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The asymptotic properties of the solution of quantum-mechanical three Coulomb centers
problem eZ1ZZ are studied. Within the framework of the perturbation theory the asymp-
totic formulas for energies of eZ1ZZ system are obtained at large separation L between inter-
acting fragments. Asymptotic for one-electron three-center wave function of the hydrogen-
like atomic ion in the vicinity of two Coulomb centers Z + Z are constructed. As the
applications of obtained results the leading term of the asymptotic of exchange interactions
between hydrogen-like molecular ion eZZ with nuclei of different elements are calculated.

1 Introduction

The solutions of a Schrödinger equation with potentials of two and three Coulomb centers rep-
resents considerable interest from the point of view of different problems relating few-body
systems, considered in adiabatic approximation. In molecular physics these systems play the
same fundamental role as atom of hydrogen in atomic physics [1]. The results obtained while
solving many-center Coulomb problems have also numerous and relevant applications in physics
of slow atomic-molecular collisions, scattering theory, nuclear physics, spectroscopy of complex
chemical compounds etc. However till now there is a deep asymmetry in progressing the theory
and methods of a two-center eZ1Z2 and three-center eZ1Z2Z3 Coulomb problems solving. Com-
paratively with effective asymptotic and numerical methods of eZ1Z2 problem solving only a few
attempts to solve the three-center problem eZ1Z2Z3 using the different approximate methods
(see, for example, [2, 3]) are represented now. The reason of such situation is probably that
the Schrödinger equations with potential of two Coulomb centers enables variable separation
in prolate spheroidal coordinates, so that the problem of finding integrals of motion for system
eZ1Z2 is reduced to a one-dimensional spectral problem. The possibility of variable separation
shows that the system eZ1Z2 has higher dynamical symmetry in addition to the geometrical
one. This additional dynamical symmetry results in that together with the operator Lz of the
electron angular momentum projections to an internuclear axis, the so-called operator Λ of
the separation constant [1] commuted with a Hamiltonian of a eZ1Z2 system. Naturally the
question arises, whether it is possible to find the operator Λ, commuting with a Hamiltonian
in many-center Coulomb problems, so that to achieve separation of variables in them also?
Coulson and Joseph [4] on an example of a four-center problem showed, that the answer is neg-
ative. More general result was obtained by Roy [5], who investigated a dynamical symmetry of
multi-center problems. From his work follows, in particular, that the Schrödinger equations of
a problem eZ1Z2Z3 are not separable in any orthogonal coordinate system and it is necessary
to deal with partial differential equations that essentially complicate the problem of calculation
electronic wave functions and energy terms. The above mentioned features essentially handicap
in-depth analysis of a problem eZ1Z2Z3 and require to use some approximate methods. The
development of the majority of them is expedient for different limit cases and, in particular, for
study of asymptotic properties of the solutions of eZ1Z2Z3 problem, both for large and on small
intercentre separation.
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In the present work we study the asymptotic behavior of discrete spectrum of eZ1ZZ system
(one electron and three fixed nuclear charges: Z1 and Z2 = Z3 = Z). This system can serve as
a model for collision systems consisting of three ions with closed electronic shells (two of them
being identical) and one “active” bound electron. We consider the Schrödinger equation for the
problem of electron motion in the field of three Coulomb centers:

ĤΨ ≡
(
−�

2
− Z1

|�r − �R1|
− Z

|�r − �R2|
− Z

|�r − �R3|

)
Ψ(�r; �Q) = E( �Q)Ψ(�r; �Q), (1)

where �r is the radius-vector of the electron, �Ri is the radius-vector of the i-th nucleus (i = 1, 2, 3),
ri = |�r− �Ri| is the distance from the electron to i-th nucleus, E( �Q) and Ψ(�r, �Q) are the electron
energy and wave function, respectively, that depend on three coordinates Q1 = L, Q2 = R,
Q3 = β, �Q = (L, R, β), the meaning of which is shown in Fig. 1.

