УДК 535.36 М.М. Поп¹, І.І. Шпак¹, С.І. Перечинський¹, Ю.М. Височанський¹, М.Ю. Риган²

¹Ужгородський національній університет, 88000, Україна, Ужгород, вул. Підгірна, 46 е-mail: misha_pop@i.ua

²Ужгородський науково-технічний центр ІПРІ НАН України, 88000, Україна, Ужгород, вул. Замкові сходи, 4

РЕЛЕЇВСЬКЕ І МАНДЕЛЬШТАМ-БРІЛЛЮЕНІВСЬКЕ РОЗСІЮВАННЯ В ХАЛЬКОНІДНИХ СПЛАВАХ СИСТЕМИ As-Sb-S

Досліджено релеївське і мандельштам-бріллюенівске розсіювання світла (РМБР) в халькогенідних стеклах системи As-Sb-S по розрізу $(As_2S_3)_{100-x}$ $(Sb_2S_3)_x$, $(x = 0 \div 30)$. Визначені швидкості поздовжнього гіперзвуку, відношення Ландау-Плачека $R_{ЛП}$, адіабатичні пружньооптичні постійні $(p_{12})_{ad}$ і розраховані втрати на розсіювання. Проведено аналіз концентраційної поведінки вказаних структурно-чутливих параметрів.

Ключові слова: халькогенідні стекла, релеївське розсіювання, відношення Ландау-Плачека, оптичні втрати.

Вступ

Мандельштам-бріллюенівска спектроскопія (РМБР) є одним з сучасних методів дослідження мікронеоднорідної будови халькогенідних напівпровідників, який дає змогу оцінювати вклади флуктуацій різної природи в розсіювання світла. Крім того, вона є метрологічним методом контролю оптичних, пружних та пружньооптичних постійних склоподібних напівпровідників [1-4]. Так як найбільш дослідженими цим методом є оксидні стекла SiO₂, Ba₂O₃ і т.д., то доцільно було б застосувати мандельштам-бріллюенівску спектроскопію для халькогенідних стекол.

В даній роботі наведені результати дослідження спектрів РМБР склоподібних напівпровідників $(As_2S_3)_{100-x}$ $(Sb_2S_3)_x$ для $x = 0 \div 30$.

Методика експерименту

Склоподібні взірці системи As-Sb-S одержані із попередньо синтезованих сполук As_2S_3 і Sb_2S_3 у евакуйованих (0,01 Па) кварцових ампулах протягом 24-48 годин.

Температура гомогенізації розплавів As₂S₃ та Sb₂S₃ складала 780 та 870 К,

відповідно. Час гомогенізації розплавів – 48 год. Розплави періодично перемішували. Охолодження розплавів проводилось на повітрі.

Дослідження спектрів МБР проводились на установці, типова схема наведена [5]. якої В В якості диспергуючого елемента використовувався трьохпрохідний скануючий тиском інтерферерометр Фабрі-Перо з різкістю інтерференційної картини 35, область дисперсії 2,51 см⁻¹. Розсіювання збуджувалось одномодовим гелій-неоновим лазером (потужність ~ 50 мВт) з поляризацією променя вертикально площині розсіювання. Аналізувалося світло обох поляризацій. Всі виміри проводилися в 90°-градусній геометрії розсіювання. Похибка визначення $(p_{12})_{ad}$ та α_{ME} не перевищувала 2 %, відношення $R_{\Pi\Pi} \sim 10$ % і швидкості гіперзвуку ± 1,5 %.

Результати ї обговорення

Для склоподібних речовин спектр РМБР включає в себе компоненту релеївського розсіювання та симетрично розташований відносно нього дублет мандельштам-бріллюенівського розсіювання світла зі зсувом $\Delta \nu$, що визначається із співвідношення [6]:

$$\frac{\Delta v}{v} = 2n \left(\frac{v}{c}\right) \cdot \sin \frac{\theta}{2}, \qquad (1)$$

