системах $Tl_2S(Se)-SiS_2(Se_2)$, имели место противоречивые сведения о характере плавления некоторых соединений.

Это стимулировало нашу работу по изучению фазовых равновесий в системах $Tl_2S(Se)$ —Si(Ge, Sn)S₂(Se₂), подбору на их основе технологических режимов выращивания монокристаллов образующихся сложных халькогенидных соединений и исследованию их свойств.

Применяемые методы исследования и изученные нами диаграммы состояния описаны в [6-8]. Как видно из рис. 1 и 2, значительная разница поляризующих потенциалов таллия, с одной стороны, и кремния, германия, олова – с другой, которые входят в соответствующие подрешетки, обусловливает образование в этих системах нескольких сложных халькогенидных соединений. Большинство обнаруженных соединений плавятся конгруэнтно. Исследование областей гомогенности и построение соответствующих диаграмм состояния показали, что максимальная температура плавления в области существования соединений $Tl_4Si(Ge)S_4(Se_4)$, $Tl_2Si(Sn)S_3$ и $Tl_2Si_2S_5$ не соответствует стехиометрическому составу. Для Tl_4SiSe_4 , Tl_4GeSe_4 , Tl_4GeS_4 , Tl_2SiS_3 наблюдается смещение максимальной точки в области гомогенности в сторону более легкоплавкого, а для Tl_4SiS_4 , $Tl_2Si_2S_5$, Tl_2SnS_3 – более тугоплавкого компонента.

Таблица 1

Значения межатомных расстояний (в нм) $B^{IV} - C^{VI}$ и $TI - C^{VI}$ ($B^{IV} - Si$, Ge, Sn, $C^{VI} - S$, Se) для ряда соединений

Соединение	(BIV-CVI) _{KOB}	(BIV-CVI) _{ЭКСП}	(TI-CVI) _{NOH}	(TI-CVI) _{OKCII}	γ	
$\begin{array}{c} Tl_2SiS_3 \ [11] \\ Tl_2SiSe_3 \ [11] \\ Tl_4GeS_4 \ [12] \\ Tl_2GeS_3 \ [13] \\ Tl_2Ge2S_5 \ [14] \\ Tl_2GeSe_3 \ [11] \\ Tl_2Ge2Se_5 \ [15] \\ Tl_2SnSe_3 \ [17] \end{array}$	$\begin{array}{c} 0,221\\ 0,234\\ 0,226\\ 0,226\\ 0,226\\ 0,239\\ 0,239\\ 0,239\\ 0,244\\ 0,257\end{array}$	$\begin{array}{c} 0,2131\\ 0,2273\\ 0,2216\\ 0,2219\\ 0,2210\\ 0,2357\\ 0,2357\\ 0,2357\\ 0,2497\\ 0,2553\end{array}$	$\begin{array}{c} 0,324\\ 0,342\\ 0,324\\ 0,324\\ 0,324\\ 0,342\\ 0,342\\ 0,342\\ 0,342\\ 0,342\\ 0,342\end{array}$	$\begin{array}{c} 0,3371\\ 0.3458\\ 0,3309\\ 0.3378\\ 0.3441\\ 0.3461\\ 0.3538\\ 0.3435\\\end{array}$	0,0079 0,0067 0,0044 0,0041 0,0050 0,0033 0,0033 -0,0057 0,0017	

Таблица 2

Некоторые свойства соединений, образующихся в системах $Tl_2S(Se) - Si(Ge, Sn)S_2(Se_2)$

Соединение	Δ <i>Н</i> _{ПЛ} , кДж/моль	ΔS _{пл} , Дж/(моль·К)	т _{пл} ,К	р, Ом-м (293 К)	ΔE_0 , $\partial \mathbf{B}$
TLSIS	26.0	36.8	700	5.108	2.2
TLGeS	15.9	23.5	677	3.107	2.1
TLSnS	46.1	62.2	741	5.106	2.0
Tl ₂ SiS ₃	30.3	35.5	853	3.1010	2.6
• Tl ₂ GeS ₃	25.5	33.4	763	5.109	2.3
Tl_2SnS_3	43.2	61.5	699	5.105	1.8
Tl ₂ Si ₂ S ₅	51,6	55.6	925	2.1012	_
Tl2Ge2S5	53,2	61.3	868	7.1011	2,6
Tl ₄ SiSe ₄	17,6	26,7	657	104	1,7
Tl ₄ GeSe ₄	11,0	16,6	661	3.10^{3}	1,6
TL SnSe.	27,1	37,6	718	106	1.5
Tl ₂ SiSe ₃	28.0	33,6	833	108	2,1
Tl ₂ GeSe ₃	_	_	-	$2 \cdot 10^{7}$	1,7
Tl ₂ SnSe ₃	23,4	31,8	735	$3 \cdot 10^{4}$	1,3
Tl ₂ Ge ₂ Se ₅		_	-	109	2,0

