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The asymptotic properties of the solution of quantum-mechanical three Coulomb
centers problem eZ;ZZ are studied. Within the framework of the perturbation

theory the asymptotic formulas for energies of eZ,ZZ system are obtained at large

separation L between interacting fragments. As the applications of obtained results
the leading term of the asymptotic of exchange interactions between hydrogen-like

molecular ion eZZ with nuclei of different elements are calculated. The total cross

sections of charge transfer of a hydrogen molecular ion H ; on the nuclei of lithium

at not very low impact velocities are calculated.

Introduction

In the present work we study the
asymptotic behaviour of discrete spectrum of
eZ,ZZ system (one electron and three fixed

nuclear charges: Z, and Z, =7, =Z7). This

system can serve as a model for collision
systems consisting of three ions with closed
electronic shells (two of them being
identical) and one “active” bound electron.
We consider the Schroedinger equation for
the problem of electron motion in the field of
three Coulomb centres:
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«#(7:0)= El0](7:0).

where 7 1is the radius-vector of the electron,

(1)

Ris the radius-vector of the i-th nucleus
(i=123), r, = ‘F—ﬁi‘ is the distance from
the electron to i-th nucleus, E(Q) and

‘P(F;Q) are the electron energy and wave-
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function, respectively, that depend on three
coordinates Q, =L, QO,=R, 0O;=2,

Q=(L,R,,B), the meaning of which is
shown in Fig.1.

Fig.1. Geometry of quasi-molecule eZ;ZZ and
used notation.

Asymptotic expressions for the potential
energy surfaces of eZ,ZZ system

In the limit L — oo the solutions of
equation (1) are localized either near the
nucleus Z, or near the two identical charges
(ions), Z+Z . Thus, ¥, is the wave function
that corresponds to the case when system
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eZ\ 27
atomic ion eZ; and two identical charges,

is separated as a hydrogen-like

and ¥;; corresponds to the case of infinitely
separated a hydrogen-like molecular ion
eZZ and a charge Z,. The energies E(Q) of
eZ,ZZ system 1in the limit L — oo can be
classified in an analogous manner: E, (E ,,)
energies go over into the energy levels of
isolated atomic (molecular) ion eZ, (eZZ)
for asymptotically large L. We characterize
E, (Q) and ¥; by the set of (parabolic)
I =[nn,m]  which
describe the states of isolated hydrogen-like
ion eZ; for Ej, (Q) and ¥, will be

characterizes by the set of (spheroidal)
quantum numbers I =[k,q,m'] which

describe the states of molecular ion eZZ .
The function Y¥; we expand over the
Coulomb parabolic [1]

¢n1n2m(ﬂrvr¢l):

quantum  numbers

functions
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dD() is the confluent hypergeometric

function of the first kind [2],
principal  quantum  number,

nis the
and
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pu=r(l+cosd) and v=r(-cosf) are
the parabolic coordinates. The
function ¥y, (17 ; Q) we represent as expansion

wave

Yy (fy‘Q)= ¥, (5,77, qo,E,ﬁ,R):

=3 Yay, (7R, EnpiR)  (5)

Jomj

over the two-center wave functions ¢ im of
J

eZZ discrete spectrum

exp(im jgo)

e @

where N jm is the normalization factor, m j
J

is the projection of angular momentum on
the axis R, and j designate all other
quantum numbers [3,4]. The coordinates /,?
77, used in Eq.(5), are defined by (see Fig.1)

Z= (JLZ —RLcos B+ R*/4 +

+ |12+ RLcos f+ R[4 )R,

= (\/Lz —RLcos,B+R2/4 -

—\/L2+RLcosﬂ+R2/4)R_1. (7)
The energies E; of the system eZ, +Z +Z
(electron is predominantly localized in the
Q; -region; see Fig.1) in the first order of
perturbation theory are given by

502 £ L)

21’12 R2 R3
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where A=n; —n,, and y is the angle

between Iéz and 1%. At sufficiently large

e/Z , the

potential energy surfaces of eZZ + Z; quasi-

distances L between Z; and

molecular system in the second order
approximation of perturbation theory are
given by the expression

42
(1T o) L]
g
ELTm—
o L

where coefficients Algn)(R) are given as

Alg.")(R) _ 2" n!l(n - N)/]2
(2n)1(n+N)!

Nl-j(R)x
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-1
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x J-Hi(f;R)Pn& (ﬁ)ﬂj(f;R){de -

1

18, RS (1)S, s R

-1

1

xOfn,.(5,-R)P;*‘(g)nj(g;R)dg}, (10)
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m;, —m

N=|m;—m,|, N;(R)=N;(R)N;(R), and
& (R) are the energies of hydrogen-like

molecular ion eZZ . (The subscript m; in the
notations for IT jm, (&R), S jm, (7;R) and

N jm, has been omitted.) Formulae similar to

(8) and (9) for the specific case of Z, + H;
system have been derived in [5,6].