де v – частота падаючого світла, n – показник заломлення на довжині хвилі падаючого світла, θ – кут розсіювання, v – швидкість розповсюдження повздовжньої гіперзвукової хвилі, с – швидкість світла у вакуумі. З врахуванням відсутності дисперсії швидкості звуку в стеклах при кімнатній температурі в області гіперзвукових частот виявляється можливим визначити за допомогою (1) високочастотний поздовжній пружній модуль $M = \rho v_{\infty}^{2}$. В інтенсивність незміщеної компоненти в спектрі розсіяного світла вносять вклад флуктуації показника заломлення $< \delta n^2 >$, які зв'язані з неоднорідностями, що повільно розсмоктуються, та «замороженими» неоднорідностіми. До перших відносяться ізобарні флуктуації ентропії (температурні хвилі), які для твердих тіл є незначними; до других – флуктуації густини $\langle \delta \rho^2 \rangle$, флуктуації концентрації <бс²> та флуктуації ентропії. Мірою розвитку цих флуктуацій служить співвідношення Ландау-Плачека [7]. Компоненти Мандельштам-Бріллюена зв'язані з адіабатичними флуктуаціями тиску (звуковими хвилями), не можуть «замерзнути» при переході від рідкого до склоподібного стану, так як вони не можуть залишаються статичними, а «біжать» по склу зі швидкістю гіперзвуку. Модуляція світла гіперзвуком і призводить до появи чіткої тонкої

структури в спектрі розсіювання світла.

Співвідношення Ландау-Плачека можна представити у вигляді суми вкладів від ізобарних флуктуацій густини і флуктуацій концентрації [7]:

$$R_{\Pi\Pi} = \frac{I_P}{2I_{ME}} = R_\rho + R_c, \qquad (2)$$

$$R_{\rho} = \frac{T_{f}}{T} (\beta_{T_{f,0}} \rho v_{T,\infty}^{2} - I), \qquad (3)$$

де T – температура вимірювання (кімнатна), $T_f \sim T_g$ —«фіктивна» (структурна) температура, тобто температура, при якій швидкість структурної перебудови буде нижча швидкості охолодження склоутворюючого розплаву, $\beta_{T_{f,0}}$ – статична (рівноважна) ізотермічна стисливість при T_f , $v_{m,\infty}$ - швидкість гіперзвуку при кімнатній температурі і екстраполяції в область нескінченно високих частот; у випадку скла v_{∞} може бути визначена з Δv за допомогою виразу (1).

Значення швидкості поздовжніх і поперечних гіперзвукових хвиль в склі можна визначити з (1), знаючи частотні зсуви Δv_L і Δv_T поздовжніх і поперечних компонент спектра МБР. Вимірюючи відношення інтенсивностей МБР $R = I_{ME} / I_{ME}^{0}$ досліджуваного взірців i деякого еталонного з відомою пружньооптичною постійною $(p_{12})_0$ можна визначити адіабатичні значення пружньооптичних постійних (p₁₂)_{ad} та порівняти їх з ізотермічними:

$$(p_{12})_{ad} = (p_{12})_0 \cdot \sqrt{R\left(\frac{\rho}{\rho_0}\right)} \cdot \left(\frac{n_0}{n}\right)^4 \cdot \left(\frac{n+1}{n_0+1}\right)^2 \cdot \left(\frac{\nu_L}{\nu_{L0}}\right).$$
(5)

Таблиця

Показник заломлення *n*, частота гіперзвуку *v*, адіабатична постійна (*p*₁₂)_{*ad*}, коефіцієнт екстинкції *α*_{*ME*} та миттєвий поздовжній пружній модуль M_∞ сплавів системи (As₂S₃)_{100-x}(Sb₂S₃)₁₀₀

Склад	n(6328 Å)	<i>v</i> , ГГц	$(p_{12})_{ad}$	$\alpha_{ME}, 10^{-3} \text{ cm}^{-1}$	М _∞ ·10 ⁻¹⁰ , Дж/м ³
0	2,6107	14,6	0,22	11,11	2,43
3	2,622	14,6	0,19	8,52	2,34
15	2,646	15,3	0,17	6,92	2,51
20	2,654	15,6	0,19	8,16	2,53
25	2,660	15,8	0,23	11,88	2,45
30	2,671	16,1	0,36	28,93	2,55

