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1. Introduction

The purpose of the present note is to provide a scheme for a constructive analysis of a non-local boundary value problem.
More precisely, we consider the problem

u'(t) =f(t,u(t)), telabl, (1)
P(u) =d, (2)

where ¢ : C([a, b}, R") — R" is a vector functional (possibly non-linear), f : [a,b] x R" — R" is a function satisfying the Carat-
héodory conditions in a certain bounded set, and d is a given vector. By a solution of the problem, one means an absolutely
continuous function with property (2) satisfying (1) almost everywhere on [a, b].

The analysis is constructive in the sense that, when applicable, it allows one to both study the solvability of the problem
and approximately construct its solutions by operating with objects that are determined explicitly in finitely many steps of
computation. The topic has been addressed by many authors, see, e.g., [1,2] for related references.

It turns out that, under suitable conditions and with a certain modification, the techniques previously applied in [3,4] for
periodic and two-point problems can also be used in the more general cases of problem (1) and (2) where the boundary con-
dition may be non-local. Here, we describe this particular modification, which is based on the introduction of a suitable
model problem, and outline the resulting scheme of investigation. Note that the new approach is easier to apply compared
with those used earlier, e.g., in [5-7].

2. Notation and symbols

In the sequel, for any x = col(x;,...,x,) € R", the obvious notation |x| = col(| x; |,...,|x, |) is used and the inequalities
between vectors are understood componentwise. A similar convention is adopted implicitly for the operations ‘max’ and
‘min’. The symbol 1, stands for the unit matrix of dimension n and r(K) denotes the spectral radius of a square matrix K.
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If ze R" and g is a vector with non-negative components, B(z, 9) stands for the componentwise g-neighbourhood of z:
B(z,0) :={¢ e R": |¢ —z| < ¢} . Similarly, given a set Q c R", we define its componentwise g-neighbourhood by putting

B(Q,0) = B(z.0). 3)

zeQ

Given two sets Dy and D; in R", we put

B(Do,D1) := {0+ (1 —0)n: &€ Do,n € Dy,0€[0,1]}. (4)
For a set QC R" and a n x n matrix K with non-negative entries, we write f € Lip,(Q) if the estimate
f(t,ur) = f(t,uz)| < Klug — uy (5)

holds for all uq,u, from Q and a.e. t € [a, b]. Finally, we shall frequently use the notation

op(f) :== esssup f(t, &) — essinf f(t,¢). (6)

(t,&)ela,b]xD (t,¢)€[a,b)xD

3. Freezing and parametrization

The idea that we are going to employ is based on the reduction to a family of simpler auxiliary boundary problems
obtained by “freezing” certain values of the solution sought for (see, e.g., [8-10]). In our case, the auxiliary problems will
have two-point linear separated conditions at a and b:

u(@ =<, u(b)=n, (7)

where ¢ and # are parameters whose values remain unknown at the moment. As will be seen from the statements below, one
can then go back to the original problem by choosing the values of the introduced parameters appropriately.

Let us fix certain bounded sets D; c R", i =0, 1, and focus on the solutions u of problem (1) and (2) with u(a) € Dy and
u(b) € Dy. Given an arbitrary pair (£,1) € Do x Dy, we set

Uo(t, &, 1) = (1 ,%)HE%‘;” (8)
and
t _ b
(6, 6) = Uo(t, &)+ [ (5. unls. &) — =g [ f(xun(z.cm)de o)

forallt € [a,b] and m = 0, 1,.. .. The vectors ¢ and # in (8) and (9) are treated as unknown parameters. Considering formulae
(8) and (9), one arrives immediately at the following

Proposition 1. If, for a fixed pair (£,1) € Do x Dy, the sequence {un(-,&,1) : m > 0} converges to a function u(-, &, 1) uniformly
on [a,b], then:

1. u.(b,&,n) =n.
2. u.(-,¢,n) satisfies the Cauchy problem
1
w(t) = ft.u(®) + A ), telab, (10)
u(a) =¢, (11)

where A : Dy x Dy — R" is given by formula
b
Acm=n—¢- [ fsudls.cmds, (12)

