УДК 539.1.08, 539.198

Р.Ч. Ковдуш

Ужгородський національний університет, Україна, 88000, Ужгород, вул. Волошина, 54 e-mail: rencsi0811@gmail.com

РОЗРАХУНКИ ПЕРЕРІЗІВ ЗБУДЖЕННЯ КРЕМНІЮ ЕЛЕКТРОННИМ УДАРОМ

Метод *R*-матриці з *B*-сплайнами використаний для розрахунків *ab initio* перерізів збудження атома кремнію електронами в області енергій до 60 еВ. Для точного представлення хвильових функцій мішені використовувався багатоконфігураційний метод Хартрі-Фока з неортогональними орбіталями. Розклад сильного зв'язку включав 40 зв'язаних станів атома кремнію з конфігураціями $3s^23p^2$, $3s^23pns$ (*n*=4, 5), $3s^23pnp$ (*n*=4, 5), $3s^23pnd$ (*n*=3, 4), $3s3p^3$ та $3p^4$. Проведено порівняння розрахованих перерізів збудження з наявними даними інших авторів.

Ключові слова: атом кремнію, розсіяння електронів, *R*-матриця, *B*-сплайни, перерізи збудження.

Вступ

Атоми IV групи елементів є дуже важливими, насамперед, для твердотільних технологій. Вони поширені в надрах Землі і в атмосфері зірок, у міжзоряному просторі і у верхніх шарах земної стратосфери. Тому опис різних видів лабораторної та астрофізичної плазми вимагає знання характеристик зіткнення цих атомів з електронами і фотонами. Структурні характеристики електронних оболонок цих атомів також представляють значний інтерес для фундаментальної і прикладної фізики. Атом Si, як один з найпоширеніших елементів природи і основа елементної бази комп'ютерної техніки, займає, поряд з вуглецем, чільне місце серед інших атомів цієї групи щодо важливості для найрізноманітніших прикладних застосувань. Нижньою конфігурацією валентної оболонки кремнію є $3p^2$, триплетний терм ³*P* якої є основним станом у наближенні LS-зв'язку для атома Si. Двома нижчими збудженими станами цієї ж конфігурації є синглетні рівні ${}^{1}D$ та ${}^{1}S$. Вони розміщені на ~1-2 електрон-вольт вище основного стану. На жаль, ні експериментатори, ні теоретики до теперішнього часу включно не приділяли належної уваги атому кремнію, що не в останню чергу викликано труднощами експериментального і теоретичного дослідження цього квантовомеханічного об'єкту. Так розсіяння електронів на кремнії розглядалося лише у статтях

[1, 2], причому розрахунки диференціальних (ДП) та інтегральних перерізів (ІП) стосувалися тільки переходів між підрівнями триплета np^{2} ³*P* або збудження синглетного рівня np^{2} ¹*D*. При цьому обчислення структури атома Si були виконані у надто спрощених наближеннях. Так у роботі [1] були представлені інтегральні та диференціальні по куту (при енергіях 5, 10 і 20 еВ) перерізи збудження електронним ударом переходу np^{2} ³*P* $-np^{2}$ ¹D, розраховані в наближенні спотворених хвиль. У рівняння спотворених хвиль додавався також локальний адіабатичний поляризаційний потенціал. У статті [2] методом релятивістських спотворених хвиль у схемі і-і-зв'язку були розраховані рівні тонкої структури основного стану $np^{23}P$ та першого збудженого стану $np^{2} D$ для чотирьох елементів IV групи: вуглецю, кремнію, германію та олова. Для Si в [2] представлені ДП переходів з нижнього підрівня триплету у три вище розміщені стани при енергіях 25 і повний набір спін-40 еВ, а також поляризаційних параметрів. Серед суто структурних розрахунків атома кремнію відзначимо прецизійні обчислення Froese-Fischer [3] у рамках багатоконфігураційного методу Хартрі-Фока [4, 5]. Але обширні розклади, які отримуються в таких структурних обчисленнях, не можуть бути використані в розрахунках зіткнення через непомірні вимоги до параметрів обчислювальної техніки.

Прийнятне поєднання строгості багатоконфігураційних структурних обчислень з невеликими розмірами залучуваних до розрахунків розсіяння розкладів сильного зв'язку може бути отримане в рамках наближення *R*-матриці з *B*-сплайнами (BSR) [6]. Застосоване до розрахунків атомів С [7], Са [8], Мд [9, 10], воно дало результати, які набагато краще узгоджуються з наявним експериментом, ніж дані менш вишуканих методів.