В якості еталона був обраний плавлений кварц, для якого всі необхідні параметри добре відомі: $\rho = 2,20$ г/см³, n (6328Å) = 1,457, $(p_{12})_0 = 0,270$ [5]. Спектри РМБР досліджуваних стекол системи (As₂S₃)_{100-х} (Sb₂S₃)_х представлені на рис. 1. Інтенсивність поздовжніх компонент I_{ME} в стеклах пропорціональна коефіцієнту екстинкції α_{ME} і для однієї компоненти МБР дається наступним співвідношенням:

$$\alpha_{ME} = \left(\frac{8\pi^3}{3}\right) \cdot \left(\frac{kT}{\lambda^4}\right) \cdot \left(\frac{p_{12}^2}{\rho v_L^2}\right) \cdot n^8.$$
 (6)

Експериментально одержавши відношення $\eta = I_P/I_{ME}$ можна знайти коефіцієнт екстинкції для релеєвської компоненти розсіювання в стеклах $\alpha_P = \eta \cdot \alpha_{ME}$ (в см⁻¹). Експериментальні дані наведені в таблиці.

Рис. 1. Спектри РМБР стекол (As₂S₃)_{100-x}(Sb₂S₃)₁₀₀, для х: *1*-0, *2*-0.03, *3*-0.15, *4*-0.2, *5*-0.25, *6*-0.3

Результати досліджень спектрів РМБР стекол по розрізу $(As_2S_3)_{100-x} \times (Sb_2S_3)_x$ показують, що спектр розсіяного світла складається з центральної компоненти з інтенсивністю I_P і пари поздовжніх гіперзвукових хвиль з інтенсивністю *I*_{ME} (рис. 1). По відношенню цих інтенсивностей можна визначити структурночутливі параметри (спів відношення Ландау-Плачека, швидкість гіперзвукових хвиль, адаіабатичну пружньооптичну постійну (*p*₁₂)_{*ad*}, високочастотний поздовжній пружній модуль M_{∞} і втрати на розсіювання (α_{MB}), концентраційні залежності яких приведені в таблиці та на рис. 2. Характерною особливістю цих залежностей є незначна їх зміна при невеликих концентраціях сурми та з подальшим зростанням параметрів R_{JIII} , (p12)ad, амб при зміні складу, починаючи зі складу (As₂S₃)₈₀(Sb₂S₃)₂₀. Аналіз розрахунку швидкостей поздовжніх гіперзвукових хвиль по величинам мандельштамбріллюенівських зсувів Δv за допомогою співвідношення (1) з даними акустичних вимірювань, вказує на їх різницю, що не перевищує межі похибок, тобто на відсутність дисперсії швидкості гіперзвуку при кімнатній температурі на частотах 14-16 ГГц. При збільшенні вмісту сульфіду сурми проходить лінійне зростання величини поздовжнього гіперзвуку, що пов'язано як з різницею силових постійних зв'язків As-Sb(S) [4], так із зміною (збільшенням) жорсткості структурно-хімічного каркасу вихідного складу вже при незначних концентраціях сурми в складі сплавів і, як наслідок, повинна збільшуватись швидкість звуку в них, що і спостерігається на експериментi.

Рис. 2. Концентраційна залежність співвідношення $R_{Л\Pi}(1)$ і $V_L(2)$ стекол $(As_2S_3)_{100-x} (Sb_2S_3)_x$.

Незначна залежність $R_{ЛП}$ і втрат на розсіювання α_{ME} від $x \le 20$ моль.% змінюється більш різкою при наближенні до Sb₂S₃. Це може бути пов'язане з топологічними змінами в структурі яке приводить до посилення зв'язності матриці сплавів при заміщенні атомів Sb на As.

Дійсно, структурно-оптичні дослідження показали [9-14], що вже незначні добавки сурми приводять до порушення зв'язності структурно-хімічного каркасу вихідного скла, утворюються обриви зв'язків, кінці яких насичуються сурмою. Це, очевидно, приведе при значному вмісту Sb до диспергування неперервної трьохмірної сітки скла з утворенням ліквуючих ділянок, які слабко утримуються між собою вандервальсівськими зв'язками.

