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The expansions of a Green's function for the Simmons molecular potential (SMP) over spheroidal function are
built. The solutions of a degenerate hypergeometric equation are used as basis function system while expanding
regular and irregular model spheroidal functions into series. Rather simple three-terms recurrence relations are
obtained for the coefficients of these expansions.

1. Introduction
In the theory of electronic structure and spectra of molecular systems Green's function for
the two-centre potential ¥ (7,R)

{—%AJFV(F,R)—E(R)}GE(F,F’;R)z 5 7). (1)

plays fundamental role, similar to that of the one-centre Coulomb Green's function in the
atomic structure theory. However, even for the simplest model - a problem of two purely
Coulomb centres Z eZ, considered in Ref. [1] no closed analytical expression for the

G, (F,F’;R) similar, e. g. to the well-known Hostler and Pratt expression [2], has been
obtained. The expansions of the Green's function G,(7,7';R) over partial waves have been

constructed only in the separate case of molecular hydrogen ion H, [3], where the recurrent

scheme of coefficient determination, related to cumbersome calculations were proposed.
More essentials for the perturbation theory problems, based on the usage of the Green's
function approach, is the extension of methods, developed for the Z,eZ, problem, to more

complicated multielectron diatomic systems. In the modern theory of electron structure of
complex molecules the self-consistent field method and the effective potential concept
overcome these difficulties.

In our works the expansions of the Green's function for the two-centre potential model,
suggested in Ref. [6] over spheroidal functions are built. While regular and irregular model
spheroidal functions (MSFs) being expanded into series, the solutions @ and ¥ of a
degenerate hypergeometric equation [8], providing the required asymptotic behaviour of the
MSFs at small intercentre distances (R — 0), are used as basis functions.

2. Green's Function Expansions over Spheroidal Functions

Without concentrating here upon the possible versions of construction of the model
potentials, and bearing in mind diatomic homonuclear systems with a single optical electron,
we shall describe the interaction of the valence electron with the molecular core by a non-
local model potential of the form [6]
~ Z 7 B E,R) -
Vmod(r’R):____+ Mpmﬂﬂ ()

non omr 2hn

where r,, r, are the distances from the electron to the force centres 1 and 2, located at the

distance R from each other; 13,"[ are the operators of projection onto the subspace of states
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with certain values of the orbital / and magnetic m quantum numbers, and Z is the effective
charge of each of the atomic (ionic) fragments — the constituents of the fragments of the two-
centre system. The empirical parameters BM(E,R) are chosen by the comparison of the
calculated lowest level (term) E of the valence electron with the given ¢ and m with its
experimental value. The potential (2) is the generalization of the well-known in atomic
physics Simmons model potential [9] to the molecular case and goes over into it in the limit
of the united atom ( R — 0). The unique feature of the model potential (2) is the possibility of
separation of variables in the Schroedinger equation in prolate spheroidal coordinates &, 7,
@ [1] which enables the exact calculation of terms and electron wave functions.

Let us to represent Green's function G, (7,7;R) in the form of an expansion over a

complete orthonormalized system of oblate angular spheroidal functions EM ( p,77) [1]:
0 4 _ _

G, (7.75R)= Gy Emgi&' ' 0 |R)= 3 X G (6.5 E)S, (0, (por)— —. )
=0 m=—/1

By substituting the expansion (3) into equation (1), having been written in the prolate
spheroidal coordinates, and separating the angular variables 7 and ¢, we obtain a differential

equation for the radial part of the Green's function G,, (5,5';E ) :

{i{(gz —1)1} {— 4, -p*(& —1)+2pas -

dé dé 1

where p = %R(— 2EV2, a=27(-2E) /2, 4,,(E.R)=4,,(p*)+ B, (E.R), and 4,, denote

emlo=0)

2

}}sz(éé’;E)?%oV(f—f'), (4)

the eigenvalues of the angular problems, corresponding to the oblate spheroidal
functions S, ,(p,77) [1]. Thus, the function G,,(&,&;E) is the Green's function of a one-
dimensional radial motion and is conventionally expressed by two linearly independent
solutions 1% (p, f) and Hgf}(p,f) of the homogeneous part of equation (4). The solution

ml
HSJ (p,f) is regular at £ — 1 and divergent at infinity, and Hff) (p,cf) is, contrary, divergent
at £ —1 and regular at infinity. Let us to introduce the new independent variables and new
sought functions in equation (4) according to the formulae

m/2
~ +
ng,;g(x+)=[%j [, (p.&). x. = ple 1), (2p<x, <o 0<x <oo). ®
+ T / +

Heremafter the upper signs are related to ﬁﬁ;} (x+) and the lower ones — to 1:[5;2 (xf). By the
transformation (5) homogeneous part of the equation (4) is reduced to two separate equations for
19(x,):

ml
{—d [xj da j —x2 + 200, —v(v + 1)}1:[%2 (x,)+
dx, dx,

(6)