Таким чином, мета даної роботи полягає в точному МСНГ-обчисленні структури мішені атома кремнію з подальшим розрахунком ІІІ розсіяння е + Si методом BSR [6].

Методи розрахунку

При всій подібності застосовуваних підходів, розрахунок структури атома Si не співпадає з порядком структурних розрахунків атомів С [7], Са [8] та Mg [9, 10]. Даний розклад сильного зв'язку включає 40 спектроскопічних станів нейтрального кремнію, складених з конфігурацій $3s^23p^2$, $3s^23pns$ $(n=4, 5), 3s^2 3pnp (n=4, 5), 3s^2 3pnd (n=3, 4),$ $3s3p^3$ та $3p^4$. Ніяких додаткових псевдостанів у наші ab initio розрахунки структури Si ми не включали. Перші 33 стани у розкладі сильного зв'язку відповідають найнижчим 33 зв'язаним станам атома кремнію. Три стани 3s3p³ розміщені поряд з першим порогом іонізації, і вони були включені в розгляд через їх сильний зв'язок зі станами $3s^23p^2$. Нарешті, розклад також містить три два рази збуджені стани $2p^6 3p^4$ з суттєво вищими енергіями збудження. Ці стани були включені через їх сильне конфігураційне змішування зі станами $3s^2 3p^2$. Їх неврахування, як і у випадку атома С, приводить до неузгодження в описі повної хвильової функції розсіяння і появи псевдорезонансів в ІП розсіяння.

Зазначимо, що орбіталі атома кремнію проявляють, аналогічно до вуглецю, сильну залежність від терму. Це дуже ускладнює точний опис усіх станів мішені, включених у розклад сильного зв'язку, основуючись на одному ряді ортогональних орбіталей. Проте, на відміну від випадку атома С [7], ми відшукали можливість розрахувати всі орбіталі атома Si за єдиним принципом. Застосовуваний нами пакет програм BSR [6] для атомних розрахунків дозволяє нам незалежно оптимізувати орбіталі окремих станів мішені, використовуючи різні неортогональні набори радіальних функцій.

Орбіталі як для парних, так і для непарних станів були розраховані наступним чином. Після генерування спектроскопічних орбіталей 1s, 2s, 2p, 3s, у хартрі-фоківських (Hartree-Fock – HF) розрахунках для кора $1s^{2}2s^{2}2p^{6}3s^{2}$, останній, окрім орбіталі 3*s*, "заморожувався". У МСНГ-розрахунках основного стану $1s^2 2s^2 2p^6 3s^2 3p^2 {}^{3}P$ орбіталь 3p була оптимізована на конфігурації $3s^23p^2$. Орбіталі 3s та 3p теж "заморожувалися" і у подальшому не змінювалися. Всі інші орбіталі 4s, 5s, 4p, 5p, 3d та 4d були отримані з конфігурацій $3s^2$ 3*pnl* (*n* = 4, 5; *l* = 0, 1 та *n* = 3, 4; *l* = 2) для кожного терму ^{1,3}S, ^{3,5} S° , ^{1,3}P, ^{1,3} P° , ^{1,3}D, ^{1,3} D° , ^{1,3}*F*^o окремо. Так само окремо для кожного терму були послідовно згенеровані по два ряди кореляційних орбіталей 7s, 7p, 7d, 7f та 8s, 8p, 8d, 8f – шляхом оптимізації енергій конфігураційних станів, що входять у даний терм. Під час МСНГ-оптимізації згенерованих раніше в наближенні НF орбіталей 4s, 5s, 4p, 5p, 3d та 4d, самі вони не включалися в перелік орбіталей, що варіюються, а змінювалися лише кореляційні орбіталі. Після здійснення першої оптимізації, перший ряд кореляційних орбіталей 7s, 7p, 7d, 7f теж у подальшому не змінювався. Конфігураційні розклади для кожного терму були згенеровані, використовуючи всі можливі конфігурації, зконструйовані з вищезгаданих орбіталей, із не більше, ніж двома електронами що заселяють 7 та 8-мі, кореляційні орбіталі. Нижній стан додатного іона Si⁺ $(3s^23p^2P^0)$, важливий для точного встановлення енергій зв'язку станів мішені, розраховувався за тією ж схемою, що й збуджені стани атома Si – із замороженим кором $1s^2 2s^2 2p^6$ та оптимізованими на основному стані атома $3s^23p^2$ ³P 3s i 3pорбіталями, які в процесі послідовної оптимізації двома рядами кореляційних орбіталей не змінювалися. Для зменшення розмірів залучуваних матриць, ми залишили в кінцевому розкладі станів мішені тільки конфігурації з коефіцієнтами розкладу, більшими 0.004. Результуючі розклади містять від 20 до 360 конфігурацій для кожного окремого стану.

