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The expansions of a Green's function for the Simmons molecular potential (SMP) over spheroidal function are 
built. The solutions of a degenerate hypergeometric equation are used as basis function system while expanding 
regular and irregular model spheroidal functions into series. Rather simple three-terms recurrence relations are 
obtained for the coefficients of these expansions. 
 
1. Introduction 

In the theory of electronic structure and spectra of molecular systems Green's function for 
the two-centre potential ( )RrV ,r   

( ) ( ) ( ) ( )rrRrrGRERrV E ′−=′



 −+∆−

rrrrr δ;,,
2
1 ,                                                                     (1) 

plays fundamental role, similar to that of the one-centre Coulomb Green's function in the 
atomic structure theory. However, even for the simplest model - a problem of two purely 
Coulomb centres 21eZZ considered in Ref. [1] no closed analytical expression for the 

( )RrrGE ;, ′rr  similar, e. g. to the well-known Hostler and Pratt expression [2], has been 
obtained. The expansions of the Green's function ( )RrrGE ;, ′rr  over partial waves have been 
constructed only in the separate case of molecular hydrogen ion +

2H  [3], where the recurrent 
scheme of coefficient determination, related to cumbersome calculations were proposed. 

More essentials for the perturbation theory problems, based on the usage of the Green's 
function approach, is the extension of methods, developed for the 21eZZ  problem, to more 
complicated multielectron diatomic systems. In the modern theory of electron structure of 
complex molecules the self-consistent field method and the effective potential concept 
overcome these difficulties.  

In our works the expansions of the Green's function for the two-centre potential model, 
suggested in Ref. [6] over spheroidal functions are built. While regular and irregular model 
spheroidal functions (MSFs) being expanded into series, the solutions Φ  and Ψ  of a 
degenerate hypergeometric equation [8], providing the required asymptotic behaviour of the 
MSFs at small intercentre distances ( 0→R ), are used as basis functions. 
 
2. Green's Function Expansions over Spheroidal Functions 

Without concentrating here upon the possible versions of construction of the model 
potentials, and bearing in mind diatomic homonuclear systems with a single optical electron, 
we shall describe the interaction of the valence electron with the molecular core by a non-
local model potential of the form [6] 
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where 1r , 2r   are the distances from the electron to the force centres 1 and 2, located at the 
distance R from each other; lmP̂  are the operators of projection onto the subspace of states 
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with certain values of the orbital l  and magnetic m quantum numbers, and Z is the effective 
charge of each of the atomic (ionic) fragments – the constituents of the fragments of the two-
centre system. The empirical parameters ( )R,EBml  are chosen by the comparison of the 
calculated lowest level (term) E of the valence electron with the given l  and m with its 
experimental value. The potential (2) is the generalization of the well-known in atomic 
physics Simmons model potential [9] to the molecular case and goes over into it in the limit 
of the united atom ( 0→R ). The unique feature of the model potential (2) is the possibility of 
separation of variables in the Schroedinger equation in prolate spheroidal coordinates ξ , η , 
ϕ  [1] which enables the exact calculation of terms and electron wave functions.  

Let us to represent Green's function ( )RrrGE ;, ′rr  in the form of an expansion over a 
complete orthonormalized system of oblate angular spheroidal functions ( )η,pSml  [1]: 
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By substituting the expansion (3) into equation (1), having been written in the prolate 
spheroidal coordinates, and separating the angular variables η  and ϕ , we obtain a differential 
equation for the radial part of the Green's function ( )EGm ;,ξξ ′

l : 
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where ( ) 2
1

2
2
1 ERp −= , ( ) 2

1
22 −−= EZα , ( ) ( ) ( )R,EBpR,EA mmm lll += 2λ , and lmλ  denote 

the eigenvalues of the angular problems, corresponding to the oblate spheroidal 
functions ( )η,pSml  [1].  Thus, the function ( )E;,Gm ξξ ′

l  is the Green's function of a one-
dimensional radial motion and is conventionally expressed by two linearly independent 
solutions ( ) ( )ξ,1 pmlΠ  and ( ) ( )ξ,2 pmlΠ  of the homogeneous part of equation (4). The solution 

( ) ( )ξ,1 pmlΠ  is regular at 1→ξ  and divergent at infinity, and ( ) ( )ξ,2 pmlΠ  is, contrary, divergent 
at 1→ξ  and regular at infinity. Let us to introduce the new independent variables and new 
sought functions in equation (4) according to the formulae 
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Hereinafter the upper signs are related to ( ) ( )++Π xml
~  and the lower ones – to ( ) ( )−−Π xml

~ . By the 
transformation (5) homogeneous part of the equation (4) is reduced to two separate equations for  
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where the parameter ( )R,Emlνν ≡  is given by ( ) ( )14041
2
1

2
1

++++−= lll ,EBmν . When p 

tends to zero, both equations of (6) go over into one ( ) ( )∞<≤= xxRT 00ν , whose two 



Uzhhorod University Scientific Herald. Series Physics. Issue 10.  – 2001 
 

 98

independent solutions are the functions ( ) ( )xR 1
ν  and ( ) ( )xR 2

ν  expressed directly in terms of 
regular Φ  and irregular Ψ  solutions of a degenerate hypergeometric equation [8]: 
 

( ) ( ) ( )xexxR x 2,22,11 +++−Φ≡ − νναν
ν ,          ( ) ( ) ( )xexxR x 2,22,12 +++−Ψ≡ − νναν

ν .            (7) 
 
The above speculations suggest the regular ( ) ( )±±Π xm

,1~
l  and the irregular ( ) ( )±±Π xm

,2~
l  solutions of 

each of the equations (6) to be given as the following infinite sums: 
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here the expansion coefficients ( )±
sh  and ( )±

sh~  are to be determined. Having substituted these 
expansions into the corresponding equations (6) and having used the recurrent relations (See 
Refs. [5, 13]) for the basis functions ( ) ( )xRs