In other words, the function u.(-, ¢, 1), provided that it is well-defined, satisfies the equation

t b
u(t) = uo(t. &)+ [ fls.ulonds — ;= [ fls.usnds. e fa.bl (13)

Since, clearly, the values of uq(-, ¢, 77) are convex combinations of ¢ and 7, we see from (13) that u.. (-, ¢, 1) is also a solution of
the two-point boundary problem (10) and (7). It turns out that this simple fact can be used to analyse the solutions of the
original problem (1) and (2). In order to continue, it is however necessary to establish conditions ensuring the convergence of
sequence (9) and, therefore, the fact that u,(-, ¢, 1) is well defined for the corresponding values of ¢ and 7.
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4. Convergence of successive approximations

Let us put
Q := B(Dy,Dy)
and Q, := B(Q, ¢) for any non-negative vector g. Recall that the set B(Do,D;) is defined according to (4).

Remark 2. It is clear from (4) that B(Dy,D;) C conv(Dg U D) but the equality is, generally speaking, not true.

Theorem 3. Let there exist a non-negative vector ¢ satisfying the inequality

b-a.
Q> da, (f),

such that f € Lipg(€,) with a matrix K for which

(b—ay(K) < ;7
Yo

where
7o := 3/10.
Then, for all fixed (¢,n) € Do x Dy:
1. The limit limp_. um(t, &, 1) =: u(t, & n) exists uniformly in t € [a, b].

2. u.(-, ¢, n) is the unique solution of the Cauchy problem (10) and (11).
3. un(t,&,n) € Q, forany t € [a, b].

4. The estimate

i 6,1) — Un(6E, 1)) < 321 6)5b ~ @K)" (L — (b — @) 0,

holds for any t € [a,b] and m > 0, where

t—a

oc1(t)=2(tfa)<l —m>, t€la,b).

The proof of Theorem 3 is carried out by combining several auxiliary statements given below (see [1,11]).

Lemma 4 [1, Lemma 3.13]. For any continuous function u : [a,b] — R", the estimate

/: (u(r) - blfa /ab u(s)ds) dt

holds, where o4 is given by (19) and wqp(U) := MaXee(qpU(S) — MiNseppU(S).
Let

U1 (L) := (1 - %) /at O (S)ds +% /[b oan(s)ds, te[a,b],

for any m > 0, where oy (t) := 1,t € [a, b]. Clearly, formula (19) defining o, is obtained from (21) for m = 0.

1
< jal (t)w[a,b] (U), te [a7 b]7

Lemma 5 [1, Lemma 3.16]. The following estimates hold:
Omi1(t) < Yo(b—a@)om(t), tea,b],
form = 2 and

() < g (o(b — @)"a(8), € ab]

form = 0, where y,, is given by (17).

Lemma 6. If ¢ is a vector satisfying relation (15), then
{um(t,&,m) :t € a,b]} C Q,

691

(15)

(16)

(17)

(18)

(19)

(20)

(22)

(23)

(24)
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forany m > 0 and (¢,n) € Do x Dy,

Proof. The proof is analogous to that of [4, Lemma 4] and is based on Lemma 4. Let (¢,#) € Do x Dy be arbitrary. In view of
(14), it follows immediately from (8) that uo(t, ¢, 1) € Q for any t € [a, b], i.e., (24) holds for m = 0.
Let us assume that (24) holds for a certain m = mq. Then, by virtue of (9), (15), and Lemma 4, we obtain

. b-
g1 (8,6, 1) — to(£,E,)] < 25 da(f) < 0 (25)

for t € [a, b]. Since (24) is known to be true for m = 0, we see from (25) that all the values of un,.1(-, ¢, 77) are contained in
B(Q,0), i.e., (24) holds with m = mg + 1. The arbitrariness of m, then leads us to (24) for any m. O

Proof of Theorem 3. Let ¢ € Dy and 1 € D;. By Lemma 6, we have un(t,&,n) € Q, for all t € [a,b] and m > 0. Since, by
assumption, the function f belongs to Lipg(Q,), relation (9) yields

ot b
rm+1(t,z,n><1<<(1b“) [ rmts.zds + =5 [ rm(s./z,mds)v tefabl (26)
- a - t

for all m > 1, where
rm(tsfa’?) = ‘Um(t,éﬂ’l) —um,l(t,é7n)|, te [avb]’ m= ] (27)