Симботна концентраційна поведінка співвідношення Ландау-Плачека R_{ЛП} та коефіцієнтів екстинкції амб вказують на визначальну роль флуктуацій концентрації в релеїське розсіювання досліджуваних стекол. При цьому слід враховувати, що флуктуації густини, «заморожені» при $T=T_g$ при подальшому охолодженні посилюються за рахунок мікроскопічних внутрішніх напружень або за рахунок взаємодії мікродомішками, 3 тобто існування неоднорідностей технологічного походження також впливає на величину співвідношення Ландау-Плачека і,

відповідно, вкладів α_{ME} та α_P [15]. Дійсно, якщо підсилення статичних флуктуацій концентрації зв'язане з внутрішніми напруженнями, то воно повинно залежати від охолодження і відпалу. Підтвердженням цьому служать результати дослідження впливу технологічних режимів синтезу, чистоти і способів отримання на оптичні і рефрактометричні параметри халькогенідних стекол [16]. Очевидно, що слід враховувати також і той факт, що більша нерівноважність структури, що виникає при охолодженні розплаву зі значними швидкостями, призводить до зростання не тільки структурного, але й хімічного розупорядкування [11].

Висновки

Таким чином, результати дослідження спектрів РМБР халькогенідних стекол (As_2S_3)_{100-x}(Sb_2S_3)_x вказують на відсутність дисперсії швидкості гіперзвуку до 16 ГГц. Суттєві зміни $R_{ЛП}$, (p_{12})_{ad} та α_{ME} спостерігаються в області значного вмісту сульфіду сурми в сплавах і досягають мінімуму при x = 15 моль.% Sb₂S₃. Концентраційна зміна структурно-чутливих параметрів, визначених із спектрів РМБР, в цілому відображає ступінь розвитку флуктуаційних неоднорідностей густини та концентрації досліджуваних стекол.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- Teteris J., Reifelde M. Application of amorphous chalcogenide semiconductors thin films in optical recordig technologies // J. of Optoelektronics and Advenced Materials. – 2003. – V. 5. – No. 5. – P. 1355 - 1360.
- Pedlikova J., Zavadil J., Prochazkova O., Lezal D. Special glasses for infrared applications // J. of Optoelektronics and Advenced Materials. – 2007. – V.9. – No.6. – P. 1679-1682.
- 3. Венгер Е.Ф., Мельничук А.А., Стронский А.В. Фотостимулированные процессы в халькогенидных

стеклообразных полупроводниках и их практическое применение. – Киев. Академпериодика, 2007. – 283 с.

- Мельниченко Т.М., Феделеш В.І., Юркін І.М., Рубіш В.М. Залежність енергії утворення і об'єму мікропорожнин від структури скла в потрійних системах As-S(Se)-I // Наук. вісник Ужгород. ун-ту. Сер. Фізика. – 1998. – № 2. – С. 27-30.
- Ритус А.И. Исследование мандельштам-бриллюэновского рассеивания света в кристаллах и стеклах. – Метод МБР в квантовой электронике и лазерное разрушение. (Труды

ФИАН; Т. 137): (Сборник статтей). – Москва. Наука, 1982. – 192 с.

- Фабелинский М.Л. Молекулярное рассеяние света. – Москва. Наука, 1965. – 362 с.
- Карапетян Г.О., Максимов Л.В. Мандельштам-бриллюэновская спектроскопия стекла // Физика и химия стекла. – 1989. – Т.15. – №3. – С. 346–365.
- Thorpe M.F, Cai Y. Mechanical and vibrational properties of networks structures // J. Non-Grryst. Sol. – 1989. – V.114. – P. 19-24.
- Idrissi Radhni M.A., Lippens P.E., Oliver-Foursade J., Junas J.C. Local structure of glasses As₂S₃-Sb₂S₃ system // J. Non-Gryst. Solids. 1995. V.182-193. №1. P. 191–194.
- 10. Sava F. Structure and properties of chalcogenide glasses in the system $(As_2S_3)_{1-x}(Sb_2S_3)_x$ // Journal of Optoelectronics and Advanced Materials. – 2001. – V. 3. – No. – P. 425 – 432.
- Шпак А.П., Рубиш В.М. Склоутворення і властивості сплавів в халькогенідних системах на основі миш'яку та сурми – Київ: Академ-

періодика, 2006. – 124 с.

