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1. Introduction

The purpose of the present note is to provide a scheme for a constructive analysis of a non-local boundary value problem.
More precisely, we consider the problem
u0ðtÞ ¼ f ðt;uðtÞÞ; t 2 ½a; b�; ð1Þ
/ðuÞ ¼ d; ð2Þ
where / : Cð½a; b�;RnÞ ! Rn is a vector functional (possibly non-linear), f : ½a; b� � Rn ! Rn is a function satisfying the Carat-
héodory conditions in a certain bounded set, and d is a given vector. By a solution of the problem, one means an absolutely
continuous function with property (2) satisfying (1) almost everywhere on ½a; b�.

The analysis is constructive in the sense that, when applicable, it allows one to both study the solvability of the problem
and approximately construct its solutions by operating with objects that are determined explicitly in finitely many steps of
computation. The topic has been addressed by many authors, see, e.g., [1,2] for related references.

It turns out that, under suitable conditions and with a certain modification, the techniques previously applied in [3,4] for
periodic and two-point problems can also be used in the more general cases of problem (1) and (2) where the boundary con-
dition may be non-local. Here, we describe this particular modification, which is based on the introduction of a suitable
model problem, and outline the resulting scheme of investigation. Note that the new approach is easier to apply compared
with those used earlier, e.g., in [5–7].

2. Notation and symbols

In the sequel, for any x ¼ colðx1; . . . ; xnÞ 2 Rn, the obvious notation xj j ¼ colðj x1 j; . . . ; j xn jÞ is used and the inequalities
between vectors are understood componentwise. A similar convention is adopted implicitly for the operations ‘max’ and
‘min’. The symbol 1n stands for the unit matrix of dimension n and rðKÞ denotes the spectral radius of a square matrix K.
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If z 2 Rn and . is a vector with non-negative components, Bðz;.Þ stands for the componentwise .-neighbourhood of z:
Bðz;.Þ :¼ n 2 Rn : n� zj j 6 .f g . Similarly, given a set X � Rn, we define its componentwise .-neighbourhood by putting
BðX;.Þ :¼
[
z2X

B z;.ð Þ: ð3Þ
Given two sets D0 and D1 in Rn, we put
BðD0;D1Þ :¼ hnþ ð1� hÞg : n 2 D0;g 2 D1; h 2 ½0;1�f g: ð4Þ
For a set X # Rn and a n� n matrix K with non-negative entries, we write f 2 LipKðXÞ if the estimate
f ðt;u1Þ � f ðt;u2Þj j 6 K u1 � u2j j ð5Þ
holds for all u1;u2 from X and a.e. t 2 ½a; b�. Finally, we shall frequently use the notation
dDðf Þ :¼ ess sup
ðt;nÞ2½a;b��D

f ðt; nÞ � ess inf
ðt;nÞ2½a;b��D

f ðt; nÞ: ð6Þ
3. Freezing and parametrization

The idea that we are going to employ is based on the reduction to a family of simpler auxiliary boundary problems
obtained by ‘‘freezing’’ certain values of the solution sought for (see, e.g., [8–10]). In our case, the auxiliary problems will
have two-point linear separated conditions at a and b:
uðaÞ ¼ n; uðbÞ ¼ g; ð7Þ
where n and g are parameters whose values remain unknown at the moment. As will be seen from the statements below, one
can then go back to the original problem by choosing the values of the introduced parameters appropriately.

Let us fix certain bounded sets Di � Rn; i ¼ 0;1, and focus on the solutions u of problem (1) and (2) with uðaÞ 2 D0 and
uðbÞ 2 D1. Given an arbitrary pair ðn;gÞ 2 D0 � D1, we set
u0ðt; n;gÞ :¼ 1� t � a
b� a

� �
nþ t � a

b� a
g ð8Þ
and
umþ1ðt; n;gÞ ¼ u0ðt; n;gÞ þ
Z t

a
f ðs; umðs; n;gÞÞds� t � a

b� a

Z b

a
f ðs;umðs; n;gÞÞds ð9Þ
for all t 2 ½a; b� and m ¼ 0;1; . . .. The vectors n and g in (8) and (9) are treated as unknown parameters. Considering formulae
(8) and (9), one arrives immediately at the following

Proposition 1. If, for a fixed pair ðn;gÞ 2 D0 � D1, the sequence fumð�; n;gÞ : m P 0g converges to a function u1ð�; n;gÞ uniformly
on ½a; b�, then:

1. u1ðb; n;gÞ ¼ g.
2. u1ð�; n;gÞ satisfies the Cauchy problem
u0ðtÞ ¼ f ðt;uðtÞÞ þ 1
b� a

Dðn;gÞ; t 2 ½a; b�; ð10Þ

uðaÞ ¼ n; ð11Þ
where D : D0 � D1 ! Rn is given by formula
Dðn;gÞ :¼ g� n�
Z b

a
f ðs; u1ðs; n;gÞÞds: ð12Þ
In other words, the function u1ð�; n;gÞ, provided that it is well-defined, satisfies the equation
uðtÞ ¼ u0ðt; n;gÞ þ
Z t

a
f ðs;uðsÞÞds� t � a

b� a

Z b

a
f ðs;uðsÞÞds; t 2 ½a; b�: ð13Þ
Since, clearly, the values of u0ð�; n;gÞ are convex combinations of n and g, we see from (13) that u1ð�; n;gÞ is also a solution of
the two-point boundary problem (10) and (7). It turns out that this simple fact can be used to analyse the solutions of the
original problem (1) and (2). In order to continue, it is however necessary to establish conditions ensuring the convergence of
sequence (9) and, therefore, the fact that u1ð�; n;gÞ is well defined for the corresponding values of n and g.



