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Abstract. We suggest a constructive approach for the solvability analysis and approximate solu-
tion of certain types of partially solved Lipschitzian differential systems with mixed two-point
and integral non-linear boundary conditions. The practical application of the suggested technique
is shown on a numerical example.
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1. PROBLEM SETTING

This article uses the approach proposed in [2], [5], [4] in the case of the following
non-linear boundary value problem with mixed two-point and integral restrictions

dx(t) dx(t)
o= f(t,x(t),—dt ),t € [a,b], (1.1)
b
g x(a),x(b),/h(s,x(s))ds =d. (1.2)

We suppose that f : [a,b]x D x D1 — R" is a continuous function defined on a
bounded sets D C R” , D! C R" (domain D := D, will be concretized later, see
(1.8), D! is given ) and d € R” is a given vector. Moreover f, g: D X D x Dy —
R™ and & :[a,b]x D — R" are Lipschitzian in the following form

| f(t,u,v)— F(2.7.7)] < Ky |u—7]+ K2 |[v—T7], (1.3)
lg(u,w, p)—g@, w,p)| < Kz|u—ul+ K4|w—w|+ Ks|p—7| (1.4)
|h(t,u) —h(t,u)| < Ke|u—1| (1.5)
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forany ¢ € [a,b] fixed, all {u, %} C D, {v, 0} C D, {w, W} C D, {p,p} C Dy, where
b
Dy = /h([,x(l))dt it €la,b]l, xeD
a

and K; — K5 are non-negative square matrices of dimension n. The inequalities
between vectors are understood componentwise. A similar convention is adopted
for the ”absolute value”, “max”, ”min” operations. The symbol [, stands for the unit
matrix of dimension #n, r(K) denotes a spectral radius of a square matrix K.

By the solution of the problem (1.1), (1.2) we understand a continuously differen-
tiable function with property (1.2) satisfying (1.1) on [a, b].

We fix certain bounded sets D, C R” and D, C R” and focus on the solutions x
of the given problem with property x(a) € D4 and x(b) € Dy. Instead of the non-
local boundary value problem (1.1), (1.2), we consider the parameterized family of
two-point “model -type ” problems with simple separated conditions

dx(t) dx(t)
d[ = f(Z,X(t),T), IS [a,b], (16)
x(a) =z, x(b) =, (L.7)

where z = (z21,22,...,2n), 1 = (11,12, ...,Np) are considered as parameters.

If z € R* and p is a vector with non-negative components,
O(z,p) :={£ e R" : |§ —z| < p} stands for the componentwise p -neighbourhood
of z. For given two bounded connected sets D, C R” and Dj C R”, introduce the
set

and its componentwise p—neighbourhood by putting

D=Dy:=0Dyp.p)=_ U O p) (1.8)
SEDa,h
We suppose that
r(K;) <1, r(Q) <1, (1.9)
where ”
0= (1.10)

10
K =Ki+K> [In—Ko] "'K1 =[In—K2] 7'K1.
On the base of function f :[a,b] x D x D! — R" we introduce the vector

1
5 == max X, y)— min t,x,
wop(Nimg [ ma e min o f)]
(1.11)
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and suppose that the p—neighbourhood in (1.8) is such that
b—a
P =~ ap).0.01 (f)- (1.12)

2. MAIN STATEMENTS

The investigation of the solutions of parameterized problem (1.6) and (1.7) is con-
nected with the properties of the following special sequence of functions well posed
on the interval 7 € [a, b]

t —

b—a

t— t—
xo(t,z.m) =2+ m—z]=|1- iy ar),tE[a,b], (2.1)
b—a b—a

dxm(s,z,n))ds_

t
xm+1(t,z,r))=z+[f(svxm(svz,77)’ ds
a

b
—Z_a/f S,xm(s,z,n),—dxm(s’z’n) ds+—t_a [n—z]. t €la.b], (22)
b—a ds b—a

a

m=0,1,2,...,

Theorem 1. Let assumptions (1.3)-(1.5) and (1.9) hold. Then, for all fixed (z,n) €
Dy X Db N

1. The functions of the sequence (2.2) are continuously differentiable functions on
the interval t € [a,b], have values in the domain D = D, and satisfy the two-point
separated boundary conditions (1.7).

2. The sequence of functions (2.2) in t € [a,b] converges uniformly as m — oo to
the limit function

Xoo (t,2,1) = mli_r)nooxm (t,z,n), (2.3)

satisfying the two-point separated boundary conditions (1.7).
3. The limit function xs0 (t,2,1) is the unique continuously differentiable solution
of the integral equation

! b
x(t)=Z+/f(S’X(S),dz—f:))dS—z:Z/f(s,x(s),d);?))ds—l-

a a
t—a
to . [n—2z], (2.4)
i.e. it is the solution of the Cauchy problem for the modified system of integro-
differential equations :

dx . dx(t)
b b dt‘

dr

)-i— ! A(z,n), x(a) =1z (2.5)
b—a
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where A(z,7n) : Dg X Dy — R™ is a mapping given by formula

b
dxeo (5,2,
A(z,n) = [H—Z]—/f (s,xoo (s,Z,n),%n)) ds. (2.6)
a
4.The following error estimate holds:
|xOO (t,ZJ?)_xm (I7Zvn)| <
10 _

