FLUORESCENT PROBES FOR DETERMINATION OF PRO/ANTIOXIDANT PROPERTIES OF AMINO ACIDS IN THE PRESENCE OF Cu (II) IONS

<u>O. Milach</u>¹, O. Logvin, I. Mel'sitova¹, I. Yurkova^{1,2} ¹Belarussian State University

'Belarussian State University Analytical Chemistry Department

²Research Institute of Physicochemical Problems, Belarussian State University, Minsk, ul. Leningradskaya 14, Belarus

linsk, ul. Leningraaskaya 14, Belaru

e-mail: <u>yurkovail@tut.by</u>

Reactive oxygen species (ROS: HO[•], O₂^{••}, H₂O₂, HClO) formation in the body occurs via several mechanisms, involving both endogenous and environmental factors. ROS can induce damage to proteins, lipids, DNA and, as a result, the development various diseases. Especially, the HO[•] radicals play an important role in many disease states due to a higher oxidation potential. One of the ways of HO[•] formation in the body is the decomposition of H₂O₂, catalyzed by transition metal ions (Fe²⁺, Cu²⁺, etc.). The formation of ROS in biosystems is controlled by various endogenous and exogenous compounds - antioxidants, acting through various mechanisms. Due to the high reactivity of HO[•], it is important to assess the potential of compounds to accept these particles and, thus, reduce the likelihood of free radical damage to cell components. Fluorescent probes can detect short-lived active particles.

The ability of some *amino acids* to acceptance or mediate the formation of HO[•] by means of a molecular probe, terephthalic acid (TFA), generating with HO[•] a fluorescent product (2-HO-TFA), has been studied. The antiradical properties of compounds (i.e., the ability to accept HO[•]) were evaluated by their effect on the kinetics of TFA hydroxylation and the IC₅₀ index. To determine the relative reaction rate constant ($k_{S,HO^•}$) of the test compound (S) with HO[•], the method of competing reactions was used.

It has been established that cysteine (Cys) and N-acetylcysteine (ACC) in combination with Cu^{2+} ions or vitamin B_{12} (cyanocobalamin) induce the formation of HO⁻. It has been shown that under the conditions of $Cu^{2+}/H_2O_2(0.05/5; 0.1/1 \text{ mM})$ -mediated generation of HO⁻ in a series of sulfurcontaining amino acids at the concentrations range of (0.005-10 mM) methionine and methionine sulfoxide are unambiguously effective HO⁻scavengers. Taurine has a low anti-radical activity. Cys and ACC at low concentrations (0.005-0.1 mM) exhibit pro-oxidant properties, promoting an increase in HO⁻ amount, at high concentrations become effective antioxidants. Under these conditions, glycine (Gly), α -alanine (Ala) and β -alanine at low doses (0.005–0.1 mM) do not show any antiradical activity. However, in the concentration range of (0.15–2.5 mM), Gly and α -Ala are better HO⁻-scavengers than β -Ala. These results are useful for understanding the pro-oxidant and cytotoxic properties of the studied biologically active compounds.