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Abstract

The kinetic energy operator for triatomic molecules with coordinate�

dependent e�ective nuclear masses has been derived in the framework of

perturbation theory with respect to the ratio of the electron and proton

mass. We have demonstrated that a ad-hoc introduction of the coordinate�

dependent nuclear masses in the Cartesian form of a trinuclear kinetic energy

operator preserves the total rotational invariance of the problem. Obtained

results can be used for analysis of the non-adiabatic e�ects in the rotation-

vibration spectra of triatomic molecules.

1 Introduction

Non-adiabatic e�ects play a crucial role in the understanding of many phenom-
ena in atomic and molecular physics. The account for non-adiabaticity is neces-
sary for an adequate description of a quantum tunneling, dynamics of the Rydberg
states, molecule dissociation and ionization, high-precision molecular spectroscopy
and many others e�ects and properties of molecular systems. The variety of possi-
ble scenarios of the quantum evolution of the system is much broader if a trinuclear
molecule is chosen as the object of study. In the present work, we derive an e�ective
kinetic energy operator (KEO) for a triatomic system with coordinate-dependent
e�ective nuclear masses. One of the purposes of such a KEO is to account for non-
adiabatic e�ects related to coupling between the electronic and nuclear degrees of
freedom.

Simulating non-adiabatic contributions to low lying ro-vibrational states by
using di�erent constant masses for rotational and vibrational motions had been
already investigated in the past. It has been proven theoretically [1, 6, 7, 8, 9] that
this assumption is reasonable as a �rst order correction. In the case of H+

3 , earlier
calculations [10, 11, 12, 13] have shown that for transition frequencies higher than
the barrier of linearity the strategy with di�erent constant masses for rotation
and vibration does not improve in the average the deviation from experiment.
The correct way would be to take into account that all nuclear masses or reduced
nuclear masses used in the ro-vibrational Hamiltonian are distance-dependent: this
can be done based on a rigorous theory [1, 12, 14, 15, 16, 17] or empirically [18].
The distance dependence means that the contribution of the electronic mass or the
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coupling of the electronic motion to the nuclear motion changes with internuclear
distance.

An elegant approach to account for the total contribution of non-adiabatic
e�ects (for weak non-adiabatic interactions) to a given electronic state has been
proposed by Herman and Asgharian [1] and consists of the construction of an
e�ective KEO based on second-order perturbative analysis of the exact kinetic
energy operator for nuclear motion. This leads to non-adiabatic picture using a
single potential energy surface with distance-dependent e�ective nuclear masses
within the di�erent kinetic energy operator terms.

The practical realization of the Herman-Asgharian algorithm consists of the
construction of an perturbation expansion for the intermediate nuclear KEO in
the Cartesian body-�xed (BF) frame with subsequent representation of the ob-
tained results in generalized molecular coordinates related to an arbitrarily ori-
ented space-�xed (SF) frame. However, in this case the technical di�culties
arise, because the di�erential operators which composes the intermediate Carte-
sian nuclear KEO are multiplied by mass-prefactors (coordinate-dependent e�ec-
tive masses), which are not only di�erent for each single operator but also de�ned
in a uniquely chosen BF frame. To demonstrate the rotational invariance of the
problem one has to represent the �nal result in a arbitrarily oriented SF frame.
Consequently, one has to deal with the transformation of each individual di�eren-
tial operator from the BF frame into the SF frame with further representation of
the �nal result as a linear combination of the components of the total orbital mo-
mentum operator plus the pure vibrational part. This transformation constitutes
the main di�culty in the application of the Herman-Asgharian approach for the
construction of the e�ective nuclear KEO. Probably because of such complications
of the theory the method of Herman and Asgharian, shown to be successful for
diatomic molecules, was not utilized further for more complex systems.

First implementations and applications by the present authors have been pub-
lished recently [2, 3, 4, 5].

2 Perturbation expansion for the non-adiabatic cor-
rection

The application of the method of distance-dependent corrections to nuclear
masses imposes certain conditions on the usage of the coordinate frames, which we
shall discuss here brie�y. To construct the e�ective non-adiabatic nuclear kinetic
energy operator we must �rst obtain the general expression for the corrections
to the ro-vibrational energies within a perturbation expansion. Such expansion
includes the matrix elements between the electronic wave functions [see equation
(16) further in the text], which depends on the relative position of the nuclei and
on the chosen directions of the coordinate axis. Therefore, to keep the meaning of
these matrix elements unaltered during the molecular rotation we should use the
body-�xed frame for their representation.

