-5-

УДК 544.344.3(546.561+546.681+546.682+661.225.1)

Олексеюк І.Д., д.х.н., проф.; Тищенко П.В., асп.; Іващенко І.А., к.х.н., доц.; Данилюк І.В., к.х.н., ст. викл.; Галян В.В., к.фіз.-мат.н., доц.

ФАЗОВІ РІВНОВАГИ У КВАЗІПОТРІЙНІЙ СИСТЕМІ Cu₂S – Ga₂S₃ – In₂S₃ ТА НИЗЬКОТЕМПЕРАТУРНА ФОТОЛЮМІНЕСЦЕНЦІЯ В МОНОКРИСТАЛАХ (Ga₅₅In₄₅)₂S₃₀₀ та (Ga_{54,59}In_{44,66}Er_{0,75})₂S₃₀₀

Східноєвропейський національний університет імені Лесі Українки, 43025 м. Луцьк, просп. Волі, 13; e-mail: inna.ivashchenko05@gmail.com

Прогрес сучасних напівпровідникових технологій залежить від відкриття нових і вдосконалення відомих функціональних матеріалів. Це реалізується шляхом вивчення квазіпотрійних систем, встановлення меж твердих розчинів на основі відомих бінарних і тернарних сполук, пошуку нових тетрарних фаз. Квазіпотрійна система Cu₂S - Ga₂S₃ -In₂S₃ обрана для дослідження, оскільки на її бічних сторонах $Cu_2S - Ga_2S_3$ і $Cu_2S - In_2S_3$ утворюються напівпровідникові сполуки, які володіють цінними фізичними властивостями і використовуються в конструкції сонячних елементів і нелінійних оптичних пристроїв [1]. Крім того, в системі Ga₂S₃ – In₂S₃ утворюються потрійні шаруваті сполуки [2, 3]. Досліджуючи квазіпотрійну систему Cu₂S - Ga₂S₃ - In₂S₃, будуть встановлені області існування твердих розчинів на основі бінарних і тернарних фаз, знайдені склади нових тетрарних фаз. Особлива увага буде зосереджена на області CuGaS₂-CuIn₅S₈-In₂S₃-Ga₂S₃, оскільки саме тут очікуємо утворення тетрарної фази та проходження більшості тетрарних нонваріантних процесів.

Квазібінарна система Cu₂S – Ga₂S₃

Система Cu₂S – Ga₂S₃ досліджена методами диференційно-термічного і рентгенофазового аналізів [4]. Бінарні сполуки Cu₂S і Ga₂S₃ плавляться конгруентно при 1398 К і 1370 К, відповідно. В системі відбуваються нонваріантні процеси: при 1360 К – евтектичний L $\leftrightarrow \alpha + \beta$, при 1423 К – перитектичний L + $\beta \leftrightarrow \varepsilon$, при 1373 К – твердофазний процес утворення CuGa₅S₈ ($\varepsilon + \beta \leftrightarrow \gamma$), при 1250 К – евтектоїдний процес ε ↔ δ + γ (де α – тверді розчини на основі 2-ВТМ Cu₂S, β – тверді розчини на основі CuGaS₂, ε – тверді розчини на основі 2-ВТМ Ga₂S₃, γ – тверді розчини на основі CuGa₅S₈, δ – тверді розчини на основі 1-ВТМ Ga₂S₃). В системі утворюються дві тернарні сполуки: CuGaS₂, яка плавиться конгруентно при температурі 1513 K, CuGa₅S₈ утворюється в підсолідусній області при 1373 K. Кристалографічні дані для бінарних і тернарних сполук наведені в табл. 1.

Квазібінарна система Cu₂S – In₂S₃

Система Cu₂S – In₂S₃ досліджена в роботі [11]. Бінарні сполуки Cu₂S і In₂S₃ плавляться конгруентно при 1398 К і 1363 К, відповідно. В системі утворюються дві тернарні сполуки: CuInS₂ і CuIn₅S₈, які плавляться конгруентно при 1363 К і 1358 К, відповідно. Сполука CuInS2 існує в трьох модифікаціях: халькопіриту від кімнатної температури до 1253 К, цинкової обманки (1253 – 1318 К) та з невідомою структурою, яка існує в інтервалі 1318 – 1363 К. В системі Cu₂S – In₂S₃ проходять два нонваріантні евтектичні процеси L $\leftrightarrow \alpha + \theta$ (1263 K), L $\leftrightarrow \theta$ + і (1338 К); один нонваріантний перитектичний процес L + ψ ↔ ι (1358 K); чотири нонваріантні евтектоїдні процеси θ ↔ α + η (1253 K), $\eta \leftrightarrow \alpha + \beta$ (1203 K), $\theta \leftrightarrow \eta + \iota$ (1199 К), η ↔ β + ι (1153 К) (де α – тверді розчини на основі 2-ВТМ Си₂S, θ – тверді розчини на основі 2-ВТМ CuInS₂, 1 – тверді розчини на основі CuIn₅S₈, ψ – тверді розчини на основі 2-ВТМ In₂S₃, η – тверді розчини на основі 1-ВТМ CuInS₂, β – тверді розчини на основі HTM CuInS₂). Кристалографічні дані для бінарних і тернарних сполук наведені в табл. 1.