2L [i2(m+l)xi d +(V(V+l)_Amgi20!jxi ¢2V(V+1)}ﬁfz)(xi)5
+ p

=T, (‘xi )ﬁ(r:()(xt)‘*' PO, (xi )ﬁgjz)(xi ) =0,

where the parameter v =v,,(E,R) is given by v = —%+%\/1 +4B,,(E,0)+40(¢+1). When p

tends to zero, both equations of (6) go over into one T,R(x)=0 (0<x <), whose two
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independent solutions are the functions Rf')(x) and sz)(x) expressed directly in terms of
regular @ and irregular ¥ solutions of a degenerate hypergeometric equation [8]:

RV (x)=x"e®(-a+v+12v+22x), RY(x)=x"e " W(-a+v+12v+2.2x). (7)

The above speculations suggest the regular [1": )(xi) and the irregular ﬁgf)(xi) solutions of

ml

each of the equations (6) to be given as the following infinite sums:

:ihfr)(pa,q 0 (x,), ﬁ%i)(xi):z}z(i)(p

s=0 s=0

here the expansion coefficients h‘fi) and }le(i) are to be determined. Having substituted these

a,4,, )R ) 5(+)v (x+ ) (&)

expansions into the corresponding equations (6) and having used the recurrent relations (See
Refs. [5, 13]) for the basis functions Rs(l)(x) and Rs(z)(x), we obtain two infinite three-term

’ m/)'

+ pahl) + (B, - 4, 0 F py =0, s=012.., h% =0, ©)

systems of linear equations for the coefficients 4 = hi(p|0£, 4, ), }lei = }lei (P

Fpa i+ (B -4, b % p7 i =0, s=012.., K =0, 10)

<

B (s i(f;g)(z:1 ;Va—l))(gz—;j_;‘/m_zl)a By =(s+v)s+v+1), y,=2(s+v+1)s+v+1-m),

. As+v—a)s+vem) - ~ (s+v+a+l)fs+v-m+1)

CZS = 2 /3s ::/95’ }/S = : (11)
2s +2v -1 25+2v+3

The recurrent systems (9) ((10)) determine the coefficients h (h ) within arbitrary factors,

fixed by the conditions

[(2s+2v+2) s T (5)
=1, 277"h Y =1. 12
Z;‘ Z”VI" s+v+1- a) ;‘ ' (12)

The expression for radial Green's function G,,(£,£'; E)with the account of the Wronskian
value (See Refs. [3, 7]) can now be given by

87 "
G e5)= 2 25 | A ). 1)

a +

3. Limiting Values and Asymptotic Expansions of the Two-Centre Green's Function at
Small Intercentre Distances

In many physical problems whose examples are considered in [1], the asymptotic of the
Green's function G, (77,17 ';R) at small values of the intercentre distance should be known.

Hence the necessity of the asymptotic expansions of S, (p,n), ﬁ(ri’f)(xi) and ﬁfjf)(xi)

functions over a small parameter p at the fixed quantum numbers ¢ and m to be constructed
arises. We use an asymptotic method, proposed by Abramov and Slavyanov [13], to search
for such expansions.

We begin with the oblate angular spheroidal function S, (p,n). The expansion for

normalized angular spheroidal functions can be written in a form:
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0 if 0—m =2k,

o _ -1 ~ ml m . _
Sm«(l?,ﬂ)— Nm((p) Z d2n+5P(z+2n+5(77)a 0= {1 if f—m=2k+1, k=012.. (14)

n=Ent[(m—1)/2]
Here P"(n) - associated Legendre polynomials, N,,(p)- normalize factor and Ent[p] is the
integer part of the real number p. The expansion coefficients d.", ; fulfill the three-term
recurrent relations [1]:

Pszn+5an+1+§d2n;iz+5 + [/1(5") - (E +2n+ 5)@ +2n+1+ 5)_ P+
(15)
+ p2 (BZn—H()'EZnH)' + BZn+5E2n+l+6 )p;’;’lﬁ*& + p2E2n+§E2n—l+6d2W;€—2+6 = 0’

l+k+m+1 l+k—m
_ ) - - a™ =0. 16
Co2042k+3 7 T 204+2k-1 noie (16)

