АКАДЕМИЯ НАУК СССР

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ

(ОТДЕЛЬНЫЙ ОТТИСК)

MOCKBA · 1985

ЖУРНАЛ НЕОРГАНИЧЕСКОИ ХИМИИ

1985

Вып. 6

УДК 546.541.12.017+546.548.55+546.33'86'22'

Том 30

ЛАЗАРЕВ В. Б., ПЕРЕШ Е. Ю., СТАРОСТА В. И., МУДРЫЙ В.В.

ФАЗОВЫЕ РАВНОВЕСИЯ И СВОЙСТВА СОЕДИНЕНИЙ В СИСТЕМАХ Tl₂S(Se) —SnS₂(Se₂)

Методами физико-химического анализа исследованы фазовые равновесия в системе $Tl_2Se - SnSe_2$. Установлено существование соединений Tl_4SnSe_4 и Tl_2SnSe_3 , плавящихся конгрузнтно при 718 и 735 К соответственно, и $Tl_2Sn_2Se_5$, которое образуется при 655 К и перитектически разлагается при 732 К. Соединение Tl_2SnSe_3 , по данным ДТА, при 710 К претерпевает полиморфное превращение.

Определены области гомогенности некоторых соединений, образующихся в системах $Tl_2S(Se) - SnS_2(Se_2)$. Методом Бриджмена – Стокбаргера выращены монокристаллы соединений $Tl_4SnS_4(Se_4)$ и $Tl_2SnS_3(Se_3)$, на которых исследованы некоторые свойства: определены плотность и удельное сопротивление, сияты спектры пропускания и фотопроводимости.

Система $Tl_2S - SnS_2$ характеризуется наличием трех промежуточных соединений: конгруэнтно плавящихся Tl_4SnS_4 (738 K), Tl_2SnS_3 (698 K) и инконгруэнтно плавящегося $Tl_2Sn_2S_5$ (733 K) [1, 2]. Согласно [3], $Tl_2Sn_2S_5$ кристаллизуется в моноклинной сингонии, пространственная группа C2/c, с параметрами решетки: a=1,1115; b=0,7723; c=1,1492 нм; $\beta=108,60^\circ$; Z=4. Структуры Tl_4SnS_4 и Tl_2SnS_3 в литературе не описаны.

В системе $Tl_2Se - SnSe_2$ образуются соединения Tl_4SnSe_4 , Tl_2SnSe_3 и $Tl_2Sn_2Se_5$ [4]. Из них Tl_2SnSe_3 плавится при 745 К конгруэнтно, Tl_4SnSe_4 перитектически разлагается при 698 К, а $Tl_2Sn_2Se_5$ устойчиво в узком интервале температур – образуется в результате эвтектоидной реакции при 648 К и перитектически разлагается при 733 К. По данным [5, 6], соединения Tl_4SnSe_4 и Tl_2SnSe_3 плавятся инконгруэнтно, а по [2] – конгруэнтно. О существовании соединения $Tl_2Sn_2Se_5$ в [2, 5, 6] не упоминается. Из соединений, образующихся в системе $Tl_2Se - SnSe_2$, ренгтеноструктурные исследования проведены только для кристаллов Tl_2SnSe_3 . Установлено, что это соединение кристаллизуется в ромбической сингонии, пространственной группе *Pnam* с параметрами решетки: a=0,8051; b=0,8161; c=2,124 нм, Z=8 [7]. Сведения о получении и исследовании свойств монокристаллов соединений рассматриваемых систем в литературе отсутствуют.

Цель настоящей работы заключалась в уточнении диаграммы состояния системы $Tl_2Se - SnSe_2$, изучении микродиаграмм в области существования соединений систем $Tl_2S(Se) - SnS_2(Se_2)$, получении и исследовании некоторых свойств их монокристаллов.

Фазовые равновесия исследовали методами дифференциального термического (ДТА), рентгенофазового (РФА), микроструктурного анализов, а в области существования образующихся соединений методом количественного дифференциального термического анализа (КДТА), измерения микротвердости и микроструктурного анализа. Методика применяемых исследований описана в [8, 9]. Дифрактограммы простых и сложных сульфидов (селенидов) снимали на рентгеновском дифрактометре ДРОН-2 в СиК_в-излучении (монохроматор LiF).