Квазібінарна система Ga₂S₃ – In₂S₃

Система Ga₂S₃ – In₂S₃ досліджена диференційно-термічного методами i рентгенофазового аналізів [14]. В системі існують дві тернарні сполуки: GaInS₃ і Ga_{0.7}In_{1.3}S₃. Сполука GaInS₃ кристалізується в гексагональній сингонії, пр.гр. P61. параметри елементарної комірки а = 0,6655(4) нм, с = 1,7950(3) нм. Область гомогенності при 820 K становить 44-57 мол.% Сполука In_2S_3 . $Ga_{0.7}In_{1.3}S_3$ утворюється за твердофазною реакцією: $\psi + \lambda \leftrightarrow \mu$ (1050 К) (де ψ – тверді розчини на основі 2-ВТМ In₂S₃, λ – тверді розчини на основі GaInS₃, и – тверді розчини на основі Ga_{0.7}In_{1.3}S₃) та кристалізується в орторомбічній сингонії, пр. гр. Стс2₁, параметри елементарної комірки а = 0,3812(3) нм, b = 1,9061(2) нм, c = 0,6194(2) нм. Область гомогенності цієї сполуки при 820 K становить 62-68 мол.% In_2S_3 . При температурі відпалу (820 К) на основі 1-ВТМ In_2S_3 утворюються **v**-тверді розчини протяжність яких становить 11 мол.% Ga₂S₃. Розчинність на основі б-твердих розчинів 1при температурі BTM Ga_2S_3 відпалу становить 17 мол.% In₂S₃. Крім того, в системі Ga₂S₃ – In₂S₃ відбувається нонваріантний метатектичний процес $\varepsilon \leftrightarrow \delta + L_m$ при 1180 К, де є-тверді розчини на основі 2-ВТМ Ga₂S₃, б-тверді розчини на основі 1- Ga_2S_3 . При 1165 К відбувається BTM евтектичний процес $L_e \leftrightarrow \delta + \lambda$, де λ -твердий розчин на основі сполуки GaInS₃, яка утворюється за перитектичною реакцією: L_p + ψ ↔ λ при 1190 К. Кристалографічні дані для бінарних і тернарних сполук наведені в таблиці 1. За дослідженнями [14] Тпл. Ga₂S₃ становить 1390 К і Тпл. б ↔ є 1293 К, що відрізняється від даних [6, 7] табл. 1, але саме результатами [14] ми скористалися для побудови політермічних перерізів і проекції поверхні ліквідусу системи Cu₂S - Ga₂S₃ -In₂S₃ в даній роботі.

Система CuInS₂ – CuGaS₂

Система CuInS₂ – CuGaS₂ досліджена в роботі [16] (рис. 1). Вона ускладнена двома перитектичними процесами L + $\eta \leftrightarrow \theta$ і L + $\beta \leftrightarrow \eta$ (де η – тверді розчини на основі 1-ВТМ CuInS₂, θ – тверді розчини на основі 2-ВТМ CuInS₂, β – тверді розчини зі структурою халькопіриту і є НРТР з формулою CuGa_{1-x}In_xS₂, $0 \le x \le 1$, при T \le 1248 K, координати нонваріантних перитектичних точок 45 мол.% CuGaS₂ при 1426 К і 68 мол.% СиGaS₂ при 1451 К, що пов'язано з існуванням двох поліморфних модифікацій CuInS₂ при 1247 К і 1313 К. Тому в підсолідусній області крім НРТР існують дві області обмежених твердих розчинів η і θ в інтервалах 0-56 мол.% CuGaS₂, 1313 – 1426 К і 0-80 мол.% CuGaS₂, 1247 – 1451 К. Кристалографічні дані для сполук наведені в табл. 1.

Рис. 1. Діаграма стану системи $CuInS_2 - CuGaS_2$: 1 - L, 2 – L + β , 3 – L + η , 4 – L + θ , 5 – θ , 6 – θ + η , 7 – η , 8 – η + β , 9 – β (де β – тверді розчини зі структурою халькопіриту і є НРТР з формулою $CuGa_{1-x}In_xS_2$, 0 ≤ x ≤ 1, при T ≤ 1248 K, θ – тверді розчини на основі 2-BTM CuInS₂, η – тверді розчини на основі 1-BTM CuInS₂) [16].

Система CuIn₅S₈ – CuGa₅S₈

Система CuGa₅S₈ – CuIn₅S₈ досліджена методом рентгенофазового аналізу [15]. В ній виявлена тетрарна фаза CuGa_xIn_{5-x}S₈ (1<x<2), яка кристалізується в гексагональній сингонії, параметри елементарної комірки змінюються від а = 0,3854 нм, с = 3,1045 нм при x=1 до а = 0,3803 нм, с = 3,0734 нм при x=2. Кристалографічні дані наведені в табл. 1. -7-

Таблиця 1. Кристалографічні характеристики поліморфних модифікацій бінарних та тернарних сполук квазіпотрійної системи $Cu_2S - Ga_2S_3 - In_2S_3$ та твердих розчинів на їх основі

Сполука	Інт.	Пр. гр.	Параметри комірки, нм			
1	1СН., К	2				
1	2	3	4			
π-Cu ₂ S (HTM)	293– 380	P21/c	a=1,5246(4), b=1,1884(2), c=1,3494(3), β =116,35(1)° [5]			
σ-Cu ₂ S (1-BTM)	380– 708	P6 ₃ /m mc	a=0,4005(4), c=0,6806 [5]			
α-Cu ₂ S (2-BTM)	708– 1398	куб. синг.	a=0,5725 [5]			
σ-Ga ₂ S ₃ (HTM)	293– 803	F-43m	a=0,517 [6]			
δ-Ga ₂ S ₃ (1-BTM)	803– 1270	Cc				
ε-Ga ₂ S ₃ (2-BTM)	1270– 1370	P6 ₃ mc	a=0,3682(1), b=0,6031(1) [7]			
κ-In ₂ S ₃ (HTM)	293– 692	I4 ₁ /amd	a=0,76231(4), c=3,2358(3) [8]			
ν -In ₂ S ₃ (1-BTM)	692– 1030	Fd-3m	a=0,108312 [8]			
ψ-In ₂ S ₃ (2-BTM)	1030– 1363	P-3m1	a=0,38656(2), c=0,91569(5) [8]			
$CuGaS_2$ (β)*	293– 1513	I-42d	a=0,5362, c=1,0495 [9]			
β-CuInS ₂ (HTM)	293– 1253	I-42d	a=0,588, c=1,120 [10]			
η-CuInS ₂ (1-BTM)	1253– 1318	куб. синг.	[11]			
θ -CuInS ₂ (2-BTM)	1318– 1363	_	[11]			
$CuIn_{5}S_{8}(\iota)$	293– 1358	F-43m	a=1,06858(3) [12]			
CuGa ₅ S ₈ (γ)	293– 1373	I-42m	a=0,5229(8), c=1,0457(1) [13]			
$GaInS_3(\lambda)$	293– 1190	P61	a=0,6655(4), c=1,7950(3) [14]			
Ga _{0,7} In _{1,3} S ₃ (µ)	293– 1050	Cmc2 ₁	a=0,3812(3), b=1,9061(2), c=0,6194(2) [14]			

