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The expansions of a Green‘s function for the two Coulomb
center potential in Coulomb spheroidal functions are built, and
the expansion in associated Legendre polynomials for angular
Coulomb spheroidal functions is used. In the limit of smali
intercenter distances, the analytic expressions for coefficients of
tbese expansions are obtained. The solutions of a degenerate
hypergeometric equation are used as a basis function system while
expanding regular and irregular Coulomb spheroidal functions
into series.

1. Introduction

The two Coulomb centers problem of the electron
motion in the field of two fixed charges Z, and
Z3 located at the distance R from each other, can
be used as a helpful model in the study of many
molecular processes [1]. In this connection, rather useful
for applications becomes the Green’s function of the
following Schrodinger equation:

LGE E®)¥(riR) =

- [-%A_z,/r,—zg/rg—E(R) ¥(FR) =0, (1)

where ry, r; are the distances from the electron to centers

1 and 2, vector 7 denotes the electron position and E(R) -

-itsenergy; Ai=m =e=1.

Equation (1) can be considered as the zero
approximation in perturbation theory for a molecular
system. Solutions of the inhomogeneous equation arising
in the first order of such a theory can be obtained
while using the Green’s function of the two Coulomb
center problem. In the theory of electronic structure
and spectra of molecular systems, this function plays

the same fundamental role as the cne Coulomb center

Green'’s function in the theory of atomic structure.

The most conventional methods of two center
Green’s functions construction are based mostly on
expanding these functions into Fourier series over full
basis sets of functions, arising at the separation of
variables in the Schrodinger equation (1) in prolate
spheroidal coordinates [1]. However, the convenient
expansions of the two center Green’s function over
partial waves have been constructed only in the separate
case of molecular hydrogen ion HJ {3}, when the angular
functions of the problem coincide with the angular
functions of free motion (i.e., spheroidal harmonics, [4]).

In more general case of the two-center problem with
different charges of nuclei, the same approach demands
the angular functions of the problem to be expand in
spheroidal harmonics with a subsequent inversion of
obtained infinite matrices. The expansions of such a
type, leading to cumbersome expressions, are used for
studying the scattering by a finite dipole [5].

At the same time, the separation of variables
makes interesting the possibility of the two center
Green’s function expansion directly in the solutions of
ordinary differential equations, which are gained on the
separation of variables in (1) in the prolate spheroidal
coordinates {1].

Here, the expansions of the Green’s function of (1)
in angular Coulomb spheroidal functions (CSFs) are

‘built. While regular and irregular radial CSFs being

expanded into series (Section 3), the solutions & and ¥
of a degenerate hypergeometric equation [15], providing
the required asymptotic behaviour of the CSFs at
small intercenter distances {R — 0), are used as basis
functions. These expansions are shown (Section 4) to
satisfy the “correspondence principle” stating that all
the formulae, obtained for the two-center problem in the
spheroidal coordinates, should change in the limit of the
united atom (i.e., at R — 0) into the known one-center

{spherical) analogues.
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2. Initial Position

The Green’s function Gg ?,?’;R) of the ZyeZ,

problem is defined by the spectral expansion

v; (7iR) ¥, (7';R)
Ej(R)-E

Gs (7, 7iR) =% , @)
j

&\@e}ymbol 3 denotes the summarizing over discrete
j

and integration over continuum spectra of the operator
H in the prolate spheroidal coordinates

fz(rl"'rﬁ)/Ra 156<m1
n=(rn—-r)/R, -1<9<1,
p =arctan (y/z), 0<¢p<2m. 3)

The eigenfunctions ¥; of three operators, which are
commute in pairs — Hamiltonian of the two-center
problem, projection of angular momentum L, to the
axis 7 (directed from center 1 towards center 2), and
separation constant A can be represented as the product

(1] '

v; (7iR) = Uigm (61,05 R) = Nigm (9, @, ) X

’ imyp
XM (P, 05 €) Emg (P, Bi 1) eﬁ (4)