On the other hand, using (9) and Lemma 4, we obtain

t
ri(t,én) = / (f(s Uo(s, &,1) / fs,uo(t,¢, n))df)d
1
<3t (O)Dap (- Uo(&,1))) (28)
1
< 3%(0dq, (f)
for any t € [a, b]. Putting in (26) m = 1 and using (21) and estimate (23) of Lemma 5, we obtain

_ t _ b
ra(t,&n) < %<(<l_z§_i>/] ocl(s)d5+£T‘;/t al(s)ds>5gg(f)

< 2K ()00, 29
5'\
< 220 Ken ()00, (),
where 7y, is given by (17). Considering (26) and (29) and arguing by induction, we conclude that
1 5
T (£, 6,17) < 5 K" 0mia (£)0, () <5 (o(b - a)K)" o1 (t)dq, (f), € [a,b], (30)
for any m > 0. Therefore, using (19) and the equality maXcjpo1(s) =1 (b — a), we get
| um+j(t7 EN) —um(t,En) Zrm+1
J .
20 (olb - K™ o0, () (31)
i=1
5(b— L
< 2P (b~ K™ (0(b — )00, ()
i=0

for any tea,bl,m >0, and j > 1. In view of assumption (16), the sums involved in (31) are bounded and
limy,_.(yo(b — @)K)™ = 0. Therefore, (31) implies that {u,(-, & #): m > 0} is a Cauchy sequence in C([a, b], R"). Passing to
the limit as j — oo in (31), one arrives at (18).

5. Properties of the function u..(-, &, )

In terms of function u. (-, &, 77), one can characterise the solvability of the two-point problem with separated conditions
(7). More precisely, apart of system (1), consider the forced system
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u'(t) =f(tu(t)) + ub—a)"', telab, (32)

where p = col(u,, ..., 1,) € R" is a control parameter.

Theorem 7. Let ¢ € Dy and n € D be fixed. Let there exist a non-negative vector ¢ wit property (15) such that f € Lipg(€,) with a
matrix K for which (16) holds. Then, for the solution of system (32) with

u(a) =¢ 33)
to have the property
u(b) =n, (34)

it is necessary and sufficient that

m=A(n), (35)
where A(&, 1) is given by (12). Moreover, in the case where (35) holds, the solution of the initial value problem (32) and (33) coin-
cides with u..(-, &, 7).

In other words, for any given pair (¢, ), the vector A(¢, #) is the only value of p in (32) for which the solution of (32) and
(33) satisfies the two-point boundary conditions (7).

Proof of Theorem 7. Sufficiency. Assume that (35) holds. In that case, (10) coincides with (32). By virtue of Proposition 1, the
function u., (-, &, #) is the unique solution of the initial value problem (10), (11) and, moreover, u., (b, ¢, ) = 5. Thus, u. (-, &, 1)
is a solution of (32) and (34).

Necessity. Let uy(-, &) denote the solution of the initial value problem (32) and (33). It is obvious from (32) and (33) that

w60 =+ [ s s g =S, b (36)
It follows immediately from (36) that the value of i can be represented as

p= b~ [ s, s (37)
and, therefore,

w60 =+ [ fis.uds s+ =9 (uﬂw, o [ fus c))ds>, telabl (38)
for any w. In particular, ua,, (-, £) satisfies the equation

Une(8,8) =&+ /:f(s,um‘,,) (s,¢))ds + % ('7 - /a'bf(& Un(en) (S, 5))‘15)7 t € [a,b], (39)

since, in view of Proposition 1, uaey (-, ¢) coincides with u..(-,&,#) and the latter function has the property u..(b, &, n7) = n.
Assuming now that
uu(b, &) =mn, (40)

we immediately find from (38) and (39) that each of the functions u,(-, ¢) and uae) (-, &) satisfies Eq. (13), where uo(-, &, 1) is
given by (8). By Theorem 3, the function u.(-, ¢, #), which is the uniform limit of the successive approximations (9), is the
only solution of (13). Therefore, under assumption (40), u,(-, ¢) coincides with u.(-, &, 7). Recalling (37), we conclude that
1 necessarily has form (35) in that case.