A. Rontó et al. / Applied Mathematics and Computation 250 (2015) 689–700 691
4. Convergence of successive approximations

Let us put
X :¼ BðD0;D1Þ ð14Þ
and X. :¼ BðX;.Þ for any non-negative vector .. Recall that the set BðD0;D1Þ is defined according to (4).

Remark 2. It is clear from (4) that BðD0;D1Þ � convðD0 [ D1Þ but the equality is, generally speaking, not true.
Theorem 3. Let there exist a non-negative vector . satisfying the inequality
. P
b� a

4
dX. ðf Þ; ð15Þ
such that f 2 LipKðX.Þ with a matrix K for which
ðb� aÞrðKÞ < 1
c0
; ð16Þ
where
c0 :¼ 3=10: ð17Þ
Then, for all fixed ðn;gÞ 2 D0 � D1:

1. The limit limm!1umðt; n;gÞ ¼: u1ðt; n;gÞ exists uniformly in t 2 ½a; b�.
2. u1ð�; n;gÞ is the unique solution of the Cauchy problem (10) and (11).
3. u1ðt; n;gÞ 2 X. for any t 2 ½a; b�.

4. The estimate
u1ðt; n;gÞ � umðt; n;gÞj j 6 5
9
a1ðtÞðc0ðb� aÞKÞm 1n � c0ðb� aÞKð Þ�1dX. ðf Þ ð18Þ
holds for any t 2 ½a; b� and m P 0, where
a1ðtÞ ¼ 2ðt � aÞ 1� t � a
b� a

� �
; t 2 ½a; b�: ð19Þ
The proof of Theorem 3 is carried out by combining several auxiliary statements given below (see [1,11]).

Lemma 4 [1, Lemma 3.13]. For any continuous function u : ½a; b� ! Rn, the estimate
Z t

a
uðsÞ � 1

b� a

Z b

a
uðsÞds

 !
ds

�����
����� 6 1

2
a1ðtÞx½a;b�ðuÞ; t 2 ½a; b�; ð20Þ
holds, where a1 is given by (19) and x½a;b�ðuÞ :¼maxs2½a;b�uðsÞ �mins2½a;b�uðsÞ.
Let
amþ1ðtÞ :¼ 1� t � a
b� a

� �Z t

a
amðsÞdsþ t � a

b� a

Z b

t
amðsÞds; t 2 ½a; b�; ð21Þ
for any m P 0, where a0ðtÞ :¼ 1; t 2 ½a; b�. Clearly, formula (19) defining a1 is obtained from (21) for m ¼ 0.

Lemma 5 [1, Lemma 3.16]. The following estimates hold:
amþ1ðtÞ 6 c0 b� að ÞamðtÞ; t 2 ½a; b�; ð22Þ
for m P 2 and
amþ1ðtÞ 6
10
9

c0 b� að Þð Þma1ðtÞ; t 2 ½a; b�; ð23Þ
for m P 0, where c0 is given by (17).
Lemma 6. If . is a vector satisfying relation (15), then
fumðt; n;gÞ : t 2 ½a; b�g � X. ð24Þ
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for any m P 0 and ðn;gÞ 2 D0 � D1,
Proof. The proof is analogous to that of [4, Lemma 4] and is based on Lemma 4. Let ðn;gÞ 2 D0 � D1 be arbitrary. In view of
(14), it follows immediately from (8) that u0ðt; n;gÞ 2 X for any t 2 ½a; b�, i.e., (24) holds for m ¼ 0.

Let us assume that (24) holds for a certain m ¼ m0. Then, by virtue of (9), (15), and Lemma 4, we obtain
jum0þ1ðt; n;gÞ � u0ðt; n;gÞj 6
b� a

4
dXðf Þ 6 . ð25Þ
for t 2 ½a; b�. Since (24) is known to be true for m ¼ 0, we see from (25) that all the values of um0þ1ð�; n;gÞ are contained in
BðX;.Þ, i.e., (24) holds with m ¼ m0 þ 1. The arbitrariness of m0 then leads us to (24) for any m. h
Proof of Theorem 3. Let n 2 D0 and g 2 D1. By Lemma 6, we have umðt; n;gÞ 2 X. for all t 2 ½a; b� and m P 0. Since, by
assumption, the function f belongs to LipKðX.Þ, relation (9) yields
rmþ1ðt; z;gÞ 6 K 1� t � a
b� a