При подборе режимов синтеза и отжига сплавов в области соединений Tl₄SnS₄ и Tl₂SnS₃ были использованы данные о фазовых равновесиях

в системе $Tl_2S - SnS_2$ [1, 2]. Идентификацию тройных соединений осуществляли методами ДТА и РФА. Температуры плавления соединений Tl_4SnS_4 и Tl_2SnS_3 равны 741 и 699 К, что согласуется с [2]. Значения межплоскостных расстояний простых сульфидов, а также соединений системы $Tl_2S - SnS_2$ приведены в табл. 1.

Для исследования фазовых равновесий в области соединения Tl₄SnS₄ синтезировали и изучили 22 сплава в интервале концентраций 29,5-

Таблица 1

<i>d</i> , нм	I, %	<i>d</i> , нм	I, %	d, нм	I, %	<i>d</i> , нм	I, %
Tl.S		0.281	25	0.37	35	0.298	50
0.60	3	0.276	30	0.333	5	0.276	90
0.43	Ĩ	0.267	15	0.300	5	0.259	50
0.35	3	0.259	30	0,295	10	0.235	15
0.344	5	0.253	15	0,288	5	0.208	25
0,304	100	0,248	10	0,276	25	0,1928	10
0.271	2	0,244	25	0,266	10	0,1846	30
0,229	10	0,237	30	0,257	20	SnS ₂	10]
0,202	10	0,220	15	0,249	5	0,590	6
0,1972	1	0,210	10	0,235	5	0,316	26
0,1913	2	0,206	10	0,224	5	0,305	16
0,1829	1	0,203	10	0,215	5	0,294	1
0,1788	2	0,1858	20	0,1917	25	0,278	45
0,1749	10	0,1817	15	0,1842	10	0,246	2
0,1683	3	0,1760	10	0,1803	5	0,215	4
Tl_4St	$1S_4$	0,1734	10	0,1754	5	0,196	1
0,37	100	0,1711	10	0,1643	5	0,182	100
0,348	10	Tl_2SnS_3		$Tl_2Sn_2S_5$		0,174	20
0,338	20	1,15	20	0,40	100	0.166	1
0,328	15	0,58	5	0,39	85	0,158	27
0,312	20	0,44	5	0,37	35	0,156	6
0,293	45	0,38	100	0,35	40	0,155	2

Значения межплоскостных расстояний и интенсивностей рефлексов на дифрактограммах соединений системы Tl₂S – SnS₂

37,2 мол. % SnS₂. Максимальную температуру плавления на диаграмме состояния в области соединения Tl_4SnS_4 (рис. 1) имеет сплав стехиометрического состава (точка *B*). Соотношение взаимодействующих компонентов в точке $A - (\text{Tl}_2\text{S})_{0,656}(\text{SnS}_2)_{0,314}$, а в точке $D - (\text{Tl}_2\text{S})_{0,655}(\text{SnS}_2)_{0,345}$. Исследования сплавов изотермического сечения при 423 К показало, что область гомогенности при указанной температуре не превышает 1,4 мол. %.

На основе исследования 20 сплавов в интервале концентраций 46,5-52,0 мол. % SnS₂ построена микродиаграмма состояния в области соединения Tl₂SnS₃, которая представлена на рис. 2. Из полученных данных следует, что максимальную температуру плавления (702 К, точка *C*) имеет сплав, состав которого смещен относительно стехиометрического на 0,1 мол. % SnS₂ в сторону Tl₄SnS₄. Область гомогенности Tl₂SnS₃ находится в интервале концентраций 48,5 (точка *A*) – 50,25 мол. % SnS₂ (точка *D*). На основе микроструктурного анализа и измерения микротвердости сплавов изотермического сечения (423 К) установлено, что твердые растворы на основе Tl₂SnS₃ образуют очень узкую область (около 0,5 мол. % SnS₂).

Для исследования фазовых равновесий в системе $Tl_2Se - SnSe_2$ во всем интервале концентраций синтезировали и исследовали 25 сплавов. На основе данных ДТА и микроструктурного анализа построена диаграмма состояния системы $Tl_2Se - SnSe_2$, которая представлена на рис. 3. В системе обнаружено три соединения: Tl_4SnSe_4 и Tl_2SnSe_3 , плавящиеся конгруэнтно при 718 и 735 К соответственно, а также $Tl_2Sn_2Se_5$, существующее в узком температурном интервале (образуется при 655 К и перитектически разлагается при 732 К). Эвтектические превращения происходят при 633, 693 и 723 К; координаты эвтектик равны 12,5; 40 и 62 мол. % SnSe_2 соответственно. Индивидуальность тройных соединений подтверждается РФА (табл. 2).