Theorem 7 leads one immediately to the following

Proposition 8. Under the assumptions of Theorem 3, the function u..(-, ¢,n) is a solution of the boundary value problem (1) and
(2) if and only if the pair (&, n) satisfies the system of 2n equations

A&, n) =0, (41)
PU(- &) =d, (42)

where A : Dy x D; — R" is given by (12).

Proof. It suffices to apply Theorem 7 and notice that the differential Eq. (10) coincides with (1) if and only if (¢,#) satisfies
(41). O
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Equations of the type appearing in the last proposition are usually referred to as a determining equations and, indeed, as
the following statement shows, the system of Egs. (41) and (42) determines all possible solutions of the original boundary
value problem (1), (2) with graphs lying in Q,.

Theorem 9. Let there exist a non-negative vector ¢ with property (15) such that f € Lipg(Q,) with a matrix K for which (16)
holds.

1. If there exists a pair (¢,1) € Do x Dy satisfying (41) and (42), then the non-local boundary value problem (1) and (2) has a

solution u(-) such that
{u(t): tefa,b} cQ, (43)

and u(a) = &,u(b) = n.
2. If the boundary value problem (1) and (2) has a solution u(-) such that (43) holds, then the pair (u(a),u(b)) is a solution of
system (41) and (42).

Proof. The first assertion is an immediate consequence of Theorem 3 and Propositions 1 and 8 since u.. (-, &, ) is the required
solution in that case. To prove the second one, assume that problem (1) and (2) has a solution u with property (43). Then u is
a solution of the Cauchy problem (32) and (33) with ¢ = 0 and ¢ = u(a) and, therefore, by Theorem 3,

U = Uy, u(a), u(b)). (44)
In view of Theorem 7, we obtain
A(& u(b)) =0, (45)

which means that (41) holds with # = u(b). Finally, equality (42) is an immediate consequence of (44) and the assumption
that p(u) =d. O

6. Approximation of a solution

The last theorem suggests an approach to the study of the non-local problem (1) and (2) by looking for its solution among
those of the family of equations (13), which are, as Theorem 7 shows, motivated by auxiliary problems with separated two-
point conditions (7). The study of the problem then consists of two parts, namely, the analytic part, when the integral Eq. (13)
is dealt with by using the method of successive approximations (9), and the numerical one, which consists in finding a values
of the 2n unknown parameters from the system of Egs. (41) and (42). This closely correlates with the idea of the Lyapunov-
Schmidt reduction (see, e.g., [12]). The solvability of the determining system (41) and (42), in turn, can be established in a
rigorous manner by studying some its approximate versions

An(&,m) =0, (46)
¢’(Um(‘7f~,77)) = d7 (47)

where m is fixed and A, : Do x D; — R" is given by the relation

b
An(Em) =1 — ¢ - / F(5. (s, & ))ds (48)

for all (¢,1) € Do x D;. The solvability analysis based on properties of equations (46) and (47), which can be carried out by
analogy to [3,4,13], is not treated here.

In practice, one constructs analytically the function un, (-, ¢, 77) for a certain mg keeping ¢ and # as parameters, then finds
numerically a root (¢,7#) of the approximate determining system (46) and (47) with m = my, and forms the function

Umo(t) = umo(t7 f, 77’)7 te [a7 b] (49)
which is natural to be interpreted as the moth approximation of a solution of the original problem (1) and (2) the values of
which at a and b lie in a neighbourhood of ¢ and 7 respectively. Possible multiple roots of system (46) and (47), under appro-
priate assumptions, correspond to multiple solutions of the exact determining system (41), (42) and, thus, determine distinct
solutions of the given problem.

The above-mentioned property of Up, is justified by the estimate

(U (£, &) — Uno (£)] < gfll(f)(“/o(b — @)K)™ (1 = (75(b — @)K)) "0, (f), t € [a,b], (50)

which is a direct consequence of inequality (18) of Theorem 3. In (50), g is the vector appearing in Theorem 3, whereas dq, (f)
and y, are given by (6) and (17) respectively. Note that, by Theorem 9, a solution of problem (1) and (2), when it exists,
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necessarily has the form u..(-,&,,7.), where (¢,,1,) satisfies (41) and (42). The pair (&, #) involved in (50) is, in a sense, an
approximation of the explicitly unknown (&,,#,). A rigorous proof of the existence of the solution in question would involve
an analysis of the approximate determining Eqs. (46) and (47) in the spirit of [4,13].