� �Z t

a
rmðs; z;gÞdsþ t � a

b� a

Z b

t
rmðs; z;gÞds

 !
; t 2 ½a; b�; ð26Þ
for all m P 1, where
rmðt; n;gÞ :¼ um t; n;gð Þ � um�1 t; n;gð Þj j; t 2 ½a; b�; m P 1: ð27Þ
On the other hand, using (9) and Lemma 4, we obtain
r1ðt; n;gÞ ¼
Z t

a
f ðs;u0ðs; n;gÞÞ �

1
b� a

Z b

a
f ðs; u0ðs; n;gÞÞds

 !
ds

�����
�����

6
1
2
a1ðtÞx½a;b�ðf ð�;u0ðn;gÞÞÞ

6
1
2
a1ðtÞdX. ðf Þ

ð28Þ
for any t 2 ½a; b�. Putting in (26) m ¼ 1 and using (21) and estimate (23) of Lemma 5, we obtain
r2ðt; n;gÞ 6
1
2

K 1� t � a
b� a

� �Z t

a
a1ðsÞdsþ t � a

b� a

Z b

t
a1ðsÞds

 !
dX. ðf Þ

6
1
2

Ka2ðtÞdX. ðf Þ

6
5c0

9
Ka1ðtÞdX. ðf Þ;

ð29Þ
where c0 is given by (17). Considering (26) and (29) and arguing by induction, we conclude that
rmþ1ðt; n;gÞ 6
1
2

Kmamþ1ðtÞdX. ðf Þ 6
5
9
ðc0ðb� aÞKÞma1ðtÞdX. ðf Þ; t 2 ½a; b�; ð30Þ
for any m P 0. Therefore, using (19) and the equality maxs2½a;b�a1ðsÞ ¼ 1
2 ðb� aÞ; we get
j umþjðt; n;gÞ � umðt; n;gÞ j 6
Xj

i¼1

rmþiðt; n;gÞ

6
5
9
a1ðtÞ

Xj

i¼1

ðc0ðb� aÞKÞmþi�1dX. ðf Þ

6
5ðb� aÞ

18
ðc0ðb� aÞKÞm

Xj�1

i¼0

ðc0ðb� aÞKÞidX. ðf Þ

ð31Þ
for any t 2 ½a; b�;m P 0, and j P 1. In view of assumption (16), the sums involved in (31) are bounded and
limm!1ðc0ðb� aÞKÞm ¼ 0. Therefore, (31) implies that fumð�; n;gÞ : m P 0g is a Cauchy sequence in Cð½a; b�;RnÞ. Passing to
the limit as j!1 in (31), one arrives at (18).
5. Properties of the function u‘ð�; n; gÞ

In terms of function u1ð�; n;gÞ, one can characterise the solvability of the two-point problem with separated conditions
(7). More precisely, apart of system (1), consider the forced system
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u0ðtÞ ¼ f ðt;uðtÞÞ þ lðb� aÞ�1
; t 2 ½a; b�; ð32Þ
where l ¼ col l1; . . . ;ln

� �
2 Rn is a control parameter.

Theorem 7. Let n 2 D0 and g 2 D1 be fixed. Let there exist a non-negative vector . wit property (15) such that f 2 LipKðX.Þwith a
matrix K for which (16) holds. Then, for the solution of system (32) with
uðaÞ ¼ n ð33Þ
to have the property
uðbÞ ¼ g; ð34Þ
it is necessary and sufficient that
l ¼ Dðn;gÞ; ð35Þ
where Dðn;gÞ is given by (12). Moreover, in the case where (35) holds, the solution of the initial value problem (32) and (33) coin-
cides with u1ð�; n;gÞ.

In other words, for any given pair ðn;gÞ, the vector Dðn;gÞ is the only value of l in (32) for which the solution of (32) and
(33) satisfies the two-point boundary conditions (7).

Proof of Theorem 7. Sufficiency. Assume that (35) holds. In that case, (10) coincides with (32). By virtue of Proposition 1, the
function u1ð�; n;gÞ is the unique solution of the initial value problem (10), (11) and, moreover, u1ðb; n;gÞ ¼ g. Thus, u1ð�; n;gÞ
is a solution of (32) and (34).