Exchange interaction of hydrogen-like
molecular ion with a nucleus, and charge-
exchange cross-sections

We consider the following charge-
exchange reaction:

elZ+7, »el1+Z+7Z (11)

at low collision velocities. The exchange

interaction A(Q) between  adiabatic
electronic  states of  quasi-molecules
eZZ+7Z, and eZ;+Z+Z 1is given by the
expression

AQ)=[dS (¥ VW, ¥, V¥, ). (12)

Using for ¥; and ¥, the expansions (2)

and (5), we obtain (to the leading order of
1/L)

Z3/2221/a2 +l/2 B

ACLB)=— Yy A(B)x
n (n—1)!:

Z Z
X exp —£(a2+—1]—l 4 mZ .(13)
2 n 2Qla, Z,

The coefficient A(f) is related to the
normalisation constant of asymptotic wave

function of eZZ system; a, = —ZES))(R),
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Eg))(R) is the energy of molecular ion eZZ ,
and n is a principal quantum number of the
state described by ¥; wave function. The
potential energy surfaces of Z, + H; quasi-
molecular system, with Z, =3 and at a

distance between the protons R =2, for the
first three o -states that correlate with the

lso, 2so, 2po states of H; molecular

ion at infinite distances L, are shown in
Fig.2. Using Eq. (9) has performed the
calculations.

Fig. 2. Adiabatic energy surfaces of Z; + H ;
(Zy =3, R=2), calculated by using Eq. (9),
for the first three o -states that asymptotically
correlate with the 1so, 2so, 2po states of
H,".

Figure 3 shows the potential energy
surfaces EOOO(L,R,,H) and EOIO(L,R,,H) of

the system p+ p+Li"" calculated for R=2
by using Eq. (8).

Fig. 3. Adiabatic

potential energy surfaces

14

Egoo(L,R,B) and Eg (LR B) of the

p+ p+Li™" quasi-molecule.

As an application of above described
asymptotic method for determination of
eigenfunctions and eigenenergies of a three-
centre Coulomb system, as well as the
pertinent radial couplings (Eq.(13)), we have
calculated the cross section of charge
exchange reaction

Hi +Li*" > 2p+Li** (14)
by using the standard MO close coupling
method, with radial coupling matrix
elements in the form of Eq. (13). In the semi-
classical version of this method, the electron
capture probability p, (p) (transition from

the initial state “1” to a particular final state
“n”) is given by

Pu(p)=a,(+o0), (15)

where o 1is the impact parameter. The
coefficients a, satisfy the standard time-
dependent system of differential equations
(with the effects of electron translation

factors and rotational transitions omitted):

.da
ld_tlellal +H12a2 +...+H1nan,
da
ithz leal +H22a2 +...+H2nan 5
.da,
17:H1na1+H2na2 +"'+Hnnan=(l6)

with the initial condition a (~0)=5 j1- The
H j;, which

matrix elements
correspond to adiabatic energy levels of
eZ|ZZ system, are calculated by using Eqgs.

diagonal

(8), (9), whereas the non-diagonal matrix
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elements /;, which correspond to the
exchange interaction between initial and
final adiabatic electronic states, are

calculated by using Eq. (13). The cross
section for the specific 1 — n transition,

On = 27T.[Pn(,0),0dp
0

(17)

has been calculated within the straight-line

trajectory approximation, L(t)= p2 +v2¢2 ,

for nuclear motion (v being the collision
velocity).
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Fig. 4. Cross sections of reaction (14) for
different orientation angles of molecular axis

—

R relative to the projectile velocity vector

V:B=0, z/8, 37/8.
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Fig. 5. Total cross sections of reaction (14)
averaged over the orientation angles of

molecular axis R relative to the projectile

velocity vector V.

The cross sections of reaction (14)
for different orientations of molecular axis
with respect to the vector of projectile
velocity are shown in Fig. 4, as function of
collision velocity. These cross sections
exhibit weak oscillations for collision
velocities above 0,4 a.u. The total cross
section, summed over the orientation angles
of axis R, is shown in Fig. 5. Remnants of
the oscillations in the collision velocity
region above 0,4 a.u. are still present in the
structure of the cross section.
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BuBuaroThCSI aCHMITOTHYHI BIIACTHBOCTI PO3B’S3KiB KBaHTOBOMEXaHIYHOI 3amadi
TPbOX KyJOHIBCbKMX LeHTpiB eZ,ZZ . B pamkax Teopii 30ypeHb OTpHMaHO

acUMITOTHYHI (pOpMyIH JuIst eHepriii cucremn eZ,ZZ upu Benukux Biacransx L

MDK B3aeMOAiloyMMu  (parMeHTamMu. B SKOCTI 3acTOCYyBaHHS OTPUMAaHHUX
pe3yabTaTIB PO3PAXOBAHO TOJIOBHHMMA WIEH ACHMIITOTHYHOTO PO3KIAAy OOMIHHOI

B32€EMOJIii  BOJHEBONOAIOHOIO MONEKYIIpHOro ioHa eZZ 3 sjpaMu pi3HUX
xiMiuHuX ~ eneMeHTiB. OOYHCICHO TIOBHI  Iepepisu  mepe3apsikd  10Ha

+ .
MOJICKYJISIPHOTO BOAHIO [1, Ha sjpax artoma JITiEO IpH He AyXe Malnx

LIBUAKOCTSX 3ITKHEHHS.
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