The most difficult part of the scheme is, of course, the construction of the function un, (-, ¢, 77). Quite often systems of sym-
bolic computation can be used for this purpose, which facilitates greatly the operations with functions depending on multi-
ple parameters. Otherwise, if the explicit integration in the (9) if impossible or difficult, one employs suitable modifications
of the formulae which, at the expense of a certain loss in accuracy, lead one to schemes better suited for practical realisation.
We mention two natural modifications of this kind which make the scheme more constructive.

Version 1 (“Frozen” parameters) Instead of {u,, : m > 0} defined by (9), one uses the sequence {v,, : m > 0} defined by
the equalities

vo(t, &, n) :==up(t,&,m), telabl, (51)

and

t
Ums1 (£, €, 1) == uo(t, é,n)+/ F(S, vm(S, Emi ) dS——/ FT, (T, émny))dT,  tea b, (52)

forany m =0,1,..., where uo(-, ¢, #) is given by (8) and (¢, 1,,) is a root of the system

b
n—¢= /a f(s, Um(s, &,))ds, (53)
¢(Um('7 é» VI)) = d

Then one defines the function Uy, which is to be treated as the moth approximation of a solution u with (u(a), u(b)) lying ina
neighbourhood of (&, Mg )» @S

Umg(t) = Um, (t: émov r]mo)v te [(17 b] (54)

Note that, as follows from (51) and (52), the mapping (&, %) — vm(t, &, n) is linear for any t € [a, b] and, moreover, the
dependence on the parameters in (52) is localised to the first summand outside the integration sign. This facilitates greatly
the construction of iterations compared to formula (9). For the same reason, system (53 ), which has to be solved numerically,
is considerably simpler than (46) and (47).

System (53) should be solved in a domain where the values (u(a), u(b)) of a solution are expected to lie. A natural starting
point for that is a root (&, 7,) of the zeroth approximate determining system ((46) and (47) with m = 0):

b
n—<¢é= / f(s.uo(s, & m))ds, (55)
d)(uo('» éa 11)) = d

where ug is given by (8).
Version 2 (Polynomial interpolation) Formula (52) is modified so that the polynomial approximations of the integrands are
used, i.e., instead of (9), one uses the formula

t _ b
O (€. E.0) = ol E) + [ P nCe G5~ 5 [ I ol ) (D), €€ [a,D),

where [ is fixed and p,y stands for the polynomial of degree [ interpolating the function y at I suitably chosen nodes. The sub-
stantiation is similar to other similar cases (see, e.g., [14] where Dirichlet problems for systems of two equations are consid-
ered). In this case, one assumes that f satisfies the Dini condition in the time variable [15].

Combining Versions 1 and 2 and using computer algebra systems to facilitate the computation, one arrives at a scheme
which is quite efficient and easy to be programmed.

7. A numerical example

Let us apply the numerical-analytic approach described above to the system of differential equations

, 5 t (N &

uy(t) = ”z(t)_gul(t)+m—ﬁ7 56
) t? t 21 5 1, 1 (58)
y(t) = 15 Ua(t) + gt (t) — gost® + 7t +5. £€[0,1/2],

considered under the non-linear boundary conditions of integral type

/% Sty (S)uy (s)ds = _ 197 /% s2ud(s)ds = L (37)
) e T 7480000 J, ® 2 ~ 4000
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Problem (56) and (57) has form (1) and (2) witha=0,b =1/2,

fé Suq(S)up(s)ds
fisg(syds )

U o(u) := (

and the obvious definitions of the function f : [0,1/2] x R?* — R? and vector d.
We need to choose some domains where the values of a solution at 0 and 1/2 should belong. Let us put, e.g.,

Do = {(u1,uz) : —0.55 < uy <045,-0.2 <u, <0.15}, Dy := Dy. (58)
It is clear from (4) that B(Dy, Do) = Do and, therefore, according to (14), we have Q = Dy in this case. Putting

¢ :=c0l(0.2,0.2), (59)
we find that the componentwise g-neighbourhood of the set Q has the form

Q, = {(u,u2) : —0.75 < uy <0.65,-0.4 < up <0.35} (60)
and, according to (6), one gets that dq, (f) = c0l(0.3,0.10625).