У дані розрахунки ми включали 106 *В*сплайнів порядку 8, розмір a "боксу" *R*матриці приймався рівним $a = 80 a_0$ (де $a_0 = 0.529 \times 10^{-10}$ м – борівський радіус). Збереження суттєвих каналів у розкладі сильного зв'язку дозволило нам додатково врахувати частину валентної кореляції, у той час як кор-валентна кореляція не була включена у явному вигляді в багатоконфігураційний розклад для станів мішені Si. Останнє пов'язано з надто великим числом можливих конфігураційних станів мішені, що утворюються при "розморожуванні" $2p^6$ -оболонки атома Si.

Таблиця 1

Енергії збудження E_{ex} та зв'язку E_{bd} (в еВ), рекомендованих NIST [11], з даними BSR40: показана різниця ΔE_{ex} та ΔE_{bd} між даними NIST та BSR

N⁰	Стан		E _{ex}	$\Delta E_{\rm ex}$	$E_{\rm bd}$	$\Delta E_{\rm bd}$
		-	[11]		[11]	
1	$3s^23p^2$	^{3}P	0.019	0.000	8.133	0.051
2	$3s^23p^2$	^{1}D	0.781	-0.056	7.371	0.105
3	$3s^23p^2$	^{1}S	1.909	0.028	6.243	0.021
4	$3s3p^3$	${}^{5}S^{o}$	4.132	0.079	4.020	-0.030
5	$3s^23p4s$	${}^{3}P^{0}$	4.942	0.030	3.210	0.019
6	$3s^23p4s$	${}^{1}P^{0}$	5.082	0.028	3.069	0.021
7	$3s3p^3$	$^{3}D^{\circ}$	5.617	0.022	2.535	0.027
8	$3s^23p4p$	^{1}P	5.862	0.032	2.289	0.018
9	$3s^23p3d$	${}^{1}D^{0}$	5.871	0.028	2.281	0.021
10	$3s^23p4p$	^{3}D	5.971	0.010	2.180	0.039
11	$3s^23p4p$	^{3}P	6.091	-0.003	2.061	0.053
12	$3s^23p4p$	^{3}S	6.125	0.026	2.027	0.024
13	$3s^23p3d$	${}^{3}F^{0}$	6.195	-0.014	1.957	0.063
14	$3s^23p4p$	^{1}D	6.223	-0.020	1.929	0.069
15	$3s^23p3d$	${}^{3}P^{0}$	6.265	-0.012	1.886	0.061
16	$3s^23p4p$	^{1}S	6.399	0.001	1.753	0.049
17	$3s^23p3d$	${}^{1}F^{0}$	6.616	0.010	1.536	0.040
18	$3s^23p3d$	${}^{1}P^{0}$	6.619	0.007	1.532	0.043
19	$3s^23p3d$	${}^{3}D^{\circ}$	6.723	-0.005	1.429	0.054
20	$3s^2 3p 5s$	${}^{3}P^{0}$	6.748	0.051	1.404	-0.002
21	$3s^2 3p 5s$	${}^{1}P^{0}$	6.803	0.051	1.349	-0.002
22	$3s^23p4d$	${}^{1}D^{0}$	7.006	0.007	1.146	0.042
23	$3s^23p4d$	$^{3}P^{\circ}$	7.030	-0.025	1.122	0.074
24	$3s^{2}3p5p$	^{1}P	7.040	0.042	1.112	0.007
25	$3s^23p5p$	^{3}D	7.079	0.034	1.073	0.015
26	$3s^{2}3p5p$	^{3}P	7.117	0.032	1.035	0.017
27	$3s^2 3p4d$	${}^{3}F^{0}$	7.128	0.011	1.024	0.038
28	$3s^23p5p$	^{3}S	7.134	0.055	1.017	-0.005
29	$3s^23p5p$	^{1}D	7.166	0.024	0.986	0.025
30	$3s^2 3p 5p$	^{1}S	7.230	0.043	0.922	0.006
31	$3s^23p4d$	$^{1}P^{0}$	7.290	0.020	0.861	0.030
32	$3s^23p4d$	${}^{1}F^{0}$	7.302	0.031	0.850	0.018
33	$3s^2 3p 4d$	$^{3}D^{\circ}$	7.325	0.006	0.827	0.043
34	$3s3p^3$	$^{3}P^{\circ}$				
35	$3s3p^3$	$^{3}S^{\circ}$	9.877	-0.019	-1.725	0.068
36	$3s3p^3$	$^{1}D^{0}$				
37	$3s3p^3$	${}^{1}P^{0}$				
39	$3p^4$	^{1}D				
38	$3p^4$	^{3}P				
40	$3p^4$	¹ S				
Si	II $({}^{2}P^{\circ}_{1/2})$		Limit	8.152		