Necessity. Let ulð�; nÞ denote the solution of the initial value problem (32) and (33). It is obvious from (32) and (33) that
ulðt; nÞ ¼ nþ
Z t

a
f ðs;ulðs; nÞÞdsþ l t � a

b� a
; t 2 ½a; b�: ð36Þ
It follows immediately from (36) that the value of l can be represented as
l ¼ ulðb; nÞ � n�
Z b

a
f ðs;ulðs; nÞÞds ð37Þ
and, therefore,
ulðt; nÞ ¼ nþ
Z t

a
f ðs;ulðs; nÞÞdsþ t � a

b� a
ulðb; nÞ � n�

Z b

a
f ðs;ulðs; nÞÞds

 !
; t 2 ½a; b�; ð38Þ
for any l. In particular, uDðn;gÞð�; nÞ satisfies the equation
uDðn;gÞðt; nÞ ¼ nþ
Z t

a
f ðs;uDðn;gÞðs; nÞÞdsþ t � a

b� a
g� n�

Z b

a
f ðs;uDðn;gÞðs; nÞÞds

 !
; t 2 ½a; b�; ð39Þ
since, in view of Proposition 1, uDðn;gÞð�; nÞ coincides with u1ð�; n;gÞ and the latter function has the property u1ðb; n;gÞ ¼ g.
Assuming now that
ulðb; nÞ ¼ g; ð40Þ
we immediately find from (38) and (39) that each of the functions ulð�; nÞ and uDðn;gÞð�; nÞ satisfies Eq. (13), where u0ð�; n;gÞ is
given by (8). By Theorem 3, the function u1ð�; n;gÞ, which is the uniform limit of the successive approximations (9), is the
only solution of (13). Therefore, under assumption (40), ulð�; nÞ coincides with u1ð�; n;gÞ. Recalling (37), we conclude that
l necessarily has form (35) in that case.

Theorem 7 leads one immediately to the following

Proposition 8. Under the assumptions of Theorem 3, the function u1ð�; n;gÞ is a solution of the boundary value problem (1) and
(2) if and only if the pair ðn;gÞ satisfies the system of 2n equations
Dðn;gÞ ¼ 0; ð41Þ
/ðu1ð�; n;gÞÞ ¼ d; ð42Þ
where D : D0 � D1 ! Rn is given by (12).
Proof. It suffices to apply Theorem 7 and notice that the differential Eq. (10) coincides with (1) if and only if ðn;gÞ satisfies
(41). h
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Equations of the type appearing in the last proposition are usually referred to as a determining equations and, indeed, as
the following statement shows, the system of Eqs. (41) and (42) determines all possible solutions of the original boundary
value problem (1), (2) with graphs lying in X..

Theorem 9. Let there exist a non-negative vector . with property (15) such that f 2 LipKðX.Þ with a matrix K for which (16)
holds.
1. If there exists a pair ðn;gÞ 2 D0 � D1 satisfying (41) and (42), then the non-local boundary value problem (1) and (2) has a
solution uð�Þ such that
fuðtÞ : t 2 ½a; b�g � X. ð43Þ

and uðaÞ ¼ n;uðbÞ ¼ g.
2. If the boundary value problem (1) and (2) has a solution uð�Þ such that (43) holds, then the pair ðuðaÞ;uðbÞÞ is a solution of

system (41) and (42).
Proof. The first assertion is an immediate consequence of Theorem 3 and Propositions 1 and 8 since u1ð�; n;gÞ is the required
solution in that case. To prove the second one, assume that problem (1) and (2) has a solution u with property (43). Then u is
a solution of the Cauchy problem (32) and (33) with l ¼ 0 and n ¼ uðaÞ and, therefore, by Theorem 3,
u ¼ u1ð�;uðaÞ;uðbÞÞ: ð44Þ
In view of Theorem 7, we obtain
Dðn;uðbÞÞ ¼ 0; ð45Þ
which means that (41) holds with g ¼ uðbÞ. Finally, equality (42) is an immediate consequence of (44) and the assumption
that /ðuÞ ¼ d. h
6. Approximation of a solution

The last theorem suggests an approach to the study of the non-local problem (1) and (2) by looking for its solution among
those of the family of equations (13), which are, as Theorem 7 shows, motivated by auxiliary problems with separated two-
point conditions (7). The study of the problem then consists of two parts, namely, the analytic part, when the integral Eq. (13)
is dealt with by using the method of successive approximations (9), and the numerical one, which consists in finding a values
of the 2n unknown parameters from the system of Eqs. (41) and (42). This closely correlates with the idea of the Lyapunov–
Schmidt reduction (see, e.g., [12]). The solvability of the determining system (41) and (42), in turn, can be established in a
rigorous manner by studying some its approximate versions
Dmðn;gÞ ¼ 0; ð46Þ
/ðumð�; n;gÞÞ ¼ d; ð47Þ
where m is fixed and Dm : D0 � D1 ! Rn is given by the relation
Dmðn;gÞ :¼ g� n�
Z b

a
f ðs;umðs; n;gÞÞds ð48Þ
for all ðn;gÞ 2 D0 � D1. The solvability analysis based on properties of equations (46) and (47), which can be carried out by
analogy to [3,4,13], is not treated here.

In practice, one constructs analytically the function um0 ð�; n;gÞ for a certain m0 keeping n and g as parameters, then finds
numerically a root ð~n; ~gÞ of the approximate determining system (46) and (47) with m ¼ m0, and forms the function
Um0 ðtÞ :¼ um0ðt; ~n; ~gÞ; t 2 ½a; b�; ð49Þ
which is natural to be interpreted as the m0th approximation of a solution of the original problem (1) and (2) the values of
which at a and b lie in a neighbourhood of ~n and ~g respectively. Possible multiple roots of system (46) and (47), under appro-
priate assumptions, correspond to multiple solutions of the exact determining system (41), (42) and, thus, determine distinct
solutions of the given problem.