На основе построенных диаграмм состояния исследованных квазибинарных разрезов в области существования соединений осуществляли подбор оптимального состава исходной шихты и технологических условий выращивания монокристаллов. Монокристаллы соединений Tl_4SiS_4 , Tl_2SiS_3 , $Tl_2Si_2S_5$, Tl_4GeS_4 , Ti_2GeS_3 , $Tl_2Ge_2S_5$, Tl_4SnS_4 , Tl_2SnS_3 , Tl_4SiSe_4 , Tl_2SiSe_3 , Tl_4GeSe_4 , Tl_4SnSe_4 , Tl_2SnSe_3 выращивали кристаллизацией расплава, а Tl_2GeSe_3 и $Tl_2Ge_2Se_5$ — из раствора в расплаве. Химический анализ проб, взятых из нижней, верхней и промежуточной частей монокристаллических буль, показал, что найденные количества составных элементарных компонентов согласуются с теоретическими.

Для оценки типа химической связи приведены суммы ковалентных $(B^{Iv}-C^{vI})_{\text{ков}}$ и ионных радиусов $(TI-C^{vI})_{\text{кон}}$ [9] (табл. 1). Средние межатомные расстояния $(B^{Iv}-C^{vI})_{_{3ксп}}$ соответствуют сумме тетраэдрических радиусов, поэтому связь $B^{Iv}-C^{vI}$ имеет преимущественно ковалентный характер. Поскольку средние межатомные расстояния $(TI-C^{vI})_{_{3ксп}}$ блиэки к сумме ионных радиусов, то очевидна некоторая часть ионной составляющей связи $TI-C^{vI}$. Рассмотрим изменение характера химической связи в направлении Si \rightarrow Ge \rightarrow Sn и S \rightarrow Se с учетом того, что увеличение разницы $(B^{Iv}-C^{vI})_{\kappaos}-(B^{Iv}-C^{vI})_{sксп}$ (обозначим ее через γ) увеличивает, а уменьшение — понижает ковалентную составляющую химической связи [10]. Для соединений-аналогов состава $Tl_2Si(Ge)S_3$, $Tl_2Si(Ge, Sn)Se_3$, $Tl_2Ge_2(Sn_2)S_5$ значение γ в ряду Si \rightarrow Ge \rightarrow Sn уменьшается, равно как и при переходе S \rightarrow Se для соединений $Tl_2SiS_3 \rightarrow Tl_2SiSe_3$, Tl_2GeSe_3 , $Tl_2Ge_2S_5 \rightarrow Tl_2Ge_2S_5$. Таким образом, в рассматриваемом направлении с увеличение ковалентных с

личивается металлическая составляющая химической связи. Это проявляется и в образовании кристаллических структур исследованных соединений. Так, для кремниевых и германиевых соединений типа $Tl_2B^{IV}C_3^{VI}$ и $Tl_2B_2^{IV}C_5^{VI}$ характерно наличие в структуре сложных анионов $[Si_2S_6]^{4-}$, $[Ge_2S_6]^{4-}$, $[Ge_2Se_6]^{4-}$, $[Ge_4Se_{10}]^{4-}$, $[Ge_4Se_{10}]^{4-}$ [11, 13–15].

Энтальпии и энтропии плавления (табл. 2) для большинства соединений систем $Tl_2C^{v_1}-B^{i_v}C_2^{v_1}$ в направлении $Si \rightarrow Ge \rightarrow Sn$ изменяются аналогично температурам плавления: от кремниевых соединений к германие-

Рис. 3. Области прозрачности полученных монокристаллов

вым их значения уменьшаются, а затем возрастают у оловянных. Такие специфические изменения связаны с явлением вторичной периодичности, которое характерно для элементов этой подгруппы. Уменьшение энтальпий и энтроний плавления наблюдается при переходе от сложных сульфидов к селенидам.