1  and ( ) ( )xRs
2 , we obtain two infinite three-term 

systems of linear equations for the coefficients ( )lmss A,phh α±± ≡ ,  ( )lmss A,ph~h~ α±± ≡ : 
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The recurrent systems (9) ((10)) determine the coefficients ( )±
sh   ( ( )±

sh~ ) within arbitrary factors, 
fixed by the conditions 
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The expression for radial Green's function ( )EGm ;,ξξ ′

l with the account of the Wronskian 
value (See Refs. [3, 7]) can now be given by 

( ) ( ) ( ) ( ) ( )>±±
<±

±

±±

ΠΠ







′
′

=′ xx
xx
xxZEG mm

m

m
,2,1

2
~~8;, ll

mm
l α

ξξ .                                  (13) 

 
3. Limiting Values and Asymptotic Expansions of the Two-Centre Green's Function at 
Small Intercentre Distances 

In many physical problems whose examples are considered in [1], the asymptotic of the 
Green's function ( )R;r,rGE ′rr  at small values of the intercentre distance should be known. 
Hence the necessity of the asymptotic expansions of ( )η,pSml , ( ) ( )±±Π xm

,1~
l  and ( ) ( )±±Π xm

,2~
l  

functions over a small parameter  р at the fixed quantum numbers l  and m  to be constructed 
arises. We use an asymptotic method, proposed by Abramov and Slavyanov [13], to search 
for such expansions. 

We begin with the oblate angular spheroidal function ( )η,pSml . The expansion for 
normalized angular spheroidal functions can be written in a form: 
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Here ( )ηmPl  - associated Legendre polynomials, ( )pNml - normalize factor and Ent [ ]ρ  is the 
integer part of the real number ρ . The expansion coefficients lm

nd δ+2  fulfill the three-term 
recurrent relations [1]: 
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We search for the separation constant ( )η

δλ  and the expansion coefficients lm
nd δ+2  in the form of 

asymptotic series over the powers of a small parameter 2p : 
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By substituting these expansions consequently into each equation of the system (15), starting 
from 0=n , and equating the coefficients at the equal powers of 2p  to zero, we obtain the 
recurrent relations to determine the expansion coefficients [ ] j

m
nd 22
l
δ+  and [ ] j2δλ . The chain of 

equations, corresponding to 0=n , enables the [ ] j2δλ  values to be expressed in terms of 

[ ] 422 −+± j
md l

δ  coefficients. Some coefficients [ ] j2δλ  and [ ] 422 −+± j
md l

δ  are given below: 
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In order to space saving we represented here the few coefficients of the expansion (17) only, 
but in the numerical calculation for ZeZ  systems we keep up to ten coefficients en each 
expansion. We have checked the applicability of our approximate results with numerical 
solutions obtained for ZeZ  systems in [4]. Some results are represented in table 1 and 2. For 
the sake of convenience while presenting the results, the values of separation constant are 
recalculated in the notation system chosen in Ref. [4]. In table 2 the values of the coefficients 
(See eq. (14)) calculated using asymptotic expansion (17) are compared with the numerical 
solution for them from [4]. The normalization for lm

nd δ+2  coefficients, accepted in [4] is used 
here.  
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Table 1. Separation constant ( ) 2pm −ηλ l  of the angular equation for the oblate spheroidal 
function, ( ) n

mm p 102 ×Λ=− ll
ηλ . 

 
 
 

This work Ref. [4] This work Ref. [4] 

p 00Λ  n 00Λ  n 01Λ  n 01Λ  n 

0.1 -3.33482 -3 -3.34 -3 1.99400 0 1.99400 0 

0.3 -3.01203 -2 - - 1.94594 0 - - 

0.6 -1.21942 -1 -1.2194 -1 1.78311 0 1.78311 0 

0.9 -2.79963 -1 - - 1.50953 0 - - 

1.5 -8.29869 -1 -8.2987 -1 6.16041 -1 6.1604 -1

2 -1.59451 0 -1.59449 0 -5.05240 -1 -5.0524 -1

 
Table 2. Expansion coefficients lm

nd δ+2  for the oblate angular spheroidal function calculated 
for the ground state ( 0=l , 0=m ), n

r
m
r Dd 10×=l . 

 
 
 

This work Ref. [4] This work Ref. [4] This work Ref. [4] 

p 0D  n 0D  n 2D  n 2D  n 4D  n 4D  n 

0.1 1.0006 0 1.0006 0 1.1121 -3 1.1121 -3 1.9067 -7 1.9066 -7

0.3 1.0050 0 - - 1.0079 -2 - - 1.5562 -5 - - 

0.6 1.0205 0 1.0205 0 4.1281 -2 4.1283 -2 2.5558 -4 2.5555 -4

0.9 1.0478 0 - - 9.6662 -2 - - 1.3523 -3 - - 

1.2 1.0892 0 1.0892 0 1.8182 -1 1.8182 -1 4.5523 -3 4.5385 -3

1.5 1.1483 0 1.1484 0 3.0571 -1 3.0573 -1 1.2080 -2 1.1983 -2

 
The same approach can be applied to the studies of the asymptotic behavior of the regular 

and irregular radial MSFs at small values of the p  parameter. The analytic representation for 
the coefficients of radial MSFs would be represented in our follow publications. 

Concluding, we should note that an approach to solving the perturbation-theory nonlinear 
equations, related to the Timan-Schwarz method application, has been also discussed in the 
literature (See e. g. [10-12]). These approaches are formally equivalent, but the Green's 
function method possesses an advantage, being known in various fields of physics, universal 
in its applications 
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