The radial CSF I (p,a;€) and angular CSF
Emgq (P, B;n) are the solutions of the system of ordinary
differential equations

{le-vg]+[-q-re-v+

+ o= b aasg =0, 5
{% [(1~n’)3%: + [z\ﬁ,'l?, -’ (1-1") +

+ 2pBn - 1Ti;21 }qu(p,ﬂ; n=0 (6)

with the boundary conditions

-m/2

lim (E-1)""" e (0,056 =1,
fl—l-)no}o nmk (pl a; E) = 0: (7)
258

Jm (=) T 0B =1, ®

where /\53 and ,\s,'l?, are the separation constants, and
the standard designation has been used:

a = (Z+ 2,) (-2E)7/2,
B = (Z2- Z:)(-2E)7'/%,
1

p= -2-R(-2E)‘/2. o
The index j = {kgm} designates the set of quantum
numbers, where k and ¢ coincide with the numbers of
nodes of the corresponding CSF by the variables ¢ and
7 and azimuthal quantum number m = 0,+1,+2..
Further we shall use the set of quantum numbers {nfm}:
n = k+g+m+1, £ = q+m, which coincides in the limit
of united atom with the spherical quantum numbers.
Normalization factor Nj = Nigm(p,a,b) is defined by
the following condition:

/ q’;’q’m’ (Ev . ¥; R) ‘I’kqm (fa ¥ R) dr = b Jqq"smm'l

RS
dr = = (€ - n") dédndp. (10)
The pair of .one-dimensional boundary-value

problems (5) - (8) for the radial and angular CSF is
equivalent to the initial problem (1) under the condition

28 (p,0) = A2 (0, B) = Mg (1)

Using (11) as the relation between p and E
(for the fixed parameters a and S and the fixed
quantum numbers m, k, q) and taking into consideration
(9), one can derive the discrete energy spectrum of
the two Coulomb center problem Z:eZ,: E;(R) =
Exgm(R, Z,, Z,).

3. Green’s Function Expansion in Coulomb
Spheroidal Functions

It is well known that the Green’s function for (1) &
defined by the inhomogeneous equation

[— -;-A - Zi/ri = Za/rs - E(R)) G (7, ?';R) =
=6 (? - 'r") , (1)

where §(7 —7') is the three-dimensional Dir
delta—function. Instead of performing the complicated

ISSN 0503-1265. Yxp. $is. ocypn. 2002. T. 47, N}




ON THE ASYMPTOTIC SOLUTIONS

summation in (2), we use the standard algorithm
[9] of Green’s function construction of second-order
differential equations. Using this way, the important
analytic representations for the Green’s function of
Coulomb [2] and other one center model potentials [10]
have been obtained.

Since the azimuthal quantum number £ is not a good
quantum number in the non-central field, the solution of
the non-uniform equation (12) is sought in the form of
an expansion in a complete orthonormalized system of
prolate angular Coulomb spheroidal functions Zm¢(p, 1)

1k

Ge (&,n¢; gle n', 'P'!R) =

o
= Z Z Gme (£1 fl;E) '-E-'ml (P»ﬂ) *i:':nl (pv 7)’) X

=0 m=-—1{

im(o—¢')
XE——2'1T—", (13)
£ e, 1) = Nma(p)™* S P (0) P, (0),

r=0
ad 2 2(2m+r)! 1
— 4 :

Nene(p) = rgo (d7(p)) m] . (19)

Here, P, .(n) are the associated Legendre polynomials,
d™(p) coefficients to be found. By substituting
expansion (13) into (12), having been written in the
prolate spheroidal coordinates (3), and separating the
angular variables n and ¢, we obtain a differential
equation for the radial part of the Green’s function

G (6, €', E):
(le-»3)
+ [-me = 5706 = 1)+ 2p0¢ - |}

4
xGme(, f’;E) = _§6(£ - &), (15)
where )\, denote the eigenvalues of the angular
problems, corresponding to the oblate CSF = (p, 8; 1)
[1}. Thus, the function Gme(§,¢'; E) is the Green’s
function under one-dimensional radial motion and is
conventionally expressed by two linearly independent
solutions I{!) (p, &) = 1) (p, @, Ame; €) and T (p, ) =
Hf}(p,a,kmg; £) of the uniform equation (5).