Рис. 1. Відхилення розрахованих у наближенні BSR40 енергій зв'язку атома Si від рекомендованих NIST [11] значень. Нумерація станів дана згідно табл. 1.

Таблиця 2

Сили осциляторів для переходів між станами мішені Si, представлені у формі довжин *fl* і швидкостей *fv*

	Стан	MCHF	[17]	BSR40		
Поч.	Поч. Кін.		f_l	f_v	f_l	f_v
$3s^2 3p^2 {}^3P$	$3s^2 3p 4s$	${}^{3}P^{0}$	1.908	1.911	1.8769	1.8130
	$3s^23p3d$	${}^{3}P^{0}$	0.3782	0.3796	0.3060	0.2509
	$3s3p^3$	$^{3}D^{\circ}$	0.3942	0.3871	0.3029	0.2166
	$3s^23p3d$	$^{3}D^{\circ}$	2.165	2.155	2.2895	2.2557
$3s^2 3p^2 D$	$3s^23p3d$	${}^{1}F^{0}$	1.539	1.526	1.1596	1.0622
	$3s^2 3p 4s$	${}^{1}P^{0}$	0.8728	0.8731	0.8791	0.8455
	$3s^23p3d$	$^{1}D^{\mathrm{o}}$	0.1823	0.185	0.1813	0.1656
	$3s^23p3d$	${}^{1}P^{0}$	0.016	0.0154	0.0121	0.0087
$3s^2 3p^2 {}^1 S$	$3s^23p4s$	${}^{1}P^{0}$	0.0971	0.0962	0.1070	0.1065
	$3s^23p3d$	$^{1}P^{\mathrm{o}}$	0.3447	0.3451	0.2742	0.2588

Стани мішені, включені в дані розрахунки розсіяння, наведені в табл. 1, де ми порівнюємо розраховані енергії зв'язку з експериментальними значеннями NIST [11]. Загальне узгодження між експериментом і теорією є достатньо хорошим, з похибками по енергії, в цілому, меншими за 0.1 еВ (а в значній кількості випадків і за 0.01 еВ), за винятком нижнього збудженого стану $3p^{2-1}D$ (див. табл. 1). Для наочності на рис. 1 наведені розбіжності між даними NIST та BSR40-енергіями для 33 нижніх енергетичних рівнів атома кремнію.

Інша оцінка якості BSR40-опису мішені може бути зроблена з аналізу розрахованих нами сил осциляторів. Їх порівняння з даними структурних MCHF-розрахунків [3]

Рис. 2. Енергетичні залежності інтегральних BSR40перерізів збудження е+Si:

(а) – ІП збудження з основного стану $3p^{2}$ ³*P*: дані представлені для переходів у вісім вище розміщених рівнів з найбільшими ІП.

(б) – III збудження зі стану $3p^{2-1}D$: дані представлені для восьми переходів з найбільшими значеннями III.

наведене в табл. 2. З таблиці видно достатньо добре узгодження наших даних з прецизійними MCHF-результатами [3]. Точні сили осциляторів є важливими для отримання надійних значень III для дипольних переходів.