Представленная диаграмма состояния системы $Tl_2Se - SnSe_2$ по характеру плавления соединений Tl_2SnSe_3 и $Tl_2Sn_2Se_5$ согласуется с [4], однако отличается относительно Tl_4SnSe_4 , которое, по нашим данным, плавится конгруэнтно. На конгруэнтный характер плавления Tl_4SnSe_4 указывается и в [2]. Методом ДТА обнаружено наличие полиморфного превращения для соединения Tl_2SnSe_3 при 710 К. Однако методом РФА наличие данного превращения подтвердить не удалось. По-видимому, скорость закалки

Рис. 1

Рис. 2

Рис. 1. Область гомогенности соединения Tl₄SnS₄: *a* – *1* – результаты КДТА; *2*, *3* – результаты микроструктурного анализа (*2* – однофазные сплавы; *3* – двухфазные сплавы); *б* – микротвердость сплавов изотермического сечения при 423 К

Рис. 2. Область гомогенности соединения Tl₂SnS₃: *a* – *1* – результаты КДТА; *2*, *3* – результаты микроструктурного анализа (*2* – однофазные сплавы; *3* – двухфазные сплавы); *6* – микротвердость сплавов изотермического сечения при 423 К

сплава при попытке получения высокотемпературной модификации была недостаточной. Для расплава соединения Tl₂SnSe₃ установлено существование переохлаждения (около 30 К), что дополнительно усложняет возможность получения высокотемпературной модификации. Заметных областей гомогенности на основе Tl₂SnSe₃ не обнаружено.

Микродиаграмма состояния в области соединения Tl_4SnSe_4 приведена на рис. 4. Синтезировано и исследовано 22 сплава в интервале концентраций 29,25—36,25 мол. % $SnSe_2$. Максимум на микродиаграмме (точка *B*) соответствует стехиометрическому составу. Соотношение взаимодействующих компонентов в точке *A* отвечает составу $(Tl_2Se)_{0,6725}(SnSe_2)_{0,3275}$, а в точке $D - (Tl_2Se)_{0,655}(SnSe_2)_{0,345}$. Микроструктурный анализ и измерение микротвердости сплавов изотермического сечения при 423 К показали, что область гомогенности незначительно сужается и при указанной температуре не превышает 1 мол. %.

Конгруэнтный характер плавления соединений $Tl_4SnS_4(Se_4)$ и $Tl_2SnS_3(Se_3)$ позволил проводить выращивание их монокристаллов методом Бриджмена — Стокбаргера. При получении кристаллов $Tl_4SnS_4(Se_4)$ и $Tl_2SnS_3(Se_3)$, согласно микродиаграммам (рис. 1, 2, 4), использовали шихту стехиометрических составов. В случае Tl_2SnS_3 необходимость использования такого состава шихты была связана с тем, что при использовании исходной шихты, отвечающей максимуму на микродиаграмме, возникает опасность попадания в двухфазную область при охлаждении

1504

Te

y

Рис. 3. Диаграмма состояния системы Tl₂Se - SnSe₂

Рис. 4. Область гомогенности соединения Tl₄SnSe₄: *a* – *I* – результаты КДТА; *2*, *3* – результаты микроструктурного анализа (*2* – однофазные сплавы, *3* – двухфазные сплавы); *б* – микротвердость сплавов изотермического сечения при 423 К

полученного кристалла до комнатной температуры (рис. 2). Подбор режимов выращивания монокристаллов проводили с учетом переохлаждения расплавов исследуемых соединений. Были получены монокристаллы соединений Tl₄SnS₄(Se₄) и Tl₂SnS₃(Se₃) длиной 20-30 мм, диаметром 15-22 мм, для которых определены плотность, удельное сопротивление