We search for the separation constant /1237) and the expansion coefficients d;, ; in the form of

asymptotic series over the powers of a small parameter p’:

o0

A = Z[ls ]2jp2j ;o dis = P‘zn‘i[dznjfw ]2«/p2ja ds; =1. an
=0

j=0
By substituting these expansions consequently into each equation of the system (15), starting
from n=0, and equating the coefficients at the equal powers of p° to zero, we obtain the

recurrent relations to determine the expansion coefficients [d;’;ﬂ s ]zj and [4, ]zj. The chain of
equations, corresponding to n =0, enables the [/15 ]2j values to be expressed in terms of

[d s ]zj_ , coefficients. Some coefficients [2, ]2/. and |d %, 5] are given below:

2 j—4

[ﬂ(s ]0 = (ﬁ + 5)@ +0+ 1)’ [/15 ]2 =1- (B—1+(>‘E5 +B;E, ),

[/1‘] — EsE 5B 5B 5. _ BB sEvsEys
R 2204251 2020+25+3)°
E _E,
d. . — 1+6 249 ,
4.0} 2(20+26 +3)
E1+§E2+5
[d2+5 ]z = 420425+ 3)2 [Bl+§E2+5 + By sEy s — B sEs — B5E1+5]-

In order to space saving we represented here the few coefficients of the expansion (17) only,
but in the numerical calculation for ZeZ systems we keep up to ten coefficients en each
expansion. We have checked the applicability of our approximate results with numerical
solutions obtained for ZeZ systems in [4]. Some results are represented in table 1 and 2. For
the sake of convenience while presenting the results, the values of separation constant are
recalculated in the notation system chosen in Ref. [4]. In table 2 the values of the coefficients
(See eq. (14)) calculated using asymptotic expansion (17) are compared with the numerical
solution for them from [4]. The normalization for d)" ; coefficients, accepted in [4] is used

here.
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Table 1. Separation constant ﬂffj) — p® of the angular equation for the oblate spheroidal
function, EEZ) -p’=A,, x10".

This work Ref. [4] This work Ref. [4]

p Ay n Ay n Ay, n Ay, n
0.1 -3.33482 -3 -3.34 -3 1.99400 0 1.99400 0
0.3 -3.01203 -2 - - 1.94594 0 - -
0.6 -1.21942 -1 -1.2194 -1 1.78311 0 1.78311 0
0.9 -2.79963 -1 - - 1.50953 0 - -
1.5 -8.29869 -1 -8.2987 -1 6.16041 -1 6.1604 -1

2 -1.59451 0 -1.59449 0 -5.05240 -1 -5.0524 -1

ml

Table 2. Expansion coefficients d,, s for the oblate angular spheroidal function calculated
for the ground state (£ =0, m=0), d" =D, x10".

This work | Ref. [4] This work Ref. [4] This work Ref. [4]

p D, |n| D, |[n| D, n D, n D, n| D, n
0.1 | 1.0006 [ 0| 1.0006 [O| 1.1121 |-3| 1.1121 |-3| 1.9067 | -7 | 1.9066 | -7
0.3 | 1.0050 [0 - -1 1.0079 | -2 - - | 1.5562 | -5 - -
0.6 | 1.0205 [ 0| 1.0205 [0| 4.1281 |-2| 4.1283 |-2| 2.5558 | -4 | 2.5555 | -4
09 | 1.0478 |0 - -1 9.6662 | -2 - - | 1.3523 | -3 - -
1.2 | 1.0892 |0 1.0892 |0 1.8182 |-1| 1.8182 |-1| 4.5523 |-3| 4.5385 | -3
1.5 | 1.1483 | 0| 1.1484 |0 3.0571 |-1| 3.0573 |-1| 1.2080 |-2| 1.1983 | -2

The same approach can be applied to the studies of the asymptotic behavior of the regular
and irregular radial MSFs at small values of the p parameter. The analytic representation for
the coefficients of radial MSFs would be represented in our follow publications.

Concluding, we should note that an approach to solving the perturbation-theory nonlinear
equations, related to the Timan-Schwarz method application, has been also discussed in the
literature (See e. g. [10-12]). These approaches are formally equivalent, but the Green's
function method possesses an advantage, being known in various fields of physics, universal
in its applications
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[To6ymoBano poskman mist Qyskiii ['piHa MomekyiaspHoro mnoTeHiiany CaiiMoHca 3a cepoinaibHUMU
¢ynkuisivu. TIpy po3kianaHHi PeryJisipHUX 1 HEperyJIsspHUX MOJENbHHUX chepoinanbHuX (QyHKUIH B psau B
SAKOCTI 0a3MCHUX CHUCTEM BHKOPHCTaHO pO3B S3KM BHPOJPKEHOTO TillepreoMeTpUYHOro piBHsHHS. [lns
KOe(IIiEHTIB INX PO3KJIA/IiB OTPUMAHO JOCHUTH IIPOCTI TPUWICHH] PEKYPEHTHI CITiBBIHOIICHHS.
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