For the explicit representation of the rotational degrees of freedom of the
molecule we use the space-�xed frame which is arbitrarily oriented with respect to
the BF frame. The mutual orientation of the BF and SF frames is determined by
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Figure 1: The geometry of the system and notations used. (α, β) and (γ, δ) denotes

the polar angles of the vectors ~R and ~r in the SF frame. δx,y,zR and δx,y,zr indicates

the variations of the Cartesian coordinates (in the BF frame) of the vectors ~R and
~r respectively.

three Euler angles Ω = {δ, γ, ϕ}. We employ the passive picture (see [19, 20]) for
the de�nition of the rotation matrix, i.e. the molecular system is assumed in rest
and rotation is described by the rotation of the SF frame (see [2]).

In the following we shall consider the molecular system which consists of the
three nuclei and n electrons. The relative position of the nuclei is described through
the Jacobi coordinates ~Q = {r,R, θ}. r represents the distance between two nuclei
(diatomic fragment), and R is the distance from the center of mass of the diatomic

fragment to the third nucleus; θ being the angle between the vectors ~r and ~R. We
shall use the following relations for angles [21]:

cos θ = cosα cos γ + cos(β − δ) sinα sin γ, (1)

tanϕ =
sinα sin(β − δ)

sinα cos γ cos(β − δ)− sin γ cosα
. (2)

We shall denote the Cartesian coordinates of the vectors ~r, ~R in the BF frame as
follows

~R(X,Y, Z), ~r(x, y, z). (3)

The geometry of the molecular system and notations of the coordinate frames are
shown in �gure 1. Without loss of generality we can assume that the origins of
the BF and SF frames are placed into the total center of mass of the molecule.
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In the following we are going to generalize the ideas formulated in [1] to the
case of three nuclei. For Jacobi coordinates (3) the nuclear reduced masses are
given by

µ−1r = m−11 +m−12 , µ−1R = (m1 +m2)−1 +m−13 , (4)

where mi (i = 1, 2, 3) is the mass of the i-th nucleus. After separation of the
translational motion, the exact Schrödinger equation for the total wave function
ψ of the molecular system has the following form(

T + V ( ~Q, ~q)− E
)
ψ( ~Q, ~q) = 0, (5)

where T is the complete translation-free kinetic energy operator of the whole sys-
tem, ~q denotes the complete set of electronic coordinates, V ( ~Q, ~q) represents the
potential of the Coulomb interaction of all particles in the molecule and E is the
total energy.

We use for ψ the expansion over the complete orthonormal set of the product
of electronic ϕλ(~q | ~Q) and nuclear υkλ( ~Q) wave functions

ψ( ~Q, ~q) =
∑
λk

Cλk ϕλ(~q | ~Q)υkλ( ~Q) ≡
∑
λk

Cλk|λk〉, (6)

where the symbols λ denote the electronic and k the nuclear state, respectively.
Substituting the expansion for ψ into the Schrödinger equation (5) we come to the
standard adiabatic approximation for the nuclear motion(

T0 + EADλ − E
)
ϕλυ

k
λ +Wϕλυ

k
λ = 0, (7)

where EADλ ≡ EADλ ( ~Q) is the adiabatic potential energy surface (PES), T0 denotes
the standard nuclear KEO

T0 ≡ −
~2

2µR
∇2
R −

~2

2µr
∇2
r, (8)

and W denotes the operator of non-adiabaticity

W = − ~2

µR
∇(n)
R · ∇(e)

R −
~2

µr
∇(n)
r · ∇(e)

r . (9)

The superscript indicates that the given operator acts on the nuclear (n) or elec-
tronic (e) states only. If one neglects the operator W the Schrödinger equation for
the nuclear motion reads(

− ~2

2µR
∇2
R −

~2

2µr
∇2
r + EADλ ( ~Q)− Eλk

)
υkλ( ~Q) = 0. (10)

Considering the functions υkλ in (10) as a zero approximation, one may treat (7) in
the framework of perturbation theory. The �rst-order correction to the energy Eλk
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of the state |λk〉 with respect to the perturbation operatorW vanishes. Therefore,
the leading non-vanishing energy shift is represented by the second-order correction

E
(2)
λk = −

∑
a=r,R

∑
λ′k′ 6=λk

(
~4

µ2
a

)
〈λk|∇(e)

a λ′ · ∇(n)
a k′〉〈λ′k′|∇(e)

a λ · ∇(n)
a k〉

Eλ′k′ − Eλk
. (11)

Representing the vectors ~r and ~R in (11) in Cartesian coordinates, we introduce
the common symbols χ, η, ζ, which depend parametrically on a as follows

χ, η, ζ =

{
x, y, z, a = r,
X, Y, Z, a = R.