Figure 1. Geometry of quasi-molecule eZ1ZZ and used notation.

2 Asymptotic expressions for the potential energy surfaces
of eZ1ZZ system

In the limit L → ∞ the solutions of equation (1) are localized either near the nucleus Z1 or near
the two identical charges (ions), Z+Z. Thus, ΨI is the wave function that corresponds to the case
when system eZ1ZZ is separated as a hydrogen-like atomic ion eZ1 and two identical charges,
and ΨII corresponds to the case of infinitely separated a hydrogen-like molecular ion eZZ and
a charge Z1. The energies E( �Q) of eZ1ZZ system in the limit L → ∞ can be classified in an
analogous manner: EI(EII) energies go over into the energy levels of isolated atomic (molecular)
ion eZ1(eZZ) for asymptotically large L. We characterize EI( �Q) and ΨI by the set of (parabolic)
quantum numbers I = [n1n2m] which describe the states of isolated hydrogen-like ion eZ1; for
EII( �Q) and ΨII will be characterized by the set of (spheroidal) quantum numbers II = [k, q, m′]
which describe the states of molecular ion eZZ. The function ΨI we expand over the Coulomb
parabolic functions [6] ϕn1n2m(µ, ν, ϕ1):

ΨI =
∑

n′
1n′

2m′
an′

1n′
2m′(R2, R3, θ2, θ3)ϕn′

1n′
2m′(µ, ν, ϕ1), (2)

ϕn1n2m(µ, ν, ϕ1) =
√

2Z
3/2
1

n2
fn1m

(
Z1µ

n

)
fn2m

(
Z1ν

n

)
eimϕ1

√
2π

, (3)
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where

fpm(ρ) =
1

|m|!

√
(p + |m|)!

p!
Φ(−p, |m| + 1, ρ) exp(−ρ/2)ρ|m|/2, (4)

Φ is the confluent hypergeometric function of the first kind [7], n is the principal quantum
number, and µ = r1(1 + cos(θ1)) and ν = r1(1 − cos(θ1)) are the parabolic coordinates. We
represent the wave function ΨII(�r; �Q) as expansion

ΨII(�r; �Q) = Ψi(ξ, η, ϕ; ξ̃, η̃, R) =
∑

j

∑
mj

aijmj (ξ̃, η̃, R)ϕjmj (ξ, η, ϕ; R) (5)

over the two-center wave functions ϕjmj of eZZ discrete spectrum

ϕjmj (ξ, η, ϕ; R) = NjmjΠjmj (ξ; R)Sjmj (η; R)
exp(imjϕ)√

2π
, (6)

where Njmj is the normalization factor, Πjmj (ξ; R) and Sjmj (η; R) are the quasiradial and
quasiangular spheroidal wavefunctions [1], mj is the projection of angular momentum on the
axis �R, and j designate all other quantum numbers [1, 8]. The coordinates ξ̃, η̃ used in equa-
tion (5), are defined by (see Fig. 1)

ξ̃ =
(√

L2 − RL cos(β) + R2/4 +
√

L2 + RL cos(β) + R2/4
)

R−1,

η̃ =
(√

L2 − RL cos(β) + R2/4 −
√

L2 + RL cos(β) + R2/4
)

R−1. (7)

The energies EI of the system eZ1 +Z +Z (electron is predominantly localized in the ΩI -region;
see Fig. 1) in the first order of perturbation theory are given by

EI( �Q) ≡ En1n2m(R2, R3, γ̃) = − Z2
1

2n2
−
(

Z

R2
+

Z

R3

)
+

3Zn�
2Z1

(
1

R4
2

+
1

R4
3

+
2 cos γ̃

R2
2R

2
3

)1/2

, (8)

where � = n1 − n2, and γ̃ is the angle between �R2 and �R3. At sufficiently large distances L
between Z1 and eZZ, the potential energy surfaces of eZZ + Z1 quasi-molecular system in the
second order approximation of perturbation theory are given by the expression