The above-mentioned property of Um0 is justified by the estimate
ju1ðt; ~n; ~gÞ � Um0ðtÞj 6
5
9
a1ðtÞðc0ðb� aÞKÞm0 1n � ðc0ðb� aÞKÞð Þ�1dX. ðf Þ; t 2 ½a; b�; ð50Þ
which is a direct consequence of inequality (18) of Theorem 3. In (50), . is the vector appearing in Theorem 3, whereas dX. ðf Þ
and c0 are given by (6) and (17) respectively. Note that, by Theorem 9, a solution of problem (1) and (2), when it exists,



A. Rontó et al. / Applied Mathematics and Computation 250 (2015) 689–700 695
necessarily has the form u1ð�; n�;g�Þ, where ðn�;g�Þ satisfies (41) and (42). The pair ð~n; ~gÞ involved in (50) is, in a sense, an
approximation of the explicitly unknown ðn�;g�Þ. A rigorous proof of the existence of the solution in question would involve
an analysis of the approximate determining Eqs. (46) and (47) in the spirit of [4,13].

The most difficult part of the scheme is, of course, the construction of the function um0 ð�; n;gÞ. Quite often systems of sym-
bolic computation can be used for this purpose, which facilitates greatly the operations with functions depending on multi-
ple parameters. Otherwise, if the explicit integration in the (9) if impossible or difficult, one employs suitable modifications
of the formulae which, at the expense of a certain loss in accuracy, lead one to schemes better suited for practical realisation.
We mention two natural modifications of this kind which make the scheme more constructive.

Version 1 (‘‘Frozen’’ parameters) Instead of fum : m P 0g defined by (9), one uses the sequence fvm : m P 0g defined by
the equalities
v0ðt; n;gÞ :¼ u0ðt; n;gÞ; t 2 ½a; b�; ð51Þ
and
vmþ1ðt; n;gÞ :¼ u0ðt; n;gÞ þ
Z t

a
f ðs;vmðs; nm;gmÞÞds� t � a

b� a

Z b

a
f ðs; vmðs; nm;gmÞÞds; t 2 ½a; b�; ð52Þ
for any m ¼ 0;1; . . ., where u0ð�; n;gÞ is given by (8) and ðnm;gmÞ is a root of the system
g� n ¼
Z b

a
f ðs; vm s; n;gð ÞÞds;

/ðvmð�; n;gÞÞ ¼ d:
ð53Þ
Then one defines the function Um0 , which is to be treated as the m0th approximation of a solution u with ðuðaÞ;uðbÞÞ lying in a
neighbourhood of ðnm0

;gm0
Þ, as
Um0 ðtÞ :¼ vm0 ðt; nm0
;gm0

Þ; t 2 ½a; b�: ð54Þ
Note that, as follows from (51) and (52), the mapping ðn;gÞ# vmðt; n;gÞ is linear for any t 2 ½a; b� and, moreover, the
dependence on the parameters in (52) is localised to the first summand outside the integration sign. This facilitates greatly
the construction of iterations compared to formula (9). For the same reason, system (53), which has to be solved numerically,
is considerably simpler than (46) and (47).

System (53) should be solved in a domain where the values ðuðaÞ;uðbÞÞ of a solution are expected to lie. A natural starting
point for that is a root ðn0;g0Þ of the zeroth approximate determining system ((46) and (47) with m ¼ 0):
g� n ¼
Z b

a
f ðs;u0ðs; n;gÞÞds;

/ðu0ð�; n;gÞÞ ¼ d;
ð55Þ
where u0 is given by (8).
Version 2 (Polynomial interpolation) Formula (52) is modified so that the polynomial approximations of the integrands are

used, i.e., instead of (9), one uses the formula
vmþ1ðt; n;gÞ :¼ u0ðt; n;gÞ þ
Z t

a
plf ð�; vmð�; nm;gmÞÞ sð Þds� t � a

b� a

Z b

a
plf ð�; vmð�; nm;gmÞÞ sð Þds; t 2 ½a; b�;
where l is fixed and ply stands for the polynomial of degree l interpolating the function y at l suitably chosen nodes. The sub-
stantiation is similar to other similar cases (see, e.g., [14] where Dirichlet problems for systems of two equations are consid-
ered). In this case, one assumes that f satisfies the Dini condition in the time variable [15].

Combining Versions 1 and 2 and using computer algebra systems to facilitate the computation, one arrives at a scheme
which is quite efficient and easy to be programmed.