Все рассматриваемые кристаллы являются полупроводниками. Значения удельного сопротивления находятся в пределах $3 \cdot 10^3$ (Tl₄GeSe₄) – $2 \cdot 10^{12}$ Ом·м (Tl₂Si₂S₅). В направлении Si→Ge→Sn для соединений Tl₄Si(Ge, Sn)S₄, Tl₂Si(Ge, Sn)S₃, Tl₂Si(Ge, Sn)Se₃ и в направлении Si→Ge для Tl₂Si₂(Ge₂)S₅ имеет место уменьшение удельного сопротивления. Аналогичное изменение наблюдаем для всех типов рассматриваемых соединений при переходе S→Se.

Отмеченные на рис. З границы соответствуют 40-70%-ной прозрачности образцов толщиной несколько миллиметров. Как видим, для однотипных соединений наблюдается смещение коротковолнового края области пропускания в более длинноволновую область спектра, что влечет за собой аналогичные уменьшения значений ширины запрещенной зоны (табл. 2). Характер изменения ширины запрещенной зоны в направлении Si→Ge→Sn в зависимости от величин обратных орбитальных радиу-

2 Неорганические материалы, № 12

сов этих элементов [18] для групп соединений TLSi(Ge, Sn)S₄(Se₄), Tl₂Si(Ge, Sn)S₃(Se₃) весьма идентичен (рис. 4).

Ацентричность пр. гр. соединения Tl.GeS. [12] обусловливает возможность его применения в устройствах нелинейной оптики. Анизотропия свойств кристаллов Tl₂SnS₃ позволяет использовать их, например, в технике обработки анизотропных сигналов. Монокристаллы соединений

Рис. 4. Изменение ширины запрещенной зоны изученных соединений в зависимости от обратных величин орбитальных радиусов Si, Ge и Sn

Tl₂GeS₃, Tl₂SnS₃, Tl₄SnS₄, Tl₂SnSe₃ можно использовать в качестве фоточувствительных элементов полупроводниковых приборов.

выводы

На основе исследования фазовых равновесий в системах Tl₂C^{v1}-B^{1v}C₂^{v1} определены условия и выращены методом Бриджмена – Стокбаргера кристаллизацией расплава монокристаллы Tl_4SiS_4 , Tl_2SiS_5 , $Tl_2Si_2S_5$, Tl_4GeS_4 , Tl_2GeS_5 , $Tl_2Ge_2S_5$, Tl_4SnS_4 , Tl_2SiSe_4 , Tl_2SiSe_5 , Tl_4GeSe_4 , Tl_2SiSe_5 , Tl_4GeSe_5 , $Tl_2Ge_2S_5$, Tl_4SnSe_4 , Tl_2SiSe_5 , Tl_4GeSe_5 , Tl_4GeSe_5 , Tl_2SiSe_5 , Tl_4GeSe_5 , Tl_2SiSe_5 , Tl_4GeSe_5 , Tl_2SiSe_5 , Tl_5SiSe_5 , Tl_2SiSe_5 , Tl_5SiSe_5 , $Tl_5SiSe_5SiSe_5$, $Tl_5SiSe_5SiSe_5SiSe_5SiSe_5SiSe_5SiSe_5SiSe_5SiSe_5SiSe_5SiSE_5Si$

Показано, что химическая связь в рассматриваемых соединениях имеет ковалентно-ионный характер с преобладанием ковалентной составляющей. С увеличением главного квантового числа при переходе Si→Ge→Sn увеличивается металлическая и уменьшается ковалентная составляющие химической связи.

Рассмотрены закономерности изменения температуры плавления, энтальпий и энтропий плавления, удельного сопротивления, ширины запрещенной зоны для различных типов исследованных соединений в направлении Si→Ge→Sn и S→Se.