EI( �Q) ≡ Ei(ξ̃, η̃, R) = εi(R) − Z1R
2

4ξ̃

[
1 +

(
1
3

+
3η̃2 − 1

2
A

(2)
ii (R)

)
1

ξ̃2

]
+

+
Z2

1R4

16ξ̃4

[
(1 − η̃2)α(+)

i (R) + η̃2α
(−)
i (R)

]
, α

(±)
i (R) =

∑
j

′
[
A

(2)
ii (R)

]2
εi(R) − εj(R)

, (9)

where coefficients A
(n)
ij (R) are given as

A
(n)
ij (R) =

2nn!(n − κ)!2

(2n)!(n + κ)!
Nij(R)

×
(∫ 1

−1
Si(η; R)P κ

n (η)Sj(η; R)dη

∫ ∞

1
Πi(ξ; R)P κ

n (ξ)Pij(ξ; R)ξ2dξ

−
∫ 1

−1
Si(η; R)P κ

n (η)Sj(η; R)η2dη

∫ ∞

1
Πi(ξ; R)P κ

n (ξ)Pij(ξ; R)dξ

)
, (10)

κ = |mi − mj |, Nij(R) = Ni(R)Nj(R), and εi(R) are the energies of hydrogen-like molecular
ion eZZ (the subscript mj in the notations for Πjmj (ξ; R), Sjmj (η; R) and Njmj has been
omitted). Formulae similar to (8) and (9) for the specific case of Z1 + H+

2 system have been
derived in [2, 3].
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3 Asymptotic expression for the wave function of A(Z1−1)+ ion
in the vicinity of two Coulomb centers Z + Z

The asymptotic form of three-center wave function ΨI(�r; �Q) of ion A(Z1−1)+ in vicinity of two
Coulomb centers Z + Z is necessary to calculate the asymptotic of two-electron exchange inter-
action (the matrix element for two-electron transition) between highly charged ion and diatomic
molecule. The wave function ΨI(�r; �Q) satisfies the following integral relation

ΨI(�r; �Q) = −1
2

∫
S

d�S
[
ΨI(�r ′; �Q)�∇GEI

(�r, �r ′; �Q) − GEI
(�r, �r ′; �Q)�∇ΨI(�r ′; �Q)

]
, (11)

where S is the surface that surrounds the volume containing the nuclei Z +Z. The one-electron
three-center Green‘s function GEI

(�r, �r ′; �Q), appearing in equation (11), satisfies the equation:(
−�

2
+ V1

(
|�r + �L|

)
− Z

|�r + �R/2| −
Z

|�r − �R/2| − EI

)
GEI

(�r, �r ′; �Q) = δ(�r − �r ′). (12)

Here EI is the energy of the system eZ1 + Z + Z when the electron is predominantly localized
in the ΩI -region; see Fig. 1. For L → ∞, EI goes into the energy levels of isolated atomic
ion eZ1. The potential V1(r1) in equation (12) is a spherically symmetric effective potential
which characterizes the field of AZ1+ atomic ion and asymptotically behaves as

V1(r1) →
r1→∞ −Z1

r1
. (13)

At large distances between Z1 and Z + Z, we represent GEI
as product GEI

= G
(0)

E
(0)
I

χ(L),

where χ(L) is a correction function obtained in [9] and G
(0)

E
(0)
I

is the Green’s function for two

identical Coulomb centers Z + Z:(
−�

2
− Z

|�r + �R/2| −
Z

|�r − �R/2| − E
(0)
I

)
G

(0)

E
(0)
I

(�r, �r ′; �R) = δ(�r − �r ′). (14)

Here E
(0)
I is the electron energy of isolated ion eZ1. Our work is dedicated to investigation of

the two-center Coulomb Green’s function G
(0)