- Kato M., Onari S., Arai T. Far infrared and Raman spectra in (As₂S₃)_{1-x}(Sb₂S₃)_x glasses // Jap. J. Appl. Phys. – 1983. – V.22. – P. 1382–1387.
- Kamitsos E.I., Kapoutsis J.A., Culeac I.P., Iovu M.S. Structure and bonding in As-Sb-S chalcogenide glasses by infrared reflectance // J. Phys. Chem. B. 1997. V.101. P. 11061–11067.
- 14. Pop M.M., Shpak I.I. Optical absorption edge of $As_{40-x}Sb_xS_{60}$ glassy alloys // Journal of Applied Spectroscopy. 2011. V.79. N.2. P. 248-253.
- Шпак И.И., Росола И.И., Евич Р.И., Перечинский С.И., Высочанский Ю.М. Рэлеевское и манделыштам-бриллюэновское рассеяние света в халькогенидных стеклах системы (As₂S₃)I_{1-x} // ЖПС. – 2008. – Т.75. – №6. – С. 814–818.
- Росола И.И., Зацаринная Т.А., Боранова Л.П., Химинец В.В. Влияния условий синтеза на физико-химические свойства стеклообразного As₂S₃ // УФЖ. 1987. Т.32. №18. С. 1256 1261.

Стаття надійшла до редакції 03.06.13

M.M. Pop¹, I.I. Shpak¹, S.I. Perechinskii¹, Yu.M. Vysochanskii¹, M.Yu. Rigan²

¹Uzhhorod National University, 88000, Ukraine, Uzhhorod, Pidgirna Str., 46 e-mail: misha_pop@i.ua

²Uzhhorod Sceintific-Techological Center of IIR NAS of Ukraine, 88000, Ukraine, Uzhhorod, Zamkovi Schodi Str., 4

RAYLEIGH–BRILLOUIN SCATTERING IN CHALCOGENIDE GLASSES OF THE As-Sb-S SYSTEM

The rayleigh light scattering in chalcogenide glasses of the $(As_2S_3)_{100-x}$ $(Sb_2S_3)_x$ system for $x = 0 \div 30$. The velocities of longitudinal hypersound, Landau–Placzek ratios, adiabatic elastooptical constants, elasto-optical constants, extinction coefficients, and scattering losses have been determined. The concentration behaviors of these parameters were carried out.

Keywords: chalcogenide glass, Raleigh scattering, Landau-Placzek ratio, optical losses.

М.М. Поп¹, И.И. Шпак¹, С.И. Перечинський¹, Ю.М. Височанський¹, М.Ю. Риган²

¹Ужгородський национальный университет, 88000, Украина, Ужгород, ул. Пидгирна, 46 e-mail: misha_pop@i.ua

²Ужгородський научно-технический центр ИПРИ НАН Украины, 88000, Украина, Ужгород, ул. Замковые сходы, 4

РЕЛЕЕВСКОЕ И МАНДЕЛЬШТАМ-БРИЛЛЮЭНОВСКОЕ РАССЕЯНИЕ В ХАЛЬКОНИДНЫХ СПЛАВАХ СИСТЕМЫ As-Sb-S

Исследовано релеевское и мандельштам-бриллюэновское рассеяния света (РМБР) в халькогенидных стеклах системы As-Sb-S по разрезу (As_2S_3)_{100-х} (Sb_2S_3)_х, $x = 0 \div 30$. Определены скорости продольного гиперзвука, отношение Ландау-Плачека $R_{Л-П}$, адиабатические упругооптические постоянные (p_{12})_{ad}, и рассчитаны потери на рассеяние. Проведен анализ концентрационного поведения указанных структурно-чувствительных параметров.

Ключевые слова: халькогенидные стекла, релеевское рассеяния, отношение Ландау-Плачека, оптические потери.