7. A numerical example

Let us apply the numerical-analytic approach described above to the system of differential equations
u01ðtÞ ¼ u2
2ðtÞ �

t
5

u1ðtÞ þ
t3

100
� t2

25
;

u02ðtÞ ¼
t2

10
u2ðtÞ þ

t
8

u1ðtÞ �
21

800
t3 þ 1

16
t þ 1

5
; t 2 0;1=2½ �;

ð56Þ
considered under the non-linear boundary conditions of integral type
Z 1
2

0
su1ðsÞu2ðsÞds ¼ � 197

48000
;

Z 1
2

0
s2u2

2ðsÞds ¼ 1
4000

: ð57Þ
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Problem (56) and (57) has form (1) and (2) with a ¼ 0; b ¼ 1=2,
u # /ðuÞ :¼
R 1

2
0 su1ðsÞu2ðsÞdsR 1

2
0 s2u2

2ðsÞds

0@ 1A;

and the obvious definitions of the function f : ½0;1=2� � R2 ! R2 and vector d.

We need to choose some domains where the values of a solution at 0 and 1=2 should belong. Let us put, e.g.,
D0 :¼ ðu1;u2Þ : �0:55 6 u1 � 0:45;�0:2 6 u2 � 0:15f g; D1 :¼ D0: ð58Þ
It is clear from (4) that BðD0;D0Þ ¼ D0 and, therefore, according to (14), we have X ¼ D0 in this case. Putting
. :¼ col 0:2;0:2ð Þ; ð59Þ
we find that the componentwise .-neighbourhood of the set X has the form
X. ¼ ðu1;u2Þ : �0:75 6 u1 � 0:65;�0:4 6 u2 � 0:35f g ð60Þ
and, according to (6), one gets that dX. ðf Þ ¼ col 0:3;0:10625ð Þ.
Therefore,
b� a
4

dX. ðf Þ ¼
0:0375

0:01328125

� �
6

0:2
0:2

� �
¼ .; ð61Þ
which means that the value of . given by (59) satisfies inequality (15) of Theorem 3. A direct computation also shows that
f 2 LipKðX.Þ with
K :¼
1=10 9=10
1=16 1=40

� �

and, therefore,
3
20

rðKÞ ¼ 0:045 < 1; ð62Þ
which means that (16) holds. We see that all the conditions of Theorem 3 are satisfied. The sequence of functions (9) is thus
convergent and one can continue to the construction of approximations.

According to Theorem 9, the number of roots of the determining system (41) and (42) in D0 � D1 coincides with the num-
ber of solutions u of problem (56) and (57) with fuð0Þ;uð1=2Þg lying in the set (60). The approximate determining systems
(46) and (47) are regarded as approximations to (41), (42) and, thus, their roots may serve as approximations to those of (41)
and (42). Let us consider several approximations of a concrete solution.

We start from the zeroth approximation, in which case no iteration is carried out at all. Formula (8) in this example gives
u0iðt; n;gÞ ¼ ð1� 2tÞni þ 2tgi ð63Þ
for i ¼ 1;2, where um ¼ colðum1;um2Þ;m P 0. Substituting (63) into (48), we find that the zeroth approximate determining
system D0ðn;gÞ ¼ 0 in this case has the form
� 119
60

n1 þ
61
30

g1 �
1
6
ðg2 � n2Þ2 � n2ðg2 � n2Þ � n2

2 þ
29

9600
¼ 0;

� 961
480

n2 þ
319
160

g2 �
1

96
n1 �

1
48

g1 �
5499

25600
¼ 0:

ð64Þ
It is easy to verify that the pair of functions
u�1ðtÞ ¼
t2

20
� 1

2
; u�2ðtÞ ¼

t
5
; t 2 ½0;1=2�; ð65Þ
is a solution of problem (56) and (57). Obviously, ðu�1ð0Þ;u�2ð0ÞÞ ¼ ðn
�
1; n

�
2Þ and ðu�1ð1=2Þ;u�2ð1=2ÞÞ ¼ ðg�1;g�2Þ with
n�1 ¼ �0:5; n�2 ¼ 0;
g�1 ¼ �0:4875; g�2 ¼ 0:1:

ð66Þ
Solving the system of Eqs. (64) in a neighbourhood of the point ð�0:5;0; 0:4875;0:1Þ, we find its root ðn01; n02;g01;g02Þ:
n01 	 �0:5018743329; n02 	 �0:2568969557 � 10�5

g01 	 �0:4893794933; g02 	 0:1000006422
ð67Þ
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and, after the substitution of (67) into (63), obtain the corresponding zeroth approximation U0 ¼ u0ð�; n0;g0Þ of solution (65):
U01ðtÞ 	 �0:5018743329þ 0:0249896794 t;

U02ðtÞ 	 �0:000002568969557þ 0:2000064223 t; t 2 ½0;1=2�;
ð68Þ
shown on Fig. 1. Here and below, we use the notation Um ¼ colðUm1;Um2Þ, nm ¼ colðnm1; nm2Þ, gm ¼ colðgm1;gm2Þ for any m.
According to (8) and (49), the zeroth approximation is always a linear function and, therefore, one cannot expect a sat-

isfactory degree of accuracy at the very beginning of computation (see the graphs of u�1 and U01 at Fig. 1(a)). However, values
(67) can already serve as approximations of (66) and, thus, even the zeroth approximate determining system (64) helps us to
obtain a certain space localisation of the corresponding roots of the approximate determining systems at further steps.
Indeed, let us construct the first approximation. Using (9) and carrying out computations in Maple, at the first iteration
(m ¼ 1), we obtain
u11ðt; n;gÞ ¼ n1 þ
t4