Therefore,
— .037 2
bzl—aég‘-'(f) = (0.0%38?25) S (g.z) = 61

which means that the value of ¢ given by (59) satisfies inequality (15) of Theorem 3. A direct computation also shows that
f € Lipg(€,) with

o (1 2

and, therefore,
3
—T
20 (
which means that (16) holds. We see that all the conditions of Theorem 3 are satisfied. The sequence of functions (9) is thus
convergent and one can continue to the construction of approximations.

According to Theorem 9, the number of roots of the determining system (41) and (42) in Dy x D; coincides with the num-
ber of solutions u of problem (56) and (57) with {u(0),u(1/2)} lying in the set (60). The approximate determining systems
(46) and (47) are regarded as approximations to (41), (42) and, thus, their roots may serve as approximations to those of (41)
and (42). Let us consider several approximations of a concrete solution.

We start from the zeroth approximation, in which case no iteration is carried out at all. Formula (8) in this example gives

K)=0.045 <1, (62)

Uoi(t, ¢, 1) = (1 = 26)¢ + 2t (63)

fori=1,2, where u,, = col(tm,um2),m > 0. Substituting (63) into (48), we find that the zeroth approximate determining
system Ag (&, 1) = 0 in this case has the form

119, 61 1 . . . 29
—WQ*‘%’%—g(”lz—Cz)z—Cz(ﬂz—iz)—Cg‘*‘m:O, 64
(91,319 1. 1 5499 .

4802160 96" ~ 48" ~ 25600

It is easy to verify that the pair of functions
* tz 1 *
ui(t) = 50" 3" uy(t) = 5 tel0,1/2], (65)
is a solution of problem (56) and (57). Obviously, (u;(0),u3(0)) = (&7, &) and (u;(1/2),u5(1/2)) = (n3,13) with
§=-05 &=0, (66)
n; =—0.4875, n;=0.1.
Solving the system of Eqgs. (64) in a neighbourhood of the point (—0.5,0,0.4875,0.1), we find its root (&1, &0z, Ho15 Hoz):
Eop ~ —0.5018743329, &5, ~ —0.2568969557 - 107° (67)

Q

Now ~ —0.4893794933, 1, ~ 0.1000006422
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and, after the substitution of (67) into (63), obtain the corresponding zeroth approximation Uy = ug(-, &, #,) of solution (65):

Ui (t) ~ —0.5018743329 + 0.0249896794t,
U(t) ~ —0.000002568969557 + 0.2000064223t, t € [0,1/2],

shown on Fig. 1. Here and below, we use the notation Uy, = col(Up1,Unz), &n = cOl(Emry Ema), M = COl(H 1, Mimp) fOT any m.

According to (8) and (49), the zeroth approximation is always a linear function and, therefore, one cannot expect a sat-
isfactory degree of accuracy at the very beginning of computation (see the graphs of uj and Uy, at Fig. 1(a)). However, values
(67) can already serve as approximations of (66) and, thus, even the zeroth approximate determining system (64) helps us to
obtain a certain space localisation of the corresponding roots of the approximate determining systems at further steps.
Indeed, let us construct the first approximation. Using (9) and carrying out computations in Maple, at the first iteration
(m = 1), we obtain

(68)

Q

3

thot 2 1
ul](tv 677’) §1 +400 3 < (762 + 7]2)2 +§(§1 - ’71) - ﬁ)

. 1 .
+§ (452(*@ +13) *gfl) + g%t

29 1 1 1 1,
_2t< 79200 16~ H4m) - 20% 0'11+ &(- fz+ﬂ2)+§g2> 69)
+2t(n; — &),
. t tt 21 t3 1 2 1
U12(f7§777)_C2+5+20 <762+7]2 160) ( &+ 2’71+—52>+E<f1+§>
t (5499 1 1 1
_E<1600+% Qt{pltgats '11>+2t(n - &)

for any t € [0,1/2] and {¢, 1} C Dy. Solving numerically the approximate determining system (46) and (47) form=11ina
neighbourhood of (&1, o2, 115 Mo2), We find its root (11, &1, 141, 112):

&1 ~ —0.5000145056, &, ~ 5.750026703 107,
Ny ~ —0.4875143149, 1, ~ 0.1000004007.