(12)

Denoting the Cartesian unit vectors as ~ni (i = x, y, z), we may write for an arbi-
trary scalar function ψ

∂α (~niψ) = ~ni∂αψ, α = χ, η, ζ, (13)

leading to the short notation for the partial derivative: ∂α ≡ ∂
∂α . So, the matrix

element 〈λk|∇(e)
a λ′ · ∇(n)

a k′〉 is represented as (see the de�nitions in (12))

〈λk|∇(e)
a λ′ · ∇(n)

a k′〉 =
∑

α=χ,η,ζ

〈λ|∂(e)α λ′〉〈k|∂(n)α k′〉, a = r,R. (14)

Similar expressions can be given for the matrix elements 〈λ′k′|∇(e)
a λ·∇(n)

a k〉. In the
following, we neglect the 'smaller' nuclear ro-vibrational energies against the elec-
tronic energies in (11). Therefore, the di�erence Eλ′k′ −Eλk can be approximated
by Eλ′ − Eλ, and (11) leads to

E
(2)
λk = −

∑
a=r,R

~4

µ2
a

×

〈
k

∣∣∣∣∣ ∑
λ′ 6=λ

∑
α=χ,η,ζ

〈λ|∂(e)α λ′〉
Eλ′ − Eλ

∂(n)α

∑
β=χ,η,ζ

〈λ′|∂(e)β λ〉 ∂(n)β

∣∣∣∣k
〉
. (15)

Let us to introduce the following abbreviations for the matrix element

ωλλ
′

α = 〈λ|∂(e)α λ′〉, α = χ, η, ζ. (16)

Computing the sums in (15), by keeping the ordering of the operators ∂
(n)
α , ∂

(n)
β ,

and taking into account that 〈λ|∂(e)α λ′〉 = −〈λ′|∂(e)α λ〉, we come to the following

expression for the energy corrections E
(2)
λk (keeping in mind de�nition in (12)):

E
(2)
λk =

∑
a=r,R

~2

2µa

〈
k

∣∣∣∣∣2~2µa ∑
λ′ 6=λ

1

Eλ′ − Eλ

[
ω2
χ

∂2

∂χ2
+ ω2

η

∂2

∂η2
+ ω2

ζ

∂2

∂ζ2

+ωχωη (∂χ∂η + ∂η∂χ) + ωχωζ (∂χ∂ζ + ∂ζ∂χ) + ωηωζ (∂η∂ζ + ∂ζ∂η)
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+ (ωχ∂χωχ + ωη∂ηωχ + ωζ∂ζωχ) ∂χ + (ωχ∂χωη + ωη∂ηωη + ωζ∂ζωη) ∂η

+ (ωχ∂χωζ + ωη∂ηωζ + ωζ∂ζωζ) ∂ζ

] ∣∣∣∣∣k
〉
. (17)

For the sake of compactness in (17), and in the following, we omit the superscripts
in the notation for ωλλ

′

α . Expression (17) represents the complete non-adiabatic
contribution in the second order of perturbation theory.

3 Derivation of the non-adiabatic e�ective Hamil-
tonian

As said before, the main idea of [1] is to interpret the second-order correction

E
(2)
λk of the exact nuclear KEO as the �rst-order correction of a new e�ective

non-adiabatic nuclear KEO Tna, which can be deduced from (17) as

E
(2)
λk = 〈k|Tna|k〉. (18)

The electronic matrix elements ωλλ
′

α , and therefore the correction E
(2)
λk , are de�ned

in the BF frame of coordinates. To introduce the rotational degrees of freedom

(the Euler angles) we shall represent the E
(2)
λk in the SF frame, which is assumed

arbitrarily oriented with respect to the BF frame, see �gure 1. In the present work
we use the molecular embedding with the diatom vector ~r aligned along the z-axis
of the BF frame and the vector ~R in the xz-plane (we denote this embedding as
[~r ||z]). The operator Tna

Tna ≡ T (1)
na + T (2)

na , (19)

can be written immediately by comparing (17) and (18):

T (1)
na = − ~2

2µr

[
G(r)
xx

∂2

∂x2
+G(r)

yy

∂2

∂y2
+G(r)

zz

∂2

∂z2

]