400
þ t3

3
4ð�n2 þ g2Þ

2 þ 2
5
ðn1 � g1Þ �

1
25

� �
þ t2

2
4n2ð�n2 þ g2Þ �

1
5

n1

� �
þ n2

2t

� 2t � 29
19200

þ 1
6
ð�n2 þ g2Þ

2 � 1
120

n1 �
1

60
g1 þ

1
2

n2ð�n2 þ g2Þ þ
1
2

n2
2

� �
þ 2tðg1 � n1Þ;

u12ðt; n;gÞ ¼ n2 þ
t
5
þ t4

20
�n2 þ g2 �

21
160

� �
þ t3

6
�1

2
n1 þ

1
2
g1 þ

1
5

n2

� �
þ t2

16
n1 þ

1
2

� �
� t

16
5499
1600

þ 1
30

n2 þ
1

10
g2 þ

1
6

n1 þ
1
3
g1

� �
þ 2tðg2 � n2Þ

ð69Þ
for any t 2 ½0;1=2� and fn;gg � D0. Solving numerically the approximate determining system (46) and (47) for m ¼ 1 in a
neighbourhood of ðn01; n02;g01;g02Þ, we find its root ðn11; n12;g11;g12Þ:
n11 	 �0:5000145056; n12 	 5:750026703 � 10�7;

g11 	 �0:4875143149; g12 	 0:1000004007:
ð70Þ
Recall that ðn01; n02;g01;g02Þ is the root (67) of system (64). Using (49) and substituting the values (70) into (69), we obtain
the first and second components of the first approximation U1 ¼ colðU11;U12Þ of the solution of problem (56) and (57):
U11ðtÞ ¼ �0:5000145056þ t4

400
� 0:001666738533 t3 þ 0:05000156555 t2 þ 0:00010378326 t;

U12ðtÞ ¼ 5:750026703 � 10�7 þ 0:1999349926 t � 0:001562508715 t4 þ 0:001041701733 t3 � 9:066 � 10�7t2
ð71Þ
for t 2 ½0;1=2�. Comparing (71) with (65), we find that the error of the first approximation is estimated as
max
t2½0;1=2�

j u�1ðtÞ � U11ðtÞ j6 2 � 10�5; max
t2½0;1=2�

j u�2ðtÞ � U12ðtÞ j6 6 � 10�6: ð72Þ
The graphs of the solution (65) and its first approximation are shown on Fig. 2. Considering estimates (72), we see that, in
fact, there is no need to draw the graphs of any higher approximations.
(a) First component (b) Second component

Fig. 1. The exact solution u� (solid line) and its zeroth approximation U0 (dots).



(a) First component (b) Second component

Fig. 2. Solution (65) and its first approximation (71). The graphs of the components of U1 (the symbol ‘}’) visually coincide with those of u� drawn with the
solid line.
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In case a better accuracy is needed, higher approximations can be constructed in a similar manner. For example, solving
the second approximate determining system (46) and (47) (m ¼ 2), we obtain the roots
n21 	 �0:4999999582; n22 	 �1:145685349 � 10�8;

g21 	 �0:4874999580; g22 	 0:09999998851
ð73Þ
and the corresponding second approximation U2 ¼ colðU21;U22Þ of the form
U21ðtÞ ¼ �0:4999999582þ 2:712673614 � 10�7t9 � 4:06900898 � 10�7t8

þ 1:550086457 � 10�7t7 � 0:00018746609 t6 þ 0:0001499728534 t5 þ 5:7900 � 10�10t4

� 0:00001562404305 t3 þ 0:04999999353 t2 þ 3:9424 � 10�7t;

U22ðtÞ ¼ �1:145685349 � 10�8 þ 0:1999998999 t � 0:00002232142859 t7

þ 0:0000694444383 t6 � 0:00004166661640 t5 � 0:000001627838355 t4

þ 0:00000434008107 t3 þ 2:61 � 10�9t2

ð74Þ
for all t 2 ½0;1=2�. We see that (73) as an approximation of (66) is more accurate than (70). A further computation leads to the
uniform estimates
max
t2½0;1=2�

j u�1ðtÞ � U21ðtÞ j6 6 � 10�8; max
t2½0;1=2�

j u�2ðtÞ � U22ðtÞ j� 1:5 � 10�8;
which are significantly better than (72) for U1. The third approximation U3, not given here explicitly, provides still better
accuracy:
max
t2½0;1=2�

j u�1ðtÞ � U31ðtÞ j� 8 � 10�10; max
t2½0;1=2�

j u�2ðtÞ � U32ðtÞ j� 1:5 � 10�10:
(a) First component (b) Second component

Fig. 3. The zeroth (‘�’), first (‘
’), second (‘}’) and third (‘�’) approximations to ~u.



