УДК 539.173.3 О.С. Шевченко¹, Ю.Н. Ранюк¹, А.Н. Довбня¹, В.Т. Маслюк², О.А. Парлаг², В.И. Касилов¹, В.А.Кушнир¹, В.В. Митроченко¹, С.С. Кандыбей¹ ¹Национальный научный центр "Харьковский физико-технический институт" 61108, Харьков, ул. Академическая, 1 е-mail: oksshevchenko@mail.ru ²Институт электронной физики НАН Украины 88017, Ужгород, ул. Университетская, 21

ИССЛЕДОВАНИЕ ФОТОДЕЛЕНИЯ ^{nat}Pb

Представлены результаты теоретического и экспериментального исследования фотоделения ^{nat}Pb под действием тормозного излучения энергией 90,8 МэВ.

Ключевые слова: фотоделение, продукты деления, тормозное излучение, гамма-спектроскопия, ^{nat}Pb.

Введение

В настоящее время внимание мировой научной общественности привлечено к решению проблем ядерной энергетики: трансмутации долгоживущих радиоактивных отходов и созданию безопасных энергетических ядерных установок [1, 2].

В Национальном научном центре "Харьковский физико-технический институт" реализуется программа создания ядерной установки "Источник нейтронов, основанный на подкритической сборке, управляемой ускорителем электронов" [3].

Элементы типа Pb, Ta, Au, Bi, Hg, W, Th u U могут быть использованы в системах, управляемых ускорителем, как материал для мишеней при производстве нейтронов [4].

Основным механизмом образования нейтронов электронами в тяжёлых ядрах являются фотоядерные реакции (γ , n), (γ , xn) и реакция фотоделения (γ , f). Сложность деления атомных ядер, обусловлена кардинальным перераспределением заряда и массы, а также образованием сильнодеформированных и сильновозбужденных осколков, приводящих к тому, что до сих пор не достигнуто детальное описание динамики и механизма этого процесса [5].

Настоящая работа посвящена теоретическому и экспериментальному исследованию