Recall that (o1, o2, 101: Hop) IS the root (67) of system (64). Using (49) and substituting the values (70) into (69), we obtain
the first and second components of the first approximation U; = col(U;1, Uy2) of the solution of problem (56) and (57):

(70)

Q

4
U11(t) = —0.5000145056 + ﬁ —0.001666738533t> + 0.05000156555 > + 0.00010378326, (71)

Uiz (t) = 5.750026703 - 1077 4+ 0.1999349926 ¢ — 0.001562508715t* + 0.001041701733 3 — 9.066 - 1072
for t € [0,1/2]. Comparing (71) with (65), we find that the error of the first approximation is estimated as

_5 % -6
max | uj(f) = Un () [<2-107°, max |u(6) - Una(t) [< 6-10°°, (72)

The graphs of the solution (65) and its first approximation are shown on Fig. 2. Considering estimates (72), we see that, in
fact, there is no need to draw the graphs of any higher approximations.

-0.488 -

-0.490
0.08

-0.492

0.06
-0.494 4

0496 0.04 1

-0.498
0.02

-0.500 -

0 0.1 02 03 0.4 0.5 0 0.1 02 0.3 04 0.5

(a) First component (b) Second component

Fig. 1. The exact solution u* (solid line) and its zeroth approximation U, (dots).
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Fig. 2. Solution (65) and its first approximation (71). The graphs of the components of U; (the symbol ‘¢)") visually coincide with those of u* drawn with the
solid line.

In case a better accuracy is needed, higher approximations can be constructed in a similar manner. For example, solving
the second approximate determining system (46) and (47) (m = 2), we obtain the roots

&y ~ —0.4999999582, &, ~ —1.145685349.10°%,

Ny ~ —0.4874999580, #,, ~ 0.09999998851 (73)
and the corresponding second approximation U, = col(Us, Uy,) of the form
U, (t) = —0.4999999582 + 2.712673614 - 1077¢% — 4.06900898 - 10778
+1.550086457 - 10~7t7 — 0.00018746609t° + 0.00014997285341° + 5.7900 - 10~ ¢4
—0.00001562404305t> + 0.04999999353 t* + 3.9424 - 107 ¢, (74)

Uy (t) = —1.145685349 - 10® + 0.1999998999¢ — 0.00002232142859¢7
+0.0000694444383 t° — 0.00004166661640t> — 0.000001627838355 t*
+0.00000434008107t* 4+ 2.61 - 10°¢

forall t € [0,1/2]. We see that (73) as an approximation of (66) is more accurate than (70). A further computation leads to the
uniform estimates

* -8 * -8
max, | u;(t) — Un(t) |<6-107°, max, | uy(t) — Upa(t) < 1.5-107°,

which are significantly better than (72) for U;. The third approximation Us, not given here explicitly, provides still better
accuracy:

* —10 * -10
[ggf]i?(z]|u1(t)—U31(t)|§8~10 , ren[r(}fz}%]\uz(t)—ng(t)\31.510 )

03954

0394 -0.06 1

0393
-0.08 1

0392

e
ks e
0391 1 % 010
@'
a
%
0390 4
% 0.2 1
@
[ 3
0389 1 @
a
L3
) -0.14

0388 1 @

L 4

L

L]
0387 ‘ ‘ ‘ ‘ 4 : ‘ ‘ ‘ ‘ ,

0 0.1 02 03 04 0.5 0 0.1 0.2 0.3 04 0.5
(a) First component (b) Second component

Fig. 3. The zeroth (*-"), first (‘’), second (‘¢>’) and third (‘") approximations to .
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Fig. 4. The residual functions of the first (‘c’), second (‘¢") and third (‘+’) approximations to i.

known explicitly in this particular example. A computation shows however that, along with (67), the zeroth approximate
determining system (64) has another root

Let us now note that the considerations shown above have been related to the approximation of solution (65), which is

¥

Eo1 ~ 0.3954059502, &u ~ —0.1592025648, (75)
No1 ~ 0.389899163, 17 ~ —0.0459889168

and, likewise, the first approximate determining system, along with its root (70), has the root
& ~ 03923536713, &, ~ —0.1570525052,
11 ~ 0.386849396,

12 = —0.04383992217.