(a) First component (b) Second component

Fig. 4. The residual functions of the first (‘
’), second (‘}’) and third (‘�’) approximations to ~u.
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Let us now note that the considerations shown above have been related to the approximation of solution (65), which is
known explicitly in this particular example. A computation shows however that, along with (67), the zeroth approximate
determining system (64) has another root
~n01 	 0:3954059502; ~n02 	 �0:1592025648;
~g01 	 0:389899163; ~g02 	 �0:0459889168

ð75Þ
and, likewise, the first approximate determining system, along with its root (70), has the root
~n11 	 0:3923536713; ~n12 	 �0:1570525052;
~g11 	 0:386849396; ~g12 	 �0:04383992217:

ð76Þ
This indicates a possible existence of a solution ~u ¼ col ~u1; ~u2ð Þ of the boundary value problem (56) and (57) which is dif-
ferent from (65) and has the initial data ð~u1ð0Þ; ~u2ð0Þ; ~u1ð1=2Þ; ~u2ð1=2ÞÞ in a neighbourhood of the corresponding values
(76). The rigorous analysis confirming the existence of ~u, which consists in the verification of suitable sufficient conditions
similar to [3], is omitted here, and we focus on the construction of approximations only. In this case, arguing as shown
above and substituting the values from (76) into (69), we obtain the following expression for the first approximation
to ~u :
eU11ðtÞ ¼ 0:3923536713þ 0:0025 t4 þ 0:004490021967 t3 � 0:07479600670 t2 þ 0:02495444725 t;eU12ðtÞ ¼ �0:1570525052þ 0:200075291 t � 0:0009018708475 t4 � 0:005693773113 t3 þ 0:05577210445 t2
for t 2 ½0;1=2�. Solving the second determining system in a neighbourhood of ð~n11; ~n12; ~g11; ~g12Þ, we find
~n21 	 0:3923271761; ~n22 	 �0:1570509845;
~g21 	 0:3868231849; ~g22 	 �0:04383842534;

ð77Þ
and obtain the second approximation eU2 of ~u:
eU21ðtÞ ¼ 0:3923271761þ 9:037479779 � 10�8t9 þ 0:000001283746929 t8

� 0:000009739630169 t7 � 0:0002493277103 t6 þ 0:0000434563574 t5 þ 0:01226591636 t4

� 0:00749262869 t3 � 0:07065485865 t2 þ 0:02466458183 t;eU22ðtÞ ¼ �0:1570509845þ 0:2000007654 t � 0:00001288388631 t7 � 0:00004281164578 t6

þ 0:001227658392t5 � 0:0038978801 t4 � 0:004195302573 t3 þ 0:0557704485 t2

ð78Þ
for t 2 ½0;1=2�. Similarly, one finds the root of the third approximate determining system
~n31 	 0:3923269706; ~n32 	 �0:1570509371;
~g31 	 0:3868229824; ~g32 	 �0:04383837836

ð79Þ
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and constructs the third approximation eU3:
eU31ðtÞ ¼ 0:3923269706þ 1:106630226 � 10�11t15 þ 7:879714253 � 10�11t14

� 2:29239859 � 10�9t13 � 3:896994250 � 10�10t12 þ 1:755383703 � 10�7t11

� 0:00000109051396 t10 � 3:431360411 � 10�7t9 þ 0:00002580341034 t8

þ 0:00001123554886 t7 � 0:0008109829273 t6 þ 0:0008310140856 t5

� 0:0003399644806 t5 þ 0:00634405846 t4 � 0:00149463484 t3 � 0:0694077454 t2

þ 0:02241968655 t þ 0:01193924453 t4 � 0:007483401567 t3 � 0:07064300545 t2

þ 0:02466500215 t;eU32ðtÞ ¼ �0:1570509371þ 0:200000005 t þ 1:026986386 � 10�9t11 � 1:12792034 � 10�7t10

� 6:109572563 � 10�7t9 þ 0:00001144998193 t8 � 0:00005490798177 t7 þ 0:0001856181722 t6

þ 0:000928093109 t5 � 0:00377044416 t4 � 0:004207340707 t3 þ 0:05577043565 t2

ð80Þ
for t 2 ½0;1=2�.
The graphs of the functions Umi;m ¼ 1;2;3; i ¼ 1;2, presented on Fig. 3, show a clear tendency of convergence to

~ui; i ¼ 1;2. Substituting the third approximation (80) into the differential system (56), one obtains a residual such that
max
t2 0;1=2½ �

eU 031 tð Þ � eU2
32ðtÞ þ

t
5
eU31ðtÞ �

t3

100
þ t2

25

���� ���� 	 1:530806 � 10�9;

max
t2 0;1=2½ �

eU 032 tð Þ � t2

10
eU32ðtÞ þ

t3

50
� 1

5

���� ���� 	 9:9868 � 10�11;
whereas the residual of the first approximation U1 does not exceed 0.0004 (see also Fig. 4).
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