COMPLEXITY OF LEARNING BITHRESHOLD NEURAL UNITS

Kotsovsky V. M. ${ }^{1}$, Geche F. E. ${ }^{2}$, Batyuk A. Ye. ${ }^{\mathbf{3}}$, Yurchenko M. V. ${ }^{\mathbf{1}}$, Mykoryak I. I. ${ }^{1}$
${ }^{1}$ IMST Department, Uzhhorod National University, Uzhhorod, 88000, Ukraine, kotsavlad @ gmail.com
${ }^{2}$ CAM Department, Uzhhorod National University, Uzhhorod, 88000, Ukraine, fgeche@hotmail.com
${ }^{3}$ ACS Department, Lviv Polytechnic National University, Lviv, 79013, Ukraine, abatyuk @ gmail.com

Our work is motivated by the lack of knowledge about bithreshold units [1]. We study both the conditions ensuring separability by means of bithreshold devices [2] and the complexity [3] of learning such units and networks consisting of them.

Let $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ be a n-dimensional real vector. For an arbitrary vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{R}^{n}$ the value of the dot product $\mathbf{w} \cdot \mathbf{x}$ is said to be a weighted sum corresponding to the vector \mathbf{x}.

A computation unit with n inputs x_{1}, \ldots, x_{n} and single output y is said to be a linear bithreshold unit (LBU) with the weight vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ and thresholds $t_{1}, t_{2} \in \mathrm{R}\left(t_{1}<t_{2}\right)$ if $y=f_{t_{1}, t_{2}}(\mathbf{w} \cdot \mathbf{x})$, where the bithreshold activation function $f_{t_{1}, t_{2}}$ is defined in the following way:

$$
f_{t_{1}, t_{2}}(z)= \begin{cases}-1, & \text { if } t_{1}<z<t_{2} \\ 1, & \text { otherwise }\end{cases}
$$

The LBU is completely defined by the ordered triplet $\left(\mathbf{w}, t_{1}, t_{2}\right)$. We call this triplet the structure of LBU. The bithreshold unit with the structure $\left(\mathbf{w}, t_{1}, t_{2}\right)$ divides the n-dimensional real space into two subsets

$$
\mathrm{R}_{-}^{n}=\left\{\mathbf{x} \in \mathrm{R}^{n} \mid t_{1}<\mathbf{w} \cdot \mathbf{x}<t_{2}\right\}, \quad \mathrm{R}_{+}^{n}=\mathrm{R}^{n} \backslash \mathrm{R}_{-}^{n}
$$

We call two sets A^{+}, A^{-}bithreshold separable (B-separable) in R^{n} if there exists LBU such that $A^{+} \subseteq \mathrm{R}_{+}^{n}$ and $A^{-} \subseteq \mathrm{R}_{-}^{n}[1]$. We denote by $\operatorname{Aff}(X)$ the affine hull [2] of the set X (the set of all possible affine combination of some elements of X).

Proposition 1. Let A^{+}be a finite or countable compact in the n-dimensional real space and $A^{-}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right\}$ is the set of linearly independent vectors, $(k \leq n)$. If there exists such index $l(1 \leq l \leq k)$ that for every $\mathbf{y} \in A^{+} \cap \operatorname{Aff}\left(A^{-}\right)$its coefficient α_{l} in the affine expansion $\mathbf{y}=\alpha_{1} \mathbf{x}^{1}+\ldots+\alpha_{l} \mathbf{x}^{l}+\ldots+\alpha_{k} \mathbf{x}^{k} \quad\left(\alpha_{i} \in \mathrm{R}\right.$, $\left.\alpha_{1}+\ldots+\alpha_{l}+\ldots \alpha_{k}=1, i=1, \ldots, k\right)$ satisfies the following condition: $\alpha_{l} \in(-\infty, 0) \cup(1,+\infty)$, then the sets A^{+}and A^{-}are B-separable.

Proposition 2. The problem of checking the B-separability of finite sets A^{+}and A^{-}is NP-complete even in the case $A^{+} \cup A^{-} \subseteq\{a, b\}^{n}$, where $a \in \mathrm{R}, b \in \mathrm{R}, a \neq b, n \in \mathrm{~N}$, and the absolute values of the weight coefficients of $L B U$ can possess only two different values.

Consequence. Learning a neural network consisting of bithreshold neuron is NP-complete.

References

1. Deolalikar, V.: A two-layer paradigm capable of forming arbitrary decision regions in input space. IEEE Transactions on Neural Networks 13(1), 15-21 (2002).
2. Geche, F., Kotsovsky, V.: Representation of finite domain predicates using multithreshold neural elements (in Ukrainian). Herald of the Uzhhorod University, Series of Mathematics and Informatics 6, 32-37 (2001).
3. Blum, A., Rivest, R.: Training a 3-node neural network is NP-Complete. Neural Networks 5(1), 117127 (1992).