Для розрахунків розсіяння ми використовували пакет BSR [6]. Особливості методу Rматриці з B-сплайнами можуть бути встановлені з роботи [6] і посилань, наведених у ній. У методі BSR ми використовували B-сплайни в якості універсального базису для представлення орбіталей розсіяння у внутрішній області з $r \le a$. У розрахунках розсіяння, як і при розкладі по B-сплайнах зв'язаних станів

Рис. 3. Енергетичні залежності інтегральних BSR40перерізів розсіяння e+Si:

(а) – ІП збудження $3p^2 {}^3P - 3p^2 {}^1D$: дані BSR40 порівнюються з результатами праці Pindlzola *et al.* [15], отриманими у різних варіантах наближення спотворених хвиль – з використання адіабатичного потенціалу (AEDW) та "простих" хартрі-фоківських розрахунків мішені (HFDW);

(б) – ІП пружного розсіяння е+Si для мішені в основному стані $3p^2 {}^{3}P$: урахування або опущення додаткової умови ортогональності (3p | kp) у розрахунках розсіяння приводить до різної поведінки пружного перерізу в ультрахолодній області енергій зіткнення.

мішені, ми використовували 106 *В*-сплайнів порядку 8, *R*-матричний радіус був рівним $a = 80 a_0$ (де a_0 – борівський радіус). Парціально-хвильові вклади чисельно розраховувалися аж до L = 15. Перерізи обчислювалися за стандартною *R*-матричною схемою, з використанням для зовнішньої області пакету *FARM* [12]. На відміну від праць [7-9], в задачі розсіяння ми використовували не енергії збудження мішені NIST [11], а енергії, отримані в BSR40-розрахунку.

Результати і їх обговорення

На рис. 2а наведено енергетичні залежності інтегральних перерізів збудження з основного стану $3p^{2}$ ³*P* у 8 вище розміщених станів атома кремнію (див. табл. 1) з найбільшими значеннями ІП. На рис. 26 представлені 8 енергетичних залежностей ІП з найбільшими значеннями для збудження зі стану $3p^{2}$ ¹*D*. Аналогічні дані для збудження зі стану $3p^{2}$ ¹*S* за браком місця тут не наводяться. З рис. 2 видно, що частина ІП збудження характеризується помітною резонансною структурою при малих енергіях зіткнення. Відмітимо відсутність псевдорезонансних структур при середніх і вищих енергіях, аж до 60 еВ.

На рис. За отримані нами ІП збудження $3p^{2} {}^{3}P - 3p^{2} {}^{1}D$ порівняні з даними [1]. З рис. За видно, що дані спрощених підходів до розрахунку мішені [1] явно поступаються в деталізації структури ІП збудження перед методом BSR40. На рис. Зб наведені ІП пружного розсіяння е+Si для мішені в основному стані $3p^{2} {}^{3}P$. З рис. Зб, ясно, що в ультрахолодній області енергій ІП пружного розсіяння є

надто чутливими до різного роду кореляцій і обставин розрахунку. При енергіях вище ~3 eB П пружного розсіяння не так чутливі до урахування тих чи інших кореляційних поправок.

Висновки

В роботі здійснені оригінальні розрахунки структури атома Si у багатоконфігураційному наближенні MCHF [4, 5], з урахуванням 40 станів мішені у розкладі сильного зв'язку. Для дослідження *ab initio* процесів розсіяння електронів низьких енергій (до 60 еВ) на атомі кремнію використано метод *R*-матриці з *B*-сплайнами (BSR) [6]. Для переходів з основного стану $3s^23p^2 \, {}^3P$ і нижніх збуджених станів $3s^23p^2 \, {}^1D$ і $3s^23p^2 \, {}^1S$ у всі верхні стани, включені в даний розклад, пораховано ІП, а для деяких переходів – і ДП. Отримано хороше узгодження енергій фізичних станів з даними NIST [11]. Здійснено порівняння наших ІП збудження $3p^2 \, {}^3P - 3p^2 \, {}^1D$ з теоретичними розрахунками [1].