< gait.a.b—=a)0" (ln= Q) da 0,01 (/). 2.7)

foranyt € [a,b] and m > 0, where 81, ) p, p1(f) is given in (1.11) and

t— b—
ocl(t,a,b—a)=2(t—a)(1—b—a),al(t,a,b—a)f 2" (2.8)
—a

Proof. The validity of this statement can be established similarly to Theorem 1 in
[4]. O

Theorem 2. Under the assumption of Theorem 1, the limit function X (t,2,7) :
[a,b] x Dg x Dp — R" defined by (2.3) is a continuously differentiable solution of
the original BVP (1.1), (1.2) if and only if the pair of vectors (z,n) satisfies the
system of 2n determining algebraic equations

b dxoo(s )
Az =n—z—[f (s,xoo (5.2.1), ool )ds =0,
a

b
Az =g (xoo (@,2.1) . %00 (b.2,10), [ h(s, X0 (S,Z,n))ds) —d =0.
(2.9)

Note, that similarly as in [3], the solvability of the determining system (2.9) on
the base of (1.3)-(1.5) and (1.9) can be established by studying its m—th approximate
versions:

b dxm( )
Am(z,n) = n—z—ff(s,xm (s.2,1), ol )ds =0,
a

b
Am(z,m) =g (xm (a.z.n) . Xm (b.z.n), [ 1(s,Xm (s,z,n))dS) —d =0.

(2.10)
where m 1is fixed.

Lemma 1. Under the assumptions of Theorem I, for the exact and approximate
determining functions defined by (2.9) and (2.10) for any (z,n) € Dgx Dy and m > 1
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hold the following estimates:

10(h—a)?
A= Am (2.0 = (2—7a)KQ’" (In=0) " apr,p,p, (f). (21D
AG)—Am G < 227D (ks 4 Ky

+(b—a)KsKe] O™ (1n— Q) ' 8ap.0.0, (). (2.12)

where the matrix Q and the vector 8|4 p) p,p,(f) are given respectively in (1.10)
and (1.11).

Proof. Let us fix an arbitrary (z,n) € D, x Dy, Direct computation gives that

b (b—a)®

/cxl(t,a,b—a)dt= R

a

On the base of (1.1) and (1.3), when u # u , we have
| f(tu,0) = f(2.0,9)] < K [u—1ul,

where matrix K is given in (1.10). Taking into account (2.7) we obtain

|A(z,n) = Am (z.0)| =

b b
d 9 &Koy d LR NE]
= [f s,xoo(s,z,n),M ds—/f s,xm(s,z,n),M ds| <
dt dt
a a

b
10 ~
SK/;ou(s,a,b)Qm(ln—Q) 18[a,b],D,D1(f)dS:
a

_10(b~a)’

7 KQ" (- Q)™ 81a,5),0,0, ()

which proves (2.11).
From (2.9) and (2.10) using the Lipschitz conditions (1.4), (1.5) and estimates
(2.7), (2.8), we obtain

b
[A(z.n)—Am (z.0)]| = |g xoo(a,z,n),xoo(b,z,n),/h(s,xoo(b,z,n))dS) -

b
— 8 xm(a»Z,fl)’xm(b,ZJ?)’/h(S,xm(S,Zarl))ds S
a

< K3|xoo (@,2,0) —xm (a,z,n)| + Ka |Xoo (b,2,1) — Xm (b, 2, m)| +
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+(b—a)Ks5Ke|x0o (t,2,0) —Xm (£,2,1m)] <

< e (bg_ " [K3+ Ka+(b—a)Ks5Ks] Q" (1n— Q)" 8a.61.0.0, (/)

i.e. (2.12) holds also. O

Based on both exact and approximate determining systems (2.9) and (2.10) let us
introduce the mappings H : Dy x Dp — R?* and H,, : D, x Dy, — R?" by setting

b b ]
h—zl-[f (s,xoo(a,z,n),xoo(b,z,n),fh(s,xoo (s,z,n))) ds,
H (z,n) = ¢ s
g (-XOO (a,Z,n),xoo (b,Zvn)afh(vaoo (bvzvn))ds) _d7
(2.13)
b b ]
[U_Z]_ff (S’xm (a,Z,U),xm (bvz,n)7fh(5’xm (SvZ’n))) dS,
Hm (an) = ¢ b ¢
g (xm (a.z.n),Xm (b,z.n), [h(s,xm (b,z.n))ds | —d,

(2.14)
(z,n) € Dg x Dy. We see from Theorem 2 that the critical points of the vector field
H of the form (2.13) determine solutions of the non-linear boundary value problem
(1.1)-(1.2). The next statement establishes a similar result based upon properties of
vector field Hy, explicity known from (2.14).