− ~2

2µR

[
G

(R)
XX

∂2

∂X2
+G

(R)
Y Y

∂2

∂Y 2
+G

(R)
ZZ

∂2

∂Z2

]
, (20)

and

T (2)
na = − ~2

2µr

[
G(r)
xyOxy +G(r)

xzOxz +G(r)
yz Oyz + g(r)x ∂x + g(r)y ∂y + g(r)z ∂z

]

− ~2

2µR

[
G

(R)
XYOXY +G

(R)
XZOXZ +G

(R)
Y ZOY Z + g

(R)
X ∂X + g

(R)
Y ∂Y + g

(R)
Z ∂Z

]
, (21)

with Oαβ = ∂α∂β + ∂β∂α. G
(a)
αβ and g

(a)
α are given by

G
(a)
αβ = −2~2

µa

∑
λ′ 6=λ

ωαωβ
Eλ′ − Eλ

,
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g(a)α = −2~2

µa

∑
λ′ 6=λ

ωχ∂χωα + ωη∂ηωα + ωζ∂ζωα
Eλ′ − Eλ

, α, β = χ, η, ζ. (22)

It has been shown (see [2]) that the leading non-adiabatic contribution comes

from the term T
(1)
na . Therefore, further we shall assume that Tna ≈ T (1)

na and neglect

contribution of T
(2)
na . This assumption leads to the following form of the e�ective

Schrödinger equation for nuclear motion(
T0 + T (1)

na + EADλ ( ~Q)− Eλk
)
υkλ( ~Q) = 0. (23)

Expression 20 can be interpreted as a kinetic energy operator in the BF frame

with coordinate-dependent nuclear masses µ
(α,β)
2,3 de�ned in the following way

1

µ
(α)
2

=
1 +G

(r)
αα

µr
,

1

µ
(β)
3

=
1 +G

(R)
ββ

µR
, α = x, y, z; β = X,Y, Z. (24)

In order to transform the Cartesian (BF) form of the KEO 20 into the Jacobi (SF)
coordinates we need to represent the derivatives ∂2/∂α2, (α = x, y, z,X, Y, Z)

through the combination of derivatives in Jacobi coordinates {u}, {u} = { ~Q, ~Ω} =
{r,R, θ, δ, γ, ϕ}. The problem of construction of the �nal nuclear KEO with
coordinate-dependent nuclear masses is rather complicated, since terms with dif-
ferent mass-prefactors are not canceling each other (as it take place in case of
conventional masses). To handle with this we employed the in�nitesimal coordi-
nate variations and compute derivatives analytically as a limit of corresponding
�nite di�erence scheme.

Namely, we write the second derivative of the arbitrary function f as a three-
point �nite di�erence

∂2αf =
1

(δα)2
[δ2f − 2δ1f ], (25)

with δ1f = f(α+ δα)− f0, and δ2f = f(α+ 2δα)− f0. For the sake of brevity we
write the variable α only as an argument of function f . The similar relation for
the mixed derivatives ∂α∂β reads

∂α∂βf =
1

δαδβ
[δ2f − δ(α)1 f − δ(β)1 f ], (26)

with δ
(α)
1 f = f(α+ δα)− f(α), δ

(β)
1 f = f(β+ δβ)− f(β) and δ2f = f(α+ δα, β+

δβ) − f(α, β). Note, that equations (25) and (26) are exact if we take the limit
δα → 0, δβ → 0 analytically. For details of the computation of variations of the
Jacobi coordinates and application of the equations (25), (26) for transformation
of the derivatives from the BF to the SF frame we refer to publications [2] and [5].

We shall introduce the notation KV + KV R = T0 + T
(1)
na , where KV is the pure
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vibrational and KV R is the ro-vibrational part of the total KEO. Finally, we have

KV

~2
=− 1

2µ
(z)
2

∂2

∂r2
− 1

2

(
sin2 θ

µ
(x)
3

+
cos2 θ

µ
(z)
3

)
∂2

∂R2
(27)

− 1

2R

(
cos 2θ

2µ
(x)
3

+
sin2 θ

µ
(z)
3

+
1

2µ
(x)
3

+
1

µ
(y)
3

)
∂

∂R

− 1

2r

(
1

µ
(x)
2

+
1

µ
(y)
2

)
∂

∂r

− 1

2

(
cot θ

r2µ
(y)
2

+
cot θ

R2µ
(y)
3

+
ω3zx sin 2θ

R2

)
∂

∂θ

− 1

2

(
1

r2µ
(x)
2

+
cos2 θ

R2µ
(x)
3

+
sin2 θ

R2µ
(z)
3

)
∂2

∂θ2
+
ω3zx sin 2θ

2R

∂2

∂R∂θ
,

and

KV R

~2
=− cot γ

2r2

(
sin2 ϕ

µ
(x)
2

+
cos2 ϕ

µ
(y)
2

)
∂

∂γ
− 1

r2

(
cos2 ϕ

µ
(x)
2

+
sin2 ϕ

µ
(y)
2

)
∂2

∂γ2
(28)