Продовження таблиці 1

1	2	3	4
$\begin{array}{l} CuGa_xIn_{5-x}S_8\\ (1{<}x{<}2)~(\phi) \end{array}$	_	гекс. синг.	а=0,3854, c=3,1045(x=1) а=0,3803, c=3,0734 нм(x=2) [15]

де β – тверді розчини на основі CuGaS₂, 1 – тверді розчини на основі CuIn₅S₈, γ – тверді розчини на основі CuGa₅S₈, λ – тверді розчини на основі GaInS₃, μ – тверді розчини на основі GaInS₃, μ – тверді розчини на основі GaInS₃, ϕ – тетрарна фаза CuGa_xIn_{5-x}S₈ (1<x<2);

* оскільки CuGaS₂ і HTM CuInS₂ є ізоструктурними, тому тверді розчини на їх основі ми позначили літерою β і HPTP між ними позначаємо теж β .

Експериментальна частина

Зразки синтезували сплавлянням розрахованих і зважених простих речовин Си - 99.99 wt. %, Ga - 99.999 wt.%, In - 99.999 wt. %, S - 99.9997 wt. % у вакуумованих до залишкового тиску 0,1 Ра і запаяних ампулах. Сірка була додатково очищена методом дворазової вакуумної перегонки. Синтез проводили в печі шахтного типу з системою регулювання і підтримки температури з точністю ± 5 К. Ампули нагрівали до максимальної температури 1420 К зі швидкістю 10 К/год. При максимальній температурі зразки витримувалися 4 год. Гомогенізаційний відпал проводився при температурі 820 К протягом 300 годин. Після відпалу ампули зі зразками загартовували у 20 %-ому водному розчині NaCl.

Отримані досліджували зразки методами рентгенофазового (P Φ A) та диференційно-термічного аналізів (ДТА). Дифрактограми зразків отримані 3 допомогою порошкового дифрактометра ДРОН-4-13 (СиК_α-випромінювання, $10^{\circ} < 2\theta < 80^{\circ}$, крок зйомки $0,05^{\circ}$, експозиція в точці – 2 с). Рентгенофазовий аналіз проводився за допомогою пакету програм PowderCell-2, PDWin-2. ДТА проводили з використанням Pt/Pt-Rh термопари на установці, ЩО складається 3 печі «Термодент» і двохкоординатного самописця H307-1 XY.

Результати дослідження та їх обговорення

Квазіпотрійна система $Cu_2S - Ga_2S_3 - In_2S_3$

Як видно з огляду літературних даних, бінарні сполуки Cu_2S , Ga_2S_3 , In_2S_3 плавляться конгруентно і можуть виступати компонентами квазіпотрійної системи.

Політермічний переріз CuGaS₂ – CuIn₅S₈

Ліквідус перерізу (рис. 1) складається з кривих ab – первинної кристалізації β -твердих розчинів на основі CuGaS₂, bc – первинної кристалізації 1-твердих розчинів на основі CuIn₅S₈.

Рис. 2. Політермічний переріз $CuGaS_2 - CuIn_5S_8$: 1 – L, 2 – L + β , 3 – L + ι , 4 – L + β + ι , 5 – L + β + φ , 6 – β + φ + ι , 7 – φ + ι , 8 – ι , 9 – β + φ , 10 – β (де β – тверді розчини на основі CuGaS₂, ι – тверді розчини на основі CuIn₅S₈, φ – тетрарха фаза CuGa_xIn_{5-x}S₈, 1,4 \leq x \leq 2,05 при 820 K за результатами даного дослідження (див. рис. 8).

При 1193 К знаходиться площина нонваріантного перитектичного процесу $L_{U5} + \iota \leftrightarrow \varphi + \beta$. В ділянці *de* цей процес закінчується зникненням ι-твердих розчинів і при пониженні температури в зразках проходить моноваріантний евтектичний процес $L \leftrightarrow \varphi + \beta$. В ділянці *ef* перитектичний процес проходить із зникненням рідини, тому нижче 1193 К сплави трьохфазні: $\iota + \varphi + \beta$, де φ – тетрарна фаза CuGa_xIn_{5-x}S₈, $1,4 \le x \le 2,05$. В точці *е* перитектичний процес L + $\iota \leftrightarrow \beta + \varphi$ завершується зі зникненням рідини та ι твердих розчинів, тому нижче сплави двохфазні: $\beta + \varphi$.

Сполука CuGaS₂ проіндексована в структурі халькопіриту, пр.гр. I-42d. 3 параметрами тетрагональної решітки a = 0.53512(1) HM, c = 1.0484(2) HM, $CuIn_5S_8$ проіндексована в кубічній сингонії, пр.гр. F-43m, параметром 3 комірки а = 1,0686(1) нм. При 820 К фазовий склад зразків слідуючий: на основі CuGaS₂ і CuIn₅S₈ існують незначні граничні тверді розчини при зміні параметрів елементарних комірок до а=0,54526(1) нм, с=1,0587(1) нм для складу 90 мол.% CuGaS₂ - 10 мол.% CuIn₅S₈ та *a*= 1,0583(2) нм для складу 10 мол.% CuGaS₂ – 90 мол.% CuIn₅S₈. Через високу температуру плавлення CuGaS₂ цей сплав не розплавився, тому частина кривої ліквідуса подана пунктирною лінією (рис. 2).

Політермічний переріз CuInS₂ – CuGaS₂

Переріз CuInS₂ – CuGaS₂ досліджений лише методом рентгенофазового нами аналізу при 820 К. Підтверджена наявність НРТР зі структурою халькопіриту, пр. гр. I-42d при 820 К. Параметри елементарної комірки змінюються від а = 0,53512(1) нм, c = 1,0484(2) нм для CuGaS₂ до a = 0,55273(2) нм, с = 1,1149(3) нм для CuInS₂. Для побудови проекції поверхні ліквідусу використовували дані з роботи [16] (рис. 1).