E
(0)
I

has been studied in [10] in detail. Using the

results of [10], one obtains the following expression for ΨI

(
�r; �Q

)
:

ΨI

(
�r; �Q

)
= DI (α1, L)

∞∑
�=0

+�∑
m≥m1

B̃�
mm1

(pI ; α, β) Π(1)
m� (pI , ξ) S̄m� (pI , η)

eimϕ

√
2π

, (15)

DI (α1, L) = 2Ãα1�1

(
2
α1

)m1

(2α1)
2Z/α1 m1!B�1m1e

−2Z/α1L
Z1+2Z

α1
−m1−1

e−α1L, (16)

B̃�
mm1

(pI ; α, β) = (−1)m1+mN−1
m� (pI)

∞∑
s=0,1

(−1)sCm1,m+sd
m�
s (pI)Dm+s

m1m
∗ (α, β, 0) , (17)

B�1m1 =
1

2m1m1!

(
2�1 + 1

2
(�1 + m1)!
(�1 − m1)!

)1/2

, Cm1,m+s =
(m + m1 + s)!

2m1m1!(m + s − m1)!
. (18)

The coefficient Ãα1�1 is related to the normalization constant of asymptotic wave function of eZI

system, Dm+s
m1m

∗ (α, β, 0) is the Wigner rotation matrix [6], α1 =
√−2EI and pI = R

√−2EI/2.
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The regular solution Π(1)
m� (pI , ξ) is given as expansion over the Coulomb radial wave function

Π(1)
m� (pI , ξ) =

(
ξ − 1
ξ + 1

)m/2 ∞∑
s=−∞

hs (α1, λm�, ν |pI ) R
(1)
ν+s (x), x = pI (ξ + 1) , (19)

R
(1)
ν+s(x) = xν+se−xΦ (−α1 + ν + s + 1, 2ν + 2s + 2; 2x) , (20)

where Φ(a, b, x) is the confluent hypergeometric function and λm� is the value of separation
constant [1] for the two-center system Z + Z with given electron energy EI and internuclear
distance R. Asymptotic behavior at large ξ of the Π(1)

m� (pI , ξ) solutions leads to the normalization
condition for coefficients hs:

∞∑
s=−∞

hs
Γ (2s + 2ν + 2)

2s+νΓ (s + ν + 1 − α̃)
= 1. (21)

The procedure for calculation of the acceptable values ν = νm�(pI) (which ensure convergence
of the expansion (19)) is described in [11,12].

4 Exchange interaction of hydrogen-like molecular ion
with a nucleus

Results obtained above can be used for study of the many problems of atomic theory and,
in particular, of the problems of slow ion-molecules collision. Consider the following charge-
exchange reaction:

eZZ + Z1 → eZ1 + Z + Z (22)

at low collision velocities. The exchange interaction �( �Q) between adiabatic electronic states
of quasi-molecules eZZ + Z1 and eZ1 + Z + Z is given by the expression

�( �Q) =
∫

S
d�S
[
Ψ∗

I
�∇ΨII − Ψ∗

II
�∇ΨI

]
. (23)

Using for ΨI and ΨII the expansions (2) and (5), we obtain (to the leading order of 1/L)

�(L, β) =
Z

3/2
1 2Z1/α2+1/2

n2(n − 1)!
Ā(β)

×
(

Z1

n

)n−1

L
n+ 2Z

α2
−1 exp

[
−L

2

(
α2 +

Z1

n

)
− 1

2

(
Z1

α2
+

2nZ

Z1

)]
. (24)

The coefficient Ā(β) is related to the normalization constant of asymptotic wave function of eZZ

system; α2 =
√

−2E
(0)
II (R), E

(0)
II (R) is the energy of molecular ion eZZ, and n is a principal

quantum number of the state described by ΨI wave function. Obtained result for matrix element
of exchange interaction (24) usually used for calculation of the total cross-sections of the one-
electron transition at low energy ion-molecule collision [9].
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