+
sinϕ

r2

(
cot γ cosϕ

µ
(x)
2

− cot γ cosϕ

µ
(y)
2

− cot θ

µ
(y)
2

)
∂2

∂γ∂ϕ

+
ω2xy cot γ sin 2ϕ

2r2 sin γ

∂

∂δ
− ω2xy sin 2ϕ

2r2 sin γ

∂

∂δ

∂2

∂δ∂γ

+
csc γ

r2

(
cot θ cosϕ

µ
(y)
2

+
cot γ sin2 ϕ

µ
(x)
2

+
cot γ cos2 ϕ

µ
(y)
2

)
∂2

∂δ∂ϕ

+
1

r2µ
(x)
2

(
cosϕ

∂2

∂θ∂γ
+

sinϕ

sin γ

∂2

∂θ∂δ
− cot γ sinϕ

∂2

∂θ∂ϕ

)

+
ω2yx sin 2ϕ

2r2 sin2 γ

(
cos2 γ + 1

2

)
∂

∂ϕ
− csc2 γ

2r2

(
sin2 ϕ

µ
(x)
2

+
cos2 ϕ

µ
(y)
2

)
∂2

∂δ2

− 1

2r2

(
2 cot γ cot θ cosϕ

µ
(y)
2

+
cot2 γ sin2 ϕ

µ
(x)
2

+
cot2 γ cos2 ϕ

µ
(y)
2

+
cot2 θ

µ
(y)
2

)
∂2

∂ϕ2
− 1

2

csc2 θ

R2µ
(y)
3

∂2

∂ϕ2
,

where ωnαβ are given by

ωnαβ =
(
µ(α)
n

)−1
−
(
µ(β)
n

)−1
, n = 2, 3, α, β = x, y, z. (29)

After some algebraic transformations we can represent the ro-vibrational partKV R

(28) through the projections Πx, Πy, and Πz of the total angular momentum
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operator, which depends on the Euler angles δ, γ, ϕ and de�ned as follows [20]:

Πx = i~
(

sinϕ
∂

∂γ
− cosϕ

sin γ

∂

∂δ
+ cosϕ cot γ

∂

∂ϕ

)
, (30)

Πy = i~
(

cosϕ
∂

∂γ
+

sinϕ

sin γ

∂

∂δ
− sinϕ cot γ

∂

∂ϕ

)
, Πz = i~

∂

∂ϕ
.

Namely,

KV R =
csc2 θ

2R2µ
(y)
3

Π2
z +

1

2r2

[(
Π2
x

µ
(y)
2

+
Π2
y

µ
(x)
2

)
+

cot2 θ

µ
(y)
2

Π2
z (31)

+
cot θ

µ
(y)
2

(ΠxΠz + ΠzΠx)− i~

(
2

µ
(x)
2

∂

∂θ
+

cot θ

µ
(y)
2

)
Πy

]
.

Hence, we have constructed the e�ective nuclear KEO in Jacobi coordinates, which
allows to write a Schrödinger equation (23) for the nuclear motion with account
for non-adiabatic e�ects. Note, the representation (31) for KV R shows that the
Cartesian form of the KEO with coordinate-dependent nuclear masses retain the
invariance of the problem with respect to the Euler rotations.

Summary

The aim of the current study was to construct the e�ective non-adiabatic kinetic
energy operator for nuclear motion in a triatomic molecule. For this purpose we
have generalized the original approach of Herman and Asgharian [1] (developed
for a diatomic molecule) on the case of triatomic systems. The main di�culties
in the rigorous extension of this approach to a triatomic molecule are related
to a dramatic complication in the description of the vibrational and, especially,
rotational degrees of freedom of the triatomic in contrast to the diatomic molecule.
We have shown that by employing analytic variations techniques we were able
to transform the Cartesian form of the nuclear KEO with coordinate-dependent
reduced masses given in BF frame into the generalized (Jacobi in the present
study) coordinates in arbitrarily oriented SF frame. This allows to construct the
e�ective non-adiabatic triatomic nuclear KEO in question.
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