ISSN 0503-1265. Yxp. Pis. ocypn. 2002. T. 47, N 8

The solution Hg‘}(p,f) is regular at § = 1
and divergent at infinity, and IIS:% ,€) is, contrary,
divergent at § — 1 and regular at infinity. Then,
according to the general theory of second-order linear
differential equations {9], the radial part of the Green’s
function Gpe(€,&’; E) can be given by

(1) (2
Gmele €5 E) = -2 IniBfNp.l)
2(€ - )W [18)5,6, T 0, )|
Z=2+ 2, (16)
Hereinafter, {< = min(¢,¢'), E) = max(f,f’), and

W|...] is the Wronskian of the I} (p,£) and II\;)(p, £)
solutions.

Now we consider the radial uniform equation (5)
in more detail. We proceed, in this equation, to new
independent variables and to new sought functions
according to the formulae

_ +1 m/2
) (z4) = (g—ﬂ) Tone(p, ), (17)
z+ =p(€£1), (2p<z4 <00, 0<z_ <o)

Hereinafter, the upper signs are related to ﬁf:l) (z4), and
the lower ones to IIS,Q) (z-). By transformations (17), Eq.
(5) is reduced to two separate equations for IIS;E,) (z+):

[I:: (x'i d._-:;) -3 +2az4 —8(s+ 1)] I (1)

P
+
z+ F2p

P (20Dt 50 2y 20 1)] % (24)

[i2 (m+1) z*dz-d_
+

=T, (z4) B9 (21) + pQs (24) T (z4) = 0.

The exact sense and aim of the partitioning of
differential operators performed here will be understood
at further consideration. But the idea can be explained in
a couple of words by the following physical speculations.
The operator T,(x) formally coincides with the radial
Schrodinger operator in the spherical coordinates for
the Coulomb one center potential with the charge Z =
Z1 + Z2 and the orbital momentum s. When p tends
to zero, both Eqs. (18) go over into one T,R(z) = 0
(0 € z < ), whose two independent solutions are
the functions R$"(z) and R{®)(z), expressed directly in

(18)
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terms of the regular ® and irregular ¥ solutions of a

degenerate hypergeometric equation [15]:
RM(z) = z°¢*®(~a + s + 1,25 + 2,212), (19)
R¥(z) = z°¢"*¥(—a + s + 1,258 + 2, 2z). (20)

The above speculations suggest the regular ﬁf:jk) (z+)

and the irregular ﬁg:f)(:ci.) solutions of each of Eqs.
(18) to be given as the following infinite sums:

0% (s ) =085 (@, Ane, pi24) =

=3 h® (la, Ame) R (22),

(21)
=0
ﬁgf)(xi) = ﬁfﬁf’(a, Ame, P T+) =
w e
=Y "R (pla, Ame) R (z2), (22)

=0

where the expansion coefficients hgi) and fzsi) are to
be determined. Having substituted these expansions
into the corresponding equations (18) and having used
the recurrent relations [16] for the basis functions

(1)(1:) and R? )(a:) we obtain two infinite three-term

systems of linear equa.txons for the coefficients h(*) =
(i)(pla Ame ), h(i) - (t)(pla, Ame):

+p0,hE) + (B, = Ame)h(E) F pr,hiE) =0, (23)
8=0,1,2.., h® =

P& ) + (B - Am)R(® £ p7,R(3), =0, (24)
§=0,1,2.., A& =0.