Автор висловлює подяку своєму науковому керівнику доц. Гедеону В.Ф. та д-ру Зацарінному О.І. за допомогу у проведенні розрахунків, що лягли в основу даної роботи.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- Pindzola M.S., Bhatia A.K., and Temkin A. Electron-impact excitation of carbon and silicon in the distorted-wave approximation // Phys. Rev. A. – 1977.– V.15, No 1.– P. 35–42.
- Srivastava R., McEachran R.P., Stauffer A.D. Electron excitation of the Group IV elements // Canadian Journal of Physics. – 2002. – V.80. – P. 687–696.
- Froese Fischer Ch. Breit-Pauli lifetimes and transition probabilities for Si I // Phys. Rev. A. – 2005. – V.71, No 4. – P. 042506 (7).
- 4. Froese Fischer C. The MCHF atomicstructure package // Comput. Phys. Commun. – 1991. – V.64. – P. 369–398.
- Froese Fischer C., Brage T., Jonsson O. Computational Atomic Structure. An MCHF Approach // London: Institute of Physics Publishing, Bristol, 1997. – 279 p.

- Zatsarinny O. BSR: B-spline atomic Rmatrix codes // Comput. Phys. Commun. – 2006. – V. 174, No 4. – P. 273–356.
- Zatsarinny O., Bartschat K., Bandurina L. and Gedeon V. Electron-impact excitation of carbon // Phys. Rev. A. – 2005. – V.71, No 4. – P. 042702 (9 pp.).
- Zatsarinny O., Bartschat K., Gedeon S., Gedeon V., Lazur V. Low-energy electron scattering from Ca atoms and photodetachment of Ca⁻ // Phys. Rev. A. – 2006. – V.74, No 5. – P. 052708 (10).
- Zatsarinny O., Bartschat K., Gedeon S., Gedeon V., Lazur V. and Nagy E. Cross sections for electron scattering from magnesium // Phys. Rev. A. – 2009. – V.79, No 5. – P. 052709 (10).
- 10. Гедеон В., Гедеон С., Зацарінний О., Лазур В., Нодь Є. Диференціальні перерізи розсіяння електронів на атомі магнію //

Uzhhorod University Scientific Herald. Series Physics. Issue 31. - 2012

Науковий вісник Ужгородського університету. Серія Фізика. – 2008. – № 23. – С. 23-35.

- 11. http://physics.nist.gov/cgi-bin/AtData
- Burke V.M. and Noble C.J. Farm A flexible asymptotic R-matrix package // Comput. Phys. Commun.– 1995.– V. 85, No 3. P. 471-500.

Стаття надійшла до редакції 6.02.2012

R.Ch. Kovdush Uzhhorod National University, Ukraine, 88000, Uzhhorod, 54 Voloshyna Str.

THE CALCULATION OF ELECTRON-IMPACT EXCITATION CROSS SECTIONS FROM SILICON

The B-spline R-matrix method is used to *ab initio* calculations of electron-impact excitation cross sections from silicon in energy range up to 60 eV. The multiconfiguration Hartree-Fock method with non-orthogonal orbital sets is employed for an accurate representation of the target wavefunctions. The close-coupling expansion includes 40 bound states of neutral silicon with configurations $3s^23p^2$, $3s^23pns$ (*n*=4, 5), $3s^23pnp$ (*n*=4, 5), $3s^23pnd$ (*n*=3, 4), $3s3p^3$, and $3p^4$. The comparison of calculated excitation cross sections with available data of other autors is carried out.

Key words: silicon atom, electron scattering, R-matrix, B-spline, excitation cross sections.

Р.Ч. Ковдуш Ужгородский национальный университет, Украина, 88000, Ужгород, ул. Волошина, 54

РАСЧЕТЫ СЕЧЕНИЙ ВОЗБУДЖЕНИЯ КРЕМНИЯ Электронным ударом

Метод *R*-матрицы с *B*-сплайнами использован для расчетов *ab initio* сечений возбуждения атома кремния электронами в области энергий до 60 эВ. Для точного представления волновых функций мишени использовался многоконфигурационный метод Хартри-Фока с неортогональными орбиталями. Разложение сильной связи включало 40 связанных состояний атома кремния с конфигурациями $3s^23p^2$, $3s^23pns$ (*n*=4, 5), $3s^23pnp$ (*n*=4, 5), $3s^23pnd$ (*n*=3, 4), $3s3p^3$ и $3p^4$. Проведено сравнение рассчитанных сечений возбуждения с имеющимися данными других авторов.

Ключевые слова: атом кремния, рассеяние электронов, *R*-матрица, *B*-сплайны, сечения возбуждения.