Таблица 2

<i>d</i> , нм	I, %	<i>d</i> , нм	I, %	<i>d</i> , нм	I, %	<i>d</i> , нм	I, %
Tl_2Se		0,348	25	0,36	60	0,224	20
0,43	10	0,335	20	0,326	20	0,204	20
0,37	10	0,326	15	0,300	30	0,1961	5
0,328	10	0,319	40	0,286	40	0,1899	20
0,316	15	0,299	85	0,268	100	0,1834	20
0,312	15	0,290	45	0,256	15	0,1772	20
0,292	10	0,283	45	0,243	15	0,1627	. 20
0,282	100	0,276	25	0,223	10	0,1533	20
0,277	20	0,265	60	0,1771	60	SnSe	2
0,273	40	0,257	40	0,1624	20	0,62	100
0,266	5	0,251	20	Tl_2Sn_2S	e5	0,307	5
0,251	5	0,243	40	0,61	100	0,286	5
0,207	20	0,217	10	0,42	10	0,275	3
0,1934	10	0,209	20	0,41	40	0,251	3
0,1862	5	0,1928	25	0,35	25	0,239	3
0,1769	10	0,1872	40	0,303	65	0,211	5
0,1650	15	0,1821	10	0,291	55	0,205	20
Tl_4SnSe_4		0,1790	25	0,268	100	0,1906	5
0,39	100	Tl_2S	nSe ₃	0,261	25	0,1819	2
0,38	45	0,41	45	0,255	10	0,1783	5

Значения межплоскостных расстояний и интенсивностей рефлексов на дифрактограммах соединений системы Tl₂Se – SnSe₂

(293 К), сняты спектры пропускания и фотопроводимости. Некоторые параметры изученных монокристаллов приведены в табл. З.

На основании исследования спектральной зависимости фотопроводимости дана оценка ширины запрещенной зоны (табл. 3). Полученные значения хорошо согласуются с величинами ΔE_0 , рассчитанными на основе

Таблица 3

Соединение	d, 10 ³ кг·м- ³	р, Ом-м (293 К)	Обл. прозрачн., мкм	Δ <i>E</i> ₀ , əB	
Tl ₄ SnS ₄ Tl ₄ SnSe ₄ Tl ₂ SnS ₃	6,90 7,55 6,34	$ 5.10^{6} \\ 10^{6} \\ 5.10^{5} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2,0 1,4 1,7	

Свойства монокристаллов соединений Tl₄SnS₄ (Se₄) и Tl₂SnS₃ (Se₃)

спектров пропускания в области края собственного поглощения. При замене селена на серу в рассматриваемых соединениях край поглощения и максимум фотопроводимости смещаются в более коротковолновую область спектра, увеличивается удельное сопротивление.

Литература

- 1. Али Аларик Готук, Кулиева Н. А., Бабанлы М. Б. Тез. докл. научн. сессии, посвященной итогам научно-исследоват. работ по хим. наукам за 1977 г. Баку, 1978, c. 4.
- 2. Али Аларик Готук. Автореф. дис. на соискание уч. ст. канд. хим. наук. Баку:

- Али Аларик Готук. Автореф. дис. на соискание уч. ст. канд. хим. наук. Баку. Азерб. гос. ун-т, 1978. 18 с.
 Eulenberger G. Z. Naturforsch., 1981, t. B36, № 6, S. 687.
 Houenou P., Eholie R. Compt. rend. Acad. Sci. Paris, 1976, t. G283, № 16, р. 731.
 Али Аларик Готук, Каграмян З. Г. Тез. республ. научн.-техн. конф. «Участие молодых ученых вузов, НИИ, КБ и специалистов промышленных предприятий республики но россон риссистических сонческих в разволяется в сонческих в разволя. республики по вопросу внедрения достижений науки и техники в производство». 14-16 июня 1977 г. Баку, 1977, с. 109. 6. Али Аларик Готук, Бабанлы М. Б., Кулиев А. А. Азерб. хим. журн., 1977, № 6,
- c. 128.
- 7. Gaulmes S., Houenou P. Mater. Res. Bull., 1980, t. 15, № 7, р. 911. 8. Лазарев В. Б., Переш Е. Ю., Староста В. И. Ж. неорган. химии, 1983, т. 28, № 8, c. 2097.
- Ворошилов Ю. В., Киш З. З., Семрад Е. Е., Ткаченко В. И. Ж. неорган. химии, 1980, т. 25, № 10, с. 2610.
 Guenter J. R., Oswald H. R. Naturwiss., 1968, t. 55, № 4, S. 177.

Ужгородский государственный университет

Институт общей и неорганической химии им. Н. С. Курнакова АН СССР

Поступила в редакцию 20.VI.1984