Політермічний переріз CuGa₅S₈ – CuIn₅S₈

3a результатами ДТА та РФА побудований політермічний переріз CuGa5S8 - CuIn₅S₈ (рис. 3). Ліквідус його складається з кривих: *ab* – первинної кристалізації ϵ -твердих розчинів на основі ВТМ Ga₂S₃, bc – первинної кристалізації б-твердих розчинів на основі 1-ВТМ Ga₂S₃, *cd* – первинної кристалізації λ-твердих розчинів GaInS₃, dp₃ – первинної кристалізації ф-тетрарної фази та *p₃h* – первинної кристалізації 1-твердих розчинів на основі CuIn₅S₈. Пряма *р*₃*е* при 1213 К відповідає нонваріантному перитектичному процесу, за яким утворюється фаза φ: L_{p3} + ι ↔ φ (1213 К). Даний переріз також перетинає площину нонваріантної рівноваги: -9-

 $L_{U2} + \varepsilon ↔ \delta + \beta$ (1153 К). Трьохфазна область $L + \delta + \beta$ (поле 17) сходиться до площини наступного нонваріантного процесу $L_{U3} + \delta \leftrightarrow$ $\lambda + \beta$ (1123 К). Трьохфазна область L + $\lambda + \beta$ (поле 19). утворюється яка після проходження нонваріантного процесу при 1123 К, спускається до ще однієї площини евтектичного нонваріантного процесу L_{E1} ↔ ϕ + β + λ (1083 K). Нижче цієї площини взірці трифазні $\beta + \phi + \lambda$. Існує ще одна 1138 К, існування площина при якої обумовлене твердофазним характером утворення CuGa₅S₈ в системі Cu₂S-Ga₂S₃: β + ε ↔ γ. На даній площині проходить процес перитектоїдної взаємодії $\beta + \varepsilon \leftrightarrow \gamma + \delta$.

На площині при 1123 К $L_{U3} + \delta \leftrightarrow \lambda + \beta$ в точці *п* процес завершується зникненням L і кристалів δ, тому нижче зразки двофазні, λ і β, (поле 24) аж до температури відпалу, що підтверджено РФА. Лівіше від точки п процес при 1123 К завершується зникненням L і трьохфазна область $\delta + \lambda + \beta$ спускається до площини ще одного твердофазного перитектоїдного перетворення $\beta + \delta \leftrightarrow \gamma + \lambda$ при 1093 К. До цієї ж площини сходиться трьохфазний об'єм (поле 16), утворений після завершення реакції $\beta + \varepsilon \leftrightarrow \delta + \gamma$ при 1138 К, коли вона супроводжується зникненням кристалів є-твердих розчинів. Реакція при 1093 К в частині зразків завершується зникненням і β-твердих розчинів і δ-твердих розчинів і нижче 1093 К до температури відпалу вони двофазні γ + λ (поле 29). Правіше від цих зразків знаходиться трьохфазна область утворена за рахунок проходження процесу при 1093 К зі зникненням кристалів б-твердих розчинів (поле 23), що підтверджено результатами РФА.

Нами підтверджене існування тетрарної фази CuGa_xIn_{5-x}S₈, протяжність якої $1.4 \le x \le 2.05$ при 820 К дещо відрізняється від результатів роботи [15]. Ми також проіндексували її в гексагональній сингонії, параметри елементарної комірки змінюються від a = 0,38372(3) нм, c = 3,0926(1) нм для зразка складу CuGa_{1,5}In_{3,5}S₈ до a = 0,37964(2)нм, c = 3,0729(4) нм для складу CuGa₂In₃S₈. CuGa₅S₈ проіндексована Сполука в тетрагональній сингонії (пр.гр. І-42m) з параметрами комірки a=0,52282(9) HM. с=1,0456(7) нм.

Рис. 3. Політермічний переріз CuGa₅S₈ – CuIn₅S₈: 1 – L, 2 – L + ε , 3 – L + ε + β , 4 – ε + β , 5 – ε + β + γ , 6 – γ + ε , 7 – L + ι , 8 – L + δ , 9 – L + ε + δ , 10 – β + ε + δ , 11 – L + δ + β , 12 – L + δ + λ , 13 – L + λ , 14 – L + φ , 15 – γ + ε + δ , 16 – γ + β + δ , 17 – δ + β , 18 – δ + β + λ , 19 – L + λ + β , 20 – L + λ + φ , 21 – γ + δ , 22 – γ + δ + λ , 23 – β + γ + λ , 24 – β + λ , 25 – φ + λ + β , 26 – φ + λ , 27 – φ , 28 – φ + ι , 29 – γ + λ , 30 – ι , 31 – γ (де ε – тверді розчини на основі 2-BTM Ga₂S₃, β – тверді розчини на основі CuGa₅S₈, ι – тверді розчини на основі CuIn₅S₈, δ – тверді розчини на основі 1-BTM Ga₂S₃, λ – тверді розчини на основі GaInS₃, φ – тетрарна фаза CuGa_xIn_{5-x}S₈, 1,4 \leq x \leq 2,05 при 820 K за результатами даної роботи).

Політермічний переріз CuGaS₂ – GaInS₃

результатами ДТА та РФА Зa побудований політермічний переріз CuGaS₂ – GaInS₃ (рис. 4). Ліквідус перерізу складається з кривих *ab* – первинної кристалізації βтвердих розчинів на основі CuGaS₂, bc – первинної кристалізації б-твердих розчинів на основі 1-ВТМ-Ga₂S₃, *cd* – первинної кристалізації λ-твердих розчинів, de первинної кристалізації у- твердих розчинів на основі 2-ВТМ-Іп₂S₃. Переріз перетинає нонваріантного перитектичного площину

-10-

процесу $L_{U3} + \delta \leftrightarrow \lambda + \beta$ при 1123 К. В усіх взірцях перерізу, де він проходить, зникає і рідина, і кристали δ-твердих розчинів, тому нижче горизонталі при 1123 К взірці двофазні $\beta + \lambda$. До площини нонваріантного процесу сходяться об'єми моноваріантних евтектичних процесів L $\leftrightarrow \beta + \delta$ і L $\leftrightarrow \delta + \lambda$. До точки *d* на ліквідусі сходиться об'єм перитектичного процесу L + $\psi + \lambda$ який при 1190 К проходить в системі Ga₂S₃ – In₂S₃.

Рис. 4. Політермічний переріз CuGaS₂ – GaInS₃: 1 – L, 2 – L + β , 3 – β , 4 – L + β + δ , 5 – L + δ , 6 – L + λ + δ , 7 – L + λ , 8 – L + ψ + λ , 9 – L + ψ , 10 – λ , 11 – β + λ (де β – тверді розчини на основі CuGaS₂, δ – тверді розчини на основі 1-ВТМ Ga₂S₃, λ – тверді розчини на основі GaInS₃, ψ – тверді розчини на основі BTM In₂S₃).

Частини кривої ліквідуса і солідуса подані пунктиром, так як зразки вище 1423 К не нагрівалися. Зразки перерізу CuGaS₂ – GaInS₃ також досліджені методами рентгенофазового аналізу. Сполука GaInS₃ проіндексована у гексагональній сингонії, пр.гр. Р6₁, з параметрами комірки a = 0,66551(6) нм, c = 1,7950(1) нм.

Політермічний переріз CuIn₅S₈ – GaInS₃

Переріз CuIn₅S₈ – GaInS₃ досліджений методами РФА і ДТА (рис. 5). Ліквідус складається з кривих ab – первинної кристалізації 1-твердих розчинів, bc –

первинної кристалізації у-твердих розчинів. Ділянка *аb* невелика, оскільки точка подвійної перитектики p₆ на стороні Cu₂S – In₂S₃ знаходиться близько до складу CuIn₅S₈. При 1148 К відбувається нонваріантний процес $L_{U1} + \psi \leftrightarrow \iota + \lambda$, який у взірцях даного завершується перерізу зникненням i кристалів у-твердих розчинів і залишків рідини. Тому нижче площини при 1148 К взірці двофазні $\iota + \lambda$, що було підтверджено результатами РФА.

Рис. 5. Політермічний переріз $CuIn_5S_8 - GaInS_3$: 1 - L, 2 - L + ψ , 3 - L + ψ + ι , 4 - L + ι , 5 - L + ψ + λ , 6 - ψ + λ , 7 - λ , 8 - ι + λ , 9 - ι (де ψ - тверді розчини на основі 2-BTM In_2S_3 , ι - тверді розчини на основі $CuIn_5S_8$, λ - тверді розчини на основі GaInS₃).

Політермічний переріз CuIn₅S₈ –Ga_{0,7}In_{1,3}S₃

Переріз СиІл₅S₈ - Ga_{0,7}In_{1,3}S₃ побудовано за результатами РФА і ДТА (рис. 6). Ліквідус складається з кривих *ab* – первинної кристалізації і-твердих розчинів, bc – первинної кристалізації у-твердих розчинів. При 1148 K проходить нонваріантний перитектичний процес $L_{U1} + \psi \leftrightarrow \lambda + \iota$ із зникненням рідини і сплави нижче температури 1148 К трифазні $\lambda + \psi + \iota$. При 1023 К проходить твердофазний перитектоїдний процес $\lambda + \psi \leftrightarrow \mu + \iota$. Нижче цієї температури взірці двофазні і + µ, оскільки зникають кристали λ- і ψ-твердих розчинів, шо підтверджено результатами PΦA. Сполука $Ga_{0.7}In_{1.3}S_3$ індексується в

орторомбічній сингонії (пр. гр. $Cmc2_1$), періоди елементарної комірки a = 0,38145(3)нм, b = 1,9058(3) нм, c = 0,6199(2) нм.

Рис. 6. Політермічний переріз $CuIn_5S_8 - Ga_{0,7}In_{1,3}S_3$: 1 – L, 2 – L + ψ , 3 – L + ψ + ι , 4 – L + ι , 5 – ψ + ι , 6 – L + ψ + λ , 7 – ψ , 8 – ι , 9 – ψ + λ + ι , 10 – ψ + λ , 11 – ψ + λ + μ , 12 – λ + μ , 13 – ι + μ , 14 – μ (де ψ – тверді розчини на основі 2-BTM In₂S₃, ι – тверді розчини на основі CuIn₅S₈, λ – тверді розчини на основі GaInS₃, μ – тверді розчини на основі GaInS₃, μ – тверді розчини на основі GaInS₃).

Ізотермічний переріз квазіпотрійної системи Cu₂S – Ga₂S₃ – In₂S₃ при 820 К

Ізотермічний переріз квазіпотрійної системи $Cu_2S - Ga_2S_3 - In_2S_3$ при 820 К побудований за результатами РФА (рис. 7, 8). Сполука Ga_2S_3 утворює δ-тверді розчини, які кристалізуються в моноклінній сингонії, пр. гр. Сс. Щодо сполук In_2S_3 та Cu_2S слід зауважити, що після відпалу при 820 К нам не вдалося отримати 2-BTM Cu_2S та 1-BTM In_2S_3 . Ми отримали HTM цих сполук (табл. 1), пр. гр. I4₁/amd для к-In₂S₃ та пр. гр. P2₁/с для π -Cu₂S. На нашу думку, це пов'язано з чутливістю цих сполук до способу їх синтезу. Тернарні сполуки CuInS₂ та CuGaS₂ утворюють β-HPTP зі структурою

халькопіриту CuGa_{1-x}In_xS₂, $0 \leq x \leq 1$, пр. гр. І-42d. В системі також існують утверді розчини на основі CuGa₅S₈, пр. гр. I-42m; *х*-тверді розчини на основі GaInS₃, пр. гр. Р6₁; µ-тверді розчини на основі Ga_{0.7}In_{1.3}S₃, пр. гр. Стс2₁, 1-тверді розчини на основі CuIn₅S₈, пр. гр. F-43m. Тетрарна ффаза змінного складу CuGa_xIn_{5-x}S₈, $1,4 \le x \le$ 2,05, витягнута при 820 К вздовж ізоконцентрати 16,7 мол. % Cu₂S. Вона кристалізується в гексагональній сингонії і утворює рівноваги з β-, λ-, ι-твердими β-ΗΡΤΡ витягнуті розчинами. вздовж ізоконцентрати 50 мол. % Си₂S, а в ширину простягаються до 6 мол.% Cu₂S.