Theorem 3. Assume that the conditions of Lemma 1 hold. Moreover, one can
specify an m > 1 and a set

I := Dyx D, C R*",

where D1 C Dy, Dy C Dy are certain bounded open sets such that the mapping Hy,
satisfies the relation

1062 k Om (1, — 0) " 60 1.0, (f) }
[K3+ K4+ (b—a) KsKe] O™ (1n— Q)" 81ap1.0,0, (f)
(2.15)

|Hm(za77)|>3['|: S(b—a)
9

on the boundary 0I" of the set 2. If, in addition
deg (Hyp, $2,0) # 0, (2.16)
then there exists a pair (z*,n*) € D1 x Dy for which the function
x5 () 1= Xoo (25 1)

is a solution of the non-linear boundary value problem (1.1)-(1.2).
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In (2.15) the binary relation >4 is defined in [1] as a kind of strict inequality
for vector functions and it means that at every point on the boundary dI" at least
one of the components of the vector | Hy, (z,n)| is greater than the corresponding
component of the vector on the right-hand side . The degree in (2.16) is the Brouwer
degree because all the vectors fields are finite-dimensional. Likewise, all the terms on
the right-hand side of (2.15) are computed explicitly e.g. by using computer algebra
system.

Proof. The proof can be carried out similarly as in Theorem 4 from [3]. ]

3. EXAMPLE
Let us apply the approach described above to the system of differential equations

Zxa}t(i) 1d2(tt) dxz(t)x )+ 321‘3—Lt2+ 9t
xdzt() ; xdlt()x (t)—t xz(t)+1513+ lt+4
considered with non-linear boundary conditions
1 2
x1(0) x2(1) + /xl(s)ds =—

0

e[0,1],

311
14400°

xl(l)XZ(O)—/Xz(S)ds [

Introduce the vector of parameters z = col(z1,22), H = col(n1,n2). Let us consider
the following choice of the subsets Dy, D and D!

Dy, =Dy = {(xl,xz) —0.1<x1 <02, 02<xp< 0.3},
dxi1 dxp dxi dx;
D'=1—,—):-01<—-<03,-0.1<— <03
{(dl dt) —dt T —dt T~
In this case D, = Dg = Dj. For p = col(p1, p2) involved in (1.12), we choose

the vector p = c0l(0.4;0.4). Then, in view of (2.13) the sets (1.8) and D, takes the
form:

D =D, ={(x1,x2): =0.5<x1 0.6, —0.6 < x5 <0.7}
and
D, = {(xl,xz) :0.25<x1 <0.36, —0.6 <xyp < 0.7}.
A direct computation shows that the conditions (1.3)-(1.5) hold with

0.3 0.7 0 0.6 03 0
Kl_[O.IS 1 ]’Kz_[o.s 0 ]K3_[ 0 0.2]’

0 0.2 1.2 0 10
K“_[os 0 ]KS_[ 0 1]K6_[0 1]
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TABLE 1.
m 21 22 M N2
0 -0.089643967 -0.0002812586 0.03176891 0.25026338
1 -0.0994489263 | 0.00051937347 | 0.0255001973 | 0.2504687527
4 -0.0999998827 7.744981-10~% | 0.02500007591 0.25000011
6 -0.1000000004 | -2.263731-10719 [ 0.02499999973 | 0.2499999996
Exact -0.1 0 0.025 0.25

and therefore r(K3) = 4/0.18 < 1, and in (1.10) the matrix

|

| 0.07134146342 0.2378048781
Q= 0.04390243902 0.2213414634

Furthermore, in view of (1.11)

1

S8ta.p).0,.01 (f) = 3 [

0.4756097561
0..2926829268

1.585365854
1.475609756

I

} , r(Q) = 0.273090089272152 < 1.

max
(t,x,y)€la,b]xDxD!

f(t’x»y)_

047 _b-a 0.155
p= [ 0.4 ] =5 Otwpp,01 (/)= [ 0.36625 ]

We thus see that all conditions of Theorem 1 are fulfilled, and the sequence of
functions (2.2) for this example is uniformly convergent.

Applying Maple 14, we can carried out the calculations.

It is easy to check that

min f(t,x,y)} =
(t,x,y)€la,b]xDxD!
0.31
0.7325

2

0 =5 - w0 =5

10° 4
is an exact continuously differentiable solution of the problem (1.1), (1.2). For a
different number of approximations m we obtain from (2.10) the following numerical
values for the introduced parameters, which are presented in Table 3.

On the Figure 1 one can see the graphs of the exact solution (solid line) and its
zero (<) and sixth approximation (x) for the first and second coordinates.

The error of the sixth approximation (i = 6) for the first and second components:

max_|x} (1) —x¢,(1)| < 1-1072,

max_|x3(t)—x.,(t)] <5-107°.
1€[0.1] te[o’l]‘ S —xg,(1)| <
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0.254
0.024

0.204

-0.024

0.15

-0.04

0.104

-0.064

0.034
-0.084

FIGURE 1.
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