(76)
This indicates a possible existence of a solution @t = col(u4, ) of the boundary value problem (56) and (57) which is dif-
ferent from (65) and has the initial data (u;(0), 012(0),u1(1/2),u2(1/2)) in a neighbourhood of the corresponding values
(76). The rigorous analysis confirming the existence of 1, which consists in the verification of suitable sufficient conditions
similar to [3], is omitted here, and we focus on the construction of approximations only. In this case, arguing as shown
above and substituting the values from (76) into (69), we obtain the following expression for the first approximation
tou:

Upi(t) = 0.3923536713 + 0.0025t* + 0.004490021967 > — 0.07479600670t2 + 0.02495444725t,
U (t) =

—0.1570525052 + 0.200075291 t — 0.0009018708475t* — 0.005693773113 3 + 0.05577210445 t*
for t € [0,1/2]. Solving the second determining system in a neighbourhood of (¢,1, &1, 711, 712), we find
521 ~

Cn & 0.3923271761, 5}2 ~ —0.1570509845, 77)
21 ~ 03868231849, 1 ~ —0.04383842534,
and obtain the second approximation U, of ii:
Ux (t) = 03923271761 + 9.037479779 - 10t + 0.000001283746929 t*
—0.000009739630169t” — 0.0002493277103 t° + 0.0000434563574 > + 0.01226591636 t*
—0.00749262869¢t> — 0.07065485865t* + 0.02466458183t, (78)
Uq(t) = —0.1570509845 + 0.2000007654t — 0.00001288388631t7 — 0.00004281164578 t°

+0.001227658392¢> — 0.0038978801 t* — 0.004195302573 > + 0.0557704485 t2
forte]

0,1/2]. Similarly, one finds the root of the third approximate determining system
831

0.3923269706, &3 ~ —0.1570509371,
fis1 ~ 0.3868229824, fjs

%

Q

~

~ —0.04383837836

(79)

699
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and constructs the third approximation Us:

Us; (t) = 0.3923269706 + 1.106630226 - 10~ ¢15 + 7.879714253 - 107114
—2.29239859- 10t — 3.896994250 - 10~ '°t'? + 1.755383703 - 10"t
—0.00000109051396'° — 3.431360411 - 10~7¢° + 0.00002580341034 t*
+0.00001123554886t” — 0.0008109829273 t° + 0.0008310140856 t°
—0.0003399644806 > + 0.00634405846 t* — 0.00149463484 > — 0.0694077454
+0.02241968655t + 0.01193924453 t* — 0.007483401567 t* — 0.07064300545 t>
+0.02466500215¢,

Us,(t) = —0.1570509371 + 0.200000005 t + 1.026986386 - 10 °t'" — 1.12792034 - 10 "t'°
—6.109572563 - 10 "t° + 0.00001144998193 t* — 0.00005490798177t” + 0.0001856181722t°
+0.000928093109t° — 0.00377044416t* — 0.004207340707 t* + 0.05577043565 t>

(80)

fort €(0,1/2].
The graphs of the functions U,;,;m =1,2,3,i=1,2, presented on Fig. 3, show a clear tendency of convergence to
t;,i = 1,2. Substituting the third approximation (80) into the differential system (56), one obtains a residual such that

U, (t) - U2 Ly S DY 10°°
Jmax | U5, (6) = US,(6) + 5 Usi () = 555 + 55| ~ 1530806 -10°°,
max |U. (t),ﬁg (t)+£fl ~9.9868-10"
tef0.1/2]| 32 10 * 50 5| 7 ’

whereas the residual of the first approximation U; does not exceed 0.0004 (see also Fig. 4).
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