Литература

- 1. Houenou P. Houenou P., Eholie R. Étude du système SnSe₂ – Tl₂Se.– C. r. Acad. sci., Paris, Sér. C, 1976, t. 283, № 16, p. 731.
- 2. Готук А. А. Исследование фазовых равновесий и термодинамических свойств
- Готук А. А. Исследование фазован равновский и олова (свинца): Автореф. дис. на соиск. уч. ст. канд. хим. наук. Баку: Азерб. гос. ун-т, 1979.
 Туркина Е. Ю., Кожина И. И., Орлова Г. М., Образиов А. А. Взаимодействие ком-понентов в тройной системе Tl Ge Se по разрезам Tl₂Se GeSe₂ и TlSe Ge. Журн. неорган. химин, 1978, т. 23, № 2, с. 497.
- Кулиева Н. А., Бабанлы М. Б. Фазовые равновесия в системе Tl₂S GeS₂ и теп-лоты плавления соединений Tl₄GeS₄ и Tl₂GeS₃.– Изв. АН СССР. Неорган. мате-
- илаления Соединения Плоез, и Проез, изв. АП СССР. Пеорган. мате-риалы, 1981, т. 17, № 3, с. 421. 5. Бабанлы М. Б., Кулиева Н. А. Системы Tl₂Se GeSe₂ и TlSe GeSe(GeSe₂).– Журн. неорган. химин, 1983, т. 28, № 6, с. 1557. 6. Лазарев В. Б., Переш Е. Ю., Староста В. И. Фазовые равновесия в системах Tl₂S(Se) SiS₂(Se₂).– Журн. неорган. химии, 1983, т. 28, № 8, с. 2097.

- Лазарев В. Б., Староста В. И., Переш Е. Ю. Области гомогенности соединений Tl₄SiS₄, Tl₂SiS₃ и Tl₂Si₂S₅.- Журн. неорган. химии, 1984, т. 29, № 6, с. 1571.
 Староста В. И., Лазарев В. Б., Переш Е. Ю., Мудрый В. В. Фазовые равновесия и свойства соединений системы Tl₂S GeS₂.- Журн. неорган. химии, 1984, т. 29, № 12, с. 3131.
 Дей К., Селбин Д. Теорегическая неорганическая химия. М.: Химия, 1976.
 Olivier-Fourcade I., Jumas J., Ribes M., Philippot E., Maurin M. Evolution structurale et nature des liaisons dans la série des composés soufres du silicium, du germanium, et du l'étain.- J. Solid State Chem., 1978, v. 23, № 1-2, p. 155.
 Eulenberger G. Ternäre Thalliumchalkogenide mit Tl₄Ge₂S₆-Struktur.- Monatsh. Chem., 1982, B. 113, № 8-9, S. 859.
 Eulenberger G. Die Kristallstruktur des Thallium (I) thiogermanats Tl₄GeS₄.-Z. Kristallogr., 1977, B. 145, № 5-6, S. 427.
 Eulenberger G. Tetrathallium(I)-di-µ-thio-germanat.- Acta crystallogr. B, 1978, v. 34, № 8, p. 2614.

- Eulenberger G. Tetrathallium(I)-di-µ-thio-germanat. Acta crystallogr. B, 1978, v. 34, № 8, p. 2614.
 Eulenberger G. Die Kristallstruktur des Thallium(I) thiogermanats Tl₄Ge₄S₁₀. Acta crystallogr., 1976, v. 32, № 11, p. 3059.
 Eulenberger G. Tl₄Ge₄Se₁₀, ein Thallium(I) selenogermanat mit adamantanalogem anion [Ge₄Se₁₀]⁴⁻. Z. Naturforsch., 1981, B. 36b, № 4, S. 521.
 Eulenberger G. Tl₂Sn₂S₅ ein Thallium(I) thiostannat (IV) mit fünffach koordinier-tem Zinn. Z. Naturforsch., 1981, B. 36b, № 6, S. 687.
 Jaulmes S., Houenou P. Structure cristalline du seleniure d'étain IV et de thal-lium I: Tl₂SnSe₃. Mater. Res. Bull., 1980, v. 15, № 7, p. 911.
 Годовиков А. А. Химические основы систематики минералов. М.: Недра, 1979.

shindly or transfert warn that in

and the second second

Ужгородский государственный университет

Поступила в редакцию 29.111.1985

Институт общей и неорганической химии им. Н. С. Курнакова Академии наук СССР

.1971

2*