Рис. 7. Хімічний і фазовий склад зразків системи Cu₂S – Ga₂S₃ – In₂S₃ при 820 K.

Проекція поверхні ліквідуса квазіпотрійної системи Cu₂S-Ga₂S₃-In₂S₃

Проекція поверхні ліквідусу побудована за літературними і власними результатами досліджень п'яти політермічних перерізів (рис. 9). Пунктирними лініями показані досліджені перерізи. Квазіпотрійна система $Cu_2S-Ga_2S_3-In_2S_3$ обмежується квазібінарними системами: Cu₂S $- Ga_2S_3$, $Ga_2S_3 - In_2S_3$, $Cu_2S - In_2S_3$ в яких утворюються тернарні фази CuGaS₂, CuGa₅S₈, CuInS₂, CuIn₅S₈, GaInS₃, Ga_{0,7}In_{1,3}S₃. У цих системах проходять нонваріантні процеси, характер та температури яких наведені в табл. 2.

-12-

Рис. 9. Проекція поверхні ліквідусу квазіпотрійної системи Cu₂S – Ga₂S₃ – In₂S₃.

На проекції поверхні ліквідусу існують області первинної кристалізації α -твердих розчинів на основі 2-ВТМ-Си₂S, ε - твердих розчинів на основі 2-ВТМ-Ga₂S₃, δ -твердих розчинів на основі 1-ВТМ-Ga₂S₃, λ - твердих

розчинів на основі GaInS₃, ψ -твердих розчинів на основі 2-ВТМ In₂S₃, ϕ -тетрарної фази та найбільшу область займає первинна кристалізація β -твердого розчину на основі CuGaS₂. Малі області первинної кристалізації -13-

мають θ -тверді розчини на основі 2-ВТМ-CuInS₂ і η -тверді розчини на основі 1-ВТМ-CuInS₂. Усі області розділені моноваріантними кривими і нонваріантними точками (табл. 2). μ -тверді розчини на основі Ga_{0,7}In_{1,3}S₃ та γ -тверді розчини на основі CuGa₅S₈ не мають областей первинної кристалізації на проекції поверхні ліквідусу, через твердофазний характер їх утворення. У лівій частині квазіпотрійної системи, багатої на Cu₂S проходить ряд нонваріантних процесів, на площинах яких лежать точки U₈ та E₂. До них сходяться моноваріантні криві евтектичних реакцій Le₁E₂ $\leftrightarrow \alpha + \beta$ та Le₂U₈ $\leftrightarrow \alpha + \theta$, перитектичних процесів Lp₁U₈ + $\eta \leftrightarrow \theta$, Lp₂E₂ + $\beta \leftrightarrow \eta$.

Таблиця 2.	. Hoi	нваріантні	процеси	v квазіпот	рійнійній	системі	$Cu_2S -$	$Ga_2S_3 -$	In_2S_3
				,	P		0.020	~~ <u>~</u>	2~ J

 α – тверді розчини на основі 2-BTM Cu₂S, β – тверді розчини на основі CuInS₂ та CuGaS₂, γ – тверді розчини на основі CuGa₅S₈, δ – тверді розчини на основі 1-BTM Ga₂S₃, ε – тверді розчини на основі 2-BTM Ga₂S₃, η – тверді розчини на основі 1-BTM CuInS₂, θ – тверді розчини на основі 2-BTM CuInS₂, ι – тверді розчини на основі CuIn₅S₈, ψ – тверді розчини на основі 2-BTM In₂S₃, λ – тверді розчини на основі GaInS₃, μ – тверді розчини на основі Ga_{0.7}In_{1.3}S₃, ν – тверді розчини на основі 1-BTM In₂S₃, ϕ – тетрарна фаза

Низькотемпературна фотолюмінесценція в монокристалах (Ga₅₅In₄₅)₂S₃₀₀ та

 $(Ga_{54,59}In_{44,66}Er_{0,75})_2S_{300}$

Фазовий склад отриманих монокристалів за методикою [14] перевірявся РФА (крок сканування – 0,05°, час експозиції – 23; 27 сек., відповідно) (рис. 10). Кусочки з різних частин монокристалів перетиралися в порошок. Дифрактограми віл обох порошкоподібних зразків проіндексовані в гексагональній сингонії, пр. гр. $P6_1$. *a*=0,6655(2) HM, *c*=1,7932(4) HM для (Ga₅₅In₄₅)₂S₃₀₀ та *a*=0,6657(3) нм, *c*=1,7962(4) нм для (Ga54,59In44,66Er0,75)2S300, що добре співпадає з літературними даними [14]. Отже, РФА показав відсутність інших фаз у вирощених монокристалах.

Рис. 10. Експериментальні дифрактограми від (Ga₅₅In₄₅)₂S₃₀₀ та (Ga_{54,59}In_{44,66}Er_{0,75})₂S₃₀₀.

Також $(Ga_{55}In_{45})_2S_{300}$ для та (Ga54,59In44,66Er0,75)2S300 ЗНЯТО ДИФрактограми (крок сканування – 0,05°, час експозиції – 3 сек.) (рис. 11) із відполірованих шліфів середньої частини монокристалів (рис. 12), що були обрані для дослідження фізичних властивостей. Для кожного зразка монокристалу отримано одне відбиття вздовж кристалографічного напрямку [006], що встановлено порівнянням отриманої дифрактограми (рис. 11) з теоретично побудованою для (Ga55In45)2S300 з допомогою програми PowderCell-2.

Спектри оптичного поглинання в діапазоні 500 – 1600 нм для монокристалів $(Ga_{55}In_{45})_2S_{300}$ та $(Ga_{54,59}In_{44,66}Er_{0,75})_2S_{300}$ досліджено в статті [3]. Фотолюмінісцентні властивості монокристалів $(Ga_{55}In_{45})_2S_{300}$ та $(Ga_{54,59}In_{44,66}Er_{0,75})_2S_{300}$ досліджені при температурі 80 К, при збудженні діодним лазером із довжиною хвилі 488 нм.

Рис. 11. Дифрактограми шліфів монокристалів (Ga₅₅In₄₅)₂S₃₀₀ та (Ga_{54,59}In_{44,66}Er_{0,75})₂S₃₀₀.

Рис. 12. Шліфи монокристалів а) (Ga₅₅In₄₅)₂S₃₀₀; b) (Ga_{54,59}In_{44,66}Er_{0,75})₂S₃₀₀.

Таке збудження відповідає переходу електронів із валентної зони в зону провідності, крім того, переходу з основного в збуджений стан (${}^{4}I_{15/2} \rightarrow {}^{4}F_{7/2}$) в іонах Er^{3+} [17]. У нелегованого монокристалу зафіксована широка смуга ФЛ при 80 К (рис. 13).

Рис. 13. Спектр ФЛ монокристалу (Ga₅₅In₄₅)₂S₃₀₀ при збудженні довжиною хвилі 488 нм (80 К).

-14-

-15-

Вважаємо, що випромінювання пов'язано із власними дефектами кристалу, які створюють близько середини забороненої зони високу концентрацію енергетичних рівнів.

Рис. 14. Спектр ФЛ монокристалу (Ga_{54,59}In_{44,66}Er_{0,75})₂S₃₀₀ при збудженні довжиною хвилі 488 нм (80 К).

При введенні Ербію появляється малоінтенсивна смуга ФЛ в діапазоні 1480-1610 нм, яка відповідає випромінюючому переходу ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ в іонах Ербію (рис. 14). Низька інтенсивність фотолюмінесценції обумовлена високою концентрацією власних дефектів кристалу, через які відбувається безвипромінювальна рекомбінація носіїв заряду. Лише невелика частина іонів Ербію переходить зі збудженого стану ⁴I_{13/2} в основний. завдяки чому відбувається випромінювання із максимумом 1540 нм.

Висновки

Взаємодія між компонентами в системі Cu₂S - Ga₂S₃ - In₂S₃ досліджена методами прямого синтезу, рентгенофазового і диференційно-термічного аналізів. Побудовані 5 політермічних перерізів, ізотермічний переріз при 820 К та проекція поверхні ліквідусу системи Cu_2S – Ga_2S_3 – In_2S_3 . Виявлено наявність твердих розчинів на основі подвійних і потрійних сполук. Встановлено існування тетрарної фази CuGa_xIn_{5-x}S₈ при 1,4 ≤ х ≤ 2,05. Розчин-розплавним методом вирощені монокристали (Ga55In45)2S300 та $(Ga_{54,59}In_{44,66}Er_{0,75})_2S_{300}.$ В монокристалі (Ga₅₅In₄₅)₂S₃₀₀ при Т=80 К і збудженні довжиною хвилі 488 нм спостерігається невисока інтенсивність ФЛ, яку пов'язуємо із власними дефектами монокристалу. Смуга ФЛ із максимумом 1540 нм в монокристалі (Ga54,59In44,66Er0,75)2S300 пов'язана із внутріцентровими переходами в іонах Er^{3+} .

Список використаних джерел

1. Soni A., Gupta V., Arora C.M., Dashora A., Ahuja B.L. Electronic structure and optical properties of CuGaS₂ and CuInS₂ solar cell materials. *Sol. Energy.* 2010, 84(8), 1481–1489.

2. Sanz C., Guillén C., Gutiérrez M.T. Gallium indium sulfide layers obtained by modulated flux deposition. *J. Phys. D: Appl. Phys.* 2008, 41(23), 5103–5107.

3. Ivashchenko I.A., Danyliuk I.V., Gulay L.D., Halyan V.V., Olekseyuk I.D. Isothermal sections of the quasi-ternary systems $Ag_2S(Se)-Ga_2S(Se)_3-In_2S(Se)_3$ at 820K and the physical properties of the ternary phases $Ga_{5.5}In_{4.5}S_{15}$, $Ga_6In_4Se_{15}$ and $Ga_{5.5}In_{4.5}S_{15}$: Er^{3+} , $Ga_6In_4Se_{15}$: Er^{3+} . J. Solid State Chem. 2016, 237, 113–120.

4. Kokta M., Carruthers J. R., Grasso M., Kasper H. M., Tell B. Ternary phase relations in the vicinity of chalcopyrite copper gallium sulfide. *J. Electron. Mater.* 1976, 5(1), 69–89.

5. Madelung O., Rössler U., Schulz M. Landolt-Börnstein Copper sulfides (Cu_2S , $Cu_{(2-x)}S$) crystal structure, lattice parameters. *Condensed Matter*. 1998, 41C, 9.3.

6. Jones C.Y., Bryan J.C., Kirschbaum K., Edwards J.G. Refinement of the crystal structure of digallium trisulfide. *Z. Kristallogr. NCS.* 2001, 216, 327–328.

7. H. Hahn, W. Klingler Ueber die Kristallstrukturen von Ga₂S₃, Ga₂Se₃ und Ga₂Te₃. *Z. Anorg. Allg. Chem.* 1949, 259, 135–142.

8. Pistor P., Merino Álvarez J. M., León M., Michiel M., Schorr S., Klenk R., Lehmann S. Structure reinvestigation of α -, β - and γ -In₂S₃. *Acta Cryst. B.* 2016, 72(3), 410–415.

9. Do Y.R., Kershaw R., Dwight K., Wold A. The crystal growth and characterization of the solid solutions $(ZnS)_{1-x}(CuGaS_2)_x$. J. Solid State Chem. 1992, 96(2), 360–365.

10. Tembhurkar Y.D., Hirde J.P. Band gap and structural parameter variation of $\text{CuInSe}_{2(1-x)}\text{S}_{2x}$ solid-solution in the form of thin films. *Bull. Mater. Sci.* 1992, 15(2), 143–148.

11. Binsma J.J.M., Giling L.J., Bloem J. Phase relations in the system $Cu_2S-In_2S_3$. J. Cryst. Growth. 1980, 50, 429–436.

12. Gastaldi L., Scaramuzza L. Single-crystal structure analysis of the spinel copper pentaindium octasulphide. *Acta Cryst. B.* 1980, 36, 2751–2753.

13. Tsuyoshi M., Ying Y., Qing C., Kenta U., Takahiro W. Crystallographic and optical properties and band diagrams of CuGaS₂ and CuGa₅S₈ phases in Cu-poor Cu₂S–Ga₂S₃ pseudo-binary system. *Jpn. J. Appl. Phys.* 2017, 56, 1–8.

14. Ivashchenko I.A., Danylyuk I.V., Olekseyuk I.D., Pankevych, Halyan V.V. Phase equilibria in the quasiternary system Ag_2S - Ga_2S_3 - In_2S_3 and optical properties of $(Ga_{55}In_{45})_2S_{300}$, $(Ga_{54,59}In_{44.66}Er_{0.75})_2S_{300}$ -16-

single crystals. J. Solid State Chem. 2015, 227, 255–264.

15. Haeuseler H., Elitok E., Memo A., Arzani R. Verfindungen mit Schichtstrukturen in den Systemen CuGa₅S₈/CuIn₅S₈ und AgGa₅S₈/AgIn₅S₈. *Z. Anorg. Allg. Chem.* 2001, 627, 1204–1208.

16. Marushko L.P., Piskach L.V., Romanyuk Y.E., Parasyuk O.V., Olekseyuk I.D., Volkov S.V.,

Pekhnyo V.I. Quasi-ternary system $CuGaS_2 - CuInS_2 - CdS. J.$ Alloys Compd. 2010, 492, 184–189.

17. Kityk I.V., Halyan V.V., Yukhymchuk V.O., Strelchuk V.V., Ivashchenko I.A., Zhydachevskii Ya., Olekseyuk I.D., Kevshyn A.G., Piasecki M. NIR and visible luminescence features of erbium doped Ga₂S₃-La₂S₃ glasses. *Journal of Non-Crystalline Solids*. 2018, 498, 380–385.

Стаття надійшла до редакції: 14.09.2018.

PHASE EQUILIBRIUM IN THE Cu₂S – Ga₂S₃ – In₂S₃ QUASI-TERNARY SYSTEM AND LOW-TEMPERATURE PHOTOLUMINESCENCE IN THE SINGLE CRYSTALS (Ga₅₅In₄₅)₂S₃₀₀ ta (Ga_{54,59}In_{44,66}Er_{0,75})₂S₃₀₀

Olekseyuk I.D., Tishchenko P.V., Ivashchenko I.A., Danyliuk I.V., Halyan V.V.

The interaction between the components in the Cu₂S - Ga₂S₃ - In₂S₃ system has been investigated by methods of direct synthesis, X-ray analysis and differential-thermal analysis. 5 polythermal sections, the isothermal section at 820 K and the liquidus surface projection of the Cu₂S - Ga₂S₃ - In₂S₃ system have been constructed. The presence of solid solutions based on binary and ternary compounds has been found. The existence of the quaternary phase CuGa_xIn_{5-x}S₈ has been confirmed, where $1.4 \le x \le 2.05$ at 820 K. The two single crystals (Ga₅₅In₄₅)₂S₃₀₀ and (Ga_{54,59}In_{44,66}Er_{0,75})₂S₃₀₀ have been grown by solution-melt method. In the (Ga₅₅In₄₅)₂S₃₀₀ single crystal at T = 80 K and the excitation at 488 nm a low PL intensity has been observed, which is associated with defects of the single crystal. The PL band with the maximum at 1540 nm in the (Ga_{54,59}In_{44,66}Er_{0,75})₂S₃₀₀ single crystal is associated with intracenter transitions in the Er³⁺ ions.

The isothermal section of the $Cu_2S - Ga_2S_3 - In_2S_3$ quasi-ternary system at 820 K has been built based on the results of the X-ray analysis. Ternary compounds $CuInS_2$ and $CuGaS_2$ form solid solutions with the structure of chalcopyrite with formula $CuGa_{1-x}In_xS_2$, $0 \le x \le 1$, sp. gr. I-42d. There are also γ -solid solutions based on $CuGa_5S_8$, sp. gr. I-42m; λ -solid solutions based on GaInS₃, sp. gr. P6₁; μ -solid solutions based on Ga_{0.7}In_{1.3}S₃, sp. gr. Cmc2₁, t-solid solutions based on CuIn₅S₈, sp. gr. F-43m in the investigated system. The φ -quaternary phase stretched out along 16.7 mol. % Cu₂S. It crystallizes in the hexagonal system and forms equilibrium with β -, λ -, t-solid solutions.

The liquidus surface projection of the system has been built based on the literature and our own research results. On the liquidus surface projection of the system, the areas of primary crystallization of α -solid solutions based on 2-HTM-Cu₂S, ϵ -solid solutions based on 2-HTM-Ga₂S₃, δ -solid solutions based on 2-HTM-Ga₂S₃, δ -solid solutions based on 2-HTM-In₂S₃, the φ -quaternary phase and the largest region of the primary crystallization of the β -solid solutions based on 2-HTM-CuInS₂ and η -solid solutions based on 1-HTM-CuInS₂ also exist. All regions are separated by monovariant curves and non-variant points. μ -Solid solutions based on Ga_{0,7}In_{1,3}S₃ and γ -solid solutions based on CuGa₅S₈ do not have the areas of the primary crystallization on the liquidus surface projection of the system due to the nature of their formation.

Keywords: $Cu_2S - Ga_2S_3 - In_2S_3$, phase eguilibrium, isothermal section, solid solutions, liquidus surface projection, photoluminescence.