To make the representation shorter, the following
notations are introduced:
2(s? - a?) (s +m)

s(2s-1)(2s+1)’

Qe =

B'=Ba=3(3+1)1

Y =2(s41)(s+1-m); (25)
. 4(s — a)(s +m)

S 28 —-1 ’

. _(s+a+1)(s-m+1)

W 25+3 ) (26)
260

The recurrent systems (23) ((24)) determine the

coefficients h{Y (fzS‘J‘)) to within arbitrary factors fixed
by the conditions

I'(2s+2) e =

+ - g-of() — 1.

; * 2I(s+1-a) ' ; hs 1 @
The obtained recurrent relations (23), (24) do

not enable one to get explicit expressions for the
coefficients hsi) and l.zsi). However, the procedure of
their calculation is considerably simplified due to a close
relationship between the three-term recurrent systems
and well-elaborated technique of chain (or continuous)

fonmtinna
ITACLIGNS.

creation of effective algorithms for calculation of the
regular and irregular CSFs II(‘ *)(z )3 H( i)(:t:i)
The proposed two types of expansions (21) and (22),
not being asymptotic in the full sense, have better
convergence at small p.

The presented expansions (21), (22) should be
treated as Fourier series in the complete systems of
functions RS )(a:i) and R{? )(zi), respectively. The
coefficients h$Y) and B are the Founer coefficients
of the functions H(l ) (z+), H(2 (zi) and the
convergence is t.reated in the sense of the Fourier series
uniform convergence.

vow we calculate the value of the
) (p,6). I (p,f)]
exprwsnons for the degenerate hypergeometric functions
at high values of the argument [15]

rge = o ().

¥ (a,b,z)=2"" [1 +0 (Iz["l)]

and taking into account the “normalization” conditions
(27) for the coefficients A{E) and A, one can readily
obtain

20(€? - W [I0)p, &), T3, 6)] = - (29)

Expression (16) with the account of the Wronskian value
from equation (29) can now be given by

== i{ (x:Fz, " X
Zz!

Thsi
This circumstance essentially simplifies the

Wronskian
. Using the known asymptotic

& (a,b,2) =

(28)

Gml(fael;E)

(l i) (zx<) H(2 o (z£>),

where the functions Hf,ljh) (z+<) and ﬁf:'f) (z4>) are
still given by Egs. (21), (22).

(30)
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4. Limiting Values and Asymptotic
Expansions of the Two-Center Green’s
Function at Small Intercenter Distances

It seems interesting to consider the limiting expressions
rom the obtained strict formulae (13), (30) at R — 0
and to compare them to the known results for the one-
center Green’s function [11]. It follows from (3) that, at
R — 0 and finite r, the prolate spheroidal coordinates go
over into the spherical ones r, 8, and ¢: £ = 2r/R,n -
cosf. If, in the equation for the oblate angular Coulomb
spheroidal functions =,,,,(p,n), the variable substitution
1 — cosé is performed and the terms, changing into zero
at R — 0, are discarded, it goes over into the equation
for the associated Legendre polynomials P (cos@). This
means that the angular part of the solutions of the
Schrodinger equation (1) goes over in this limit into the
angular part of the one-center Coulomb problem in the
spherical coordinates. Hence, the limiting relations

eime \/ e+ 1)t -m)

-i:ml(p’ 'l) \/2—1'_ R——z) 4.",([ + m)l
X P™(co88)e™? = Yme (6,¢)
Ame(p) —> £(E+1) (31)

are valid. By substituting this value for A, in (15),
carrying out the substitution of variable £ — 2r/R, and
keeping only the terms main in R, we obtain an equation
for the radial part of the Green’s function for the one
center Coulomb potential [11].

Now we investigate the limiting transitions in the
recurrent relations (23), (24) and in expansions (21),
(22) for the radial functions ) (z4), (i = 1,2). In
the R — 0 limit, the three-term recurrent relations (23),
(24) go over into the following one-term relations:

[s(s + 1) = £{L + 1]ASE) = [s(s + 1) - (¢ + 1)JRE = 0.

Hence, at R — 0 in each sum of (27), only one term with
s = { differs from zero, therefore

hgi) — 2‘r(8 +1- 0)6

() .
Rs0 T(2s+2) *© ) ;-_»;26"' (32)

These formulae along with (19)-(22) and (31) show that,
in the R — 0 limit, the regular H,(.:'li) (z+) and irregular
Hgf) (z+) solutions of equations (18) behave as follows:

ISSN 0508-1265. Yxp. pis. mcypw. 2008. T. 47, N 8

o (2 ()"

xd»(l+1-—a,2l+2,2—i—r>, (33)
¢

B ore 11y o {27 (2Zr\°

Lme u'u.‘-h*um P\ a}\a} x

x ¥ (l+l-a,2l+2,%’:). (34)

Finally, using the obtained formulae (31)-(34), we
can easily verify that the Green’s function (13), (30) goes
over, as expected, into the Green’s function of the atomic
potential [10, 11]at R = 0 :

G5 (7.7") = X 0tlr s E)onel6, )Y (8 '),
{Lm

A(zzr> )‘ g
Qa

4
ge(r, 7" E) = %Z_I‘(t-{- l1-a) (2Zr<)

T(2(+2) a
X exp [-—g(u +r>)] $ (l+1 -a,20+2, 2ir<) X
X (z+1-a,2z+2,22;>). (35)

In many physical problems, whose examples are
considered in {1}, the asymptotic of the Green’s function
Gg (?, ?'; R) should be known at small values of
the intercenter distance. Hence, the necessity of the
asymptotic expansions of the Z,,,(p, ), ﬁf,i‘,*’ (z+), and
ﬁf:f‘)(z*) functions in a small parameter at the fixed
quantum numbers £ and m to be constructed arises. We
use an asymptotic method, proposed by Abramov and
Slavyanov [13], to search for such expansions.

We begin with the prolate angular Coulomb
spheroidal function Z,,, (p,n). Instead of the expansion
(14), we can use an expansion of the form

Eme(pn) =€ Y d™PPR ().

n=m-—{

(36)

The expansion coefficients d™ in (36) fulfill the three-
term recurrent relations [1}:

(+n-m)(B+Ll+n)
d72,2p 2+2n -1 -
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—dp4(E+n)(L+n+1) - X+

+n+n +1)(ﬁ—l—n—'1)
(2¢+2n+3)

+dI."i; 2p

We search for the separation constant /\(") and the
expansion coefficients d™ in the form of asymptotxc
series in the powers of a ‘small parameter p*:

a™ =plnli [d:il]szﬁj, d =1,

(38)
j=0
N \r\ IO 25 790\
A% =Y [, 7 @)
j=0

By substituting these expansions consequently into each
equation of system (31), starting from n = 0, a.nd
equating the coefficients at the equal powers of p? to
zero, we obtain the recurrent relations to determine the

expansion coefficients [d"“ _and [,\(")] . The chain of

equations, corresponding to n = 0, enables the /\(" Y
values to be expressed in terms of coefficients d't",{j‘

The coefficients [d"“]2 ., j > 0 are determmed
consequently from the tecurrent systems of equations,
corresponding to n = *1,2, .... The first six coefficients
of expansion (39) are given by

Mo = £(e+1), (40)

(,,) p2(0+l—1+m2)
(26 -1)(2¢ + 3)

+
(£ + L - 3m?)
T+ D=L+’

(& -m?*) (B> - ) ((l2
@ - 1)

+2p*

(41)

-m?)(82-0)

N, —
Prmde = -2 e - 1)

[(+1)* -m?)[8® ~ (¢ +1)%]
T+ (2t +1)(2 +3)

_e-1)? -m?)[p? — (£~ 1)’]) _
(20— 1)2(2L - 3)

(£ +1)* -m?s? -

i\

(£+1)%
(e+1)2(4(£+1)2-1)

(_ [(¢+1)? - m?][8? - (£+1)°]
X C+)@EL+12-1)

+
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0. @0

(C-m?)(-2)
wae-1y

+w+w-wm2u+w0
(22 + 3)%(2¢ + 5)

(42)

For the sake of space saving, the coefficient [,\53]5 given
in Appendix 1.

Unfortunately the numerical data for Coulomb
spheroidal functions are represented not so widely as for
spheroidal functions (see, for example, [4]). Therefore, we
have compared calculations by our asymptotic formula
(39) with numerical data from {12} for bound states of
ZyeZ, systems. Thus, the value of p is taken relevant to
the energy of a bound state. Some results are presented
in Tables 1 and 2. Expansion (39) for the separation
constant As,'g as a function of p is valid in a broad range
of parameters. The results are better for larger m and &

Now we proceed to consider the asymptotic
behaviour of the regular and irregular radial CSFs
o, i)( +) II(2 &) (z+) at small values of the p
parameter. For this purpose we can make use of
their expansions (21) and (22) in the solutions of the
degenerate hypergeometric equation.

Similarly to Eq. (38), the coefficients of expansions
(21), (22) can be sought in the form of power series:

o0
A =p 3" [hgx)]zj P,
j=0

R = pI-IZ[ (t)] pY (43)
=0

T a bl e 1. Separation constant for the ground state 1s7,
Zy1=1,2,=2

R P A(ﬂ)
Our results [12]

0.2 0.290953 0.049553 0.049553
0.4 0.554405 0.175242 0.175244
0.6 ' 0.794506 0.347491 0.347538
0.8 1.01837 0.546972 0.547375
1.0 1.23153 0.760295 0.762415
1.2 1.43806 0.976566 0.984442

T a bl e 2. Separation constant for the state 2po, Z1 = 1,
Z2 =2

R P (n)
Our results | T12]

0.2 ' 0.150799 2.01311 2.01311
0.4 0.306268 2.05382 2.05382
0.6 0.469837 2.12594 2.12594
0.8 0.64160 2.23417 2.23415
1.0 0.818029 2.38169 2.38156
1.2 0.994205 2.56837 2.56895
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The coefficients of these series are found
consequently from the recurrent equations (23),
(24) after substitution of expansions (39) for
the eigenvalues z\(") of the Sturm-Liouville
problem, which detenmnes the prolate angular
Coulomb spheroidal functions Eme(p,n). The explicit

expressions for [(i)]zj’ [h(i)]2J are rather

cumbersome and will be represented in another
publication.

APPENDIX 1

Expression for [;\S,"',)]g

(@2 — m?)[m? — (1 - 0?](5¢ - 2) _[m? - (1 + §?)[m?

ON THE ASYMPTOTIC SOLUTIONS

Concluding, it is also worth to notice that an
approach to solving the perturbation-theory nonlinear
equations, related to the Timan-Schwarz method
application, has been also discussed in the literature (See
e. g [6, 7]). These approaches are formally equivalent,
but the Green’s function method possesses an advantage,
being known in various fields of physics and upiversal in
applications. '

This work has been partially supported by INTAS
grant No 99 — 01326.

—(2+ 07 +50

Al =

N =

B0 = 20420 —3)(2L + 1)
By = A [2(- 1) ~ L +20¢ - 1))8* + 8],

(82 - &)(2 - m?)(2t - 3)
263(1 + 20)[3 + (L - 2)]

M} = (Bi + B2) Az +

(1 +0° - 8282 - 2+ O°P’[m? - (2+07] |, 201+ f)[m?

+A2

((X2)* - 240714) -

A+03(1 +20)(3+2045+20)

Bz = A [(1 + 072+ 07 - [5+ 23 + 0)8* + 8*],

B2-(1+0%(1+4*-m
214203 +20(1+03

(0207 + 201+ O1N) +

— @3+ 070+ - B2+ 0 - BB+ 0% — 8% _

(3 + 20)(5 + 2¢)(7 + 50

2[82 — (1 - )?][8° -

AT D@ =52 - 1)(51 2)

3(2 + 0)(7 +2£)(5 + 2£)(7 + 5¢)

(5 + B21-5+ (1501 — &) + 4"+

+m3[=5 + B2(5 — 40) + L(15(1 — £) + 4L?)] +4[~29 + 62¢ + £*(~58 + 250 ~ 4e%)).

APPENDIX 2

Here,we give the coefficients of expansion (38) for the angular Coulomb spheroidal function (36):

C.oo L¥ntB _t4ntm+l
"Tutom-1" " 2+2n+3 "’
1+¢ t-p
[d'"'t]o (——T:{'T”-._)’C [d'..'.‘f]o':‘(_[—)D—h
_(1+t-m)2+L-m) {t-1-5)¢-8)
[ = rDGTa o [#=], = T ) B
ey Qe m)C1[~2(2 + £ — m)(2 + £ — B)C2Dy + A")]2(3 + 20)]
(], = 2(1 +£2(3+20) ’
], = (£ = B)D_1[=2(~1 + £ — m)(=1 + ¢ — f)C_1D_2 + PNN]5(1 - 2¢))
-1, = 202(20 - 1) '
34+L4— -24+£-8
(9, = Seges [, [, = S o il
442- (-3+L-5)
[, = (—2(5—“%)04 [, (], = S0+ [

ISSN 0503-1265. Yxp. pis. ocypw. 2002. T. 47, N 3
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1 .=
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PO ACUMIITOTHUYHI PO3B'A3KN
3A/JIAYI JIBOX KYJIOHIBCBKUX HEHTPIB
HA MAJTUX MIXKIIEHTPOBMX BIACTAHAX

B.FO. Jlaayp, M.B. Xoma, M.I. kap6oaaneqb
Peswowme

TTo6ynoBaRO PO3KNAAN ABONEHTPOROT PyHKIT I'pina 33 kynosis-
cbkumn chepoinansurmn yrkuiamu. JIng PO3KNaiB KYTOBHX
Kynomisckkux cepoinansnax Qynknilt BUKOPACTaHO npaeaAani
noninomm Jlexanapa. B rpamuni Manux MiXneRTpoBAX BijicTa-
gefl OTPAMaARO AHAMITHYAI BAPA3R ANA koedinienaTiE MUX po3Kna-
nin. SIk Ga3ucHi cMCTeMu NpH PO3KNANAHAI PEry/IApRAWX Ta Ae-
peryaspRux KyJOHIBCHKAX cepoiaansrmx Gynknit B psau BA-
KOPWCTaRO PO3B’S3KA BAPO/PKEHOTO TinepreoMeTpu<IROro pienss-
HA.

OB ACUMIITOTHYECKUX PEHIEHNSX
3AJJAYM ABYX KYJIOHOBCKMUX IIEHTPOB
HA MAJIBIX MEX>KIIEHTPOBH X PACCTOSAHUAX

B.JO. Jlaayp, M.B. Xoma, M.H. KapGosarey
Pe3wwme

TToCcTpoeHN Pa3NOXXKEHAR ABYXREHTPOBOH ¢ynknre I'pasa Do
KYJIOROBCKAM CHEPORAANBLHBIM bynknuam. Jlas pasnoxennft
YTAOBWX KYJNOHOBCKAX CQepoRfanbHbX (YRKNRE ACHONL30-
BaHK npucoeanHennne nonnROME Jlexanapa. Jlng Mankix Mex-
HeHTPOBKX DPAacCTOARRH NOYWeRH AHANTMTHYECKWE BLIPAKERIA
ana ko3hURAEHTOB ITAX pa3noxenuh. B xasecrse ba3mc-
HMX CWCTeM TpPR Da3sNOXKeHBH PeTYAsPHHX W Heperynsphux
KynonoBckax  cheporaanbALX GyHKOEA B PR HCOOAL30-
PAHM PEmMEHWst BLIPOXKAEHHOTO MNEepreoMeTPRYECKOTo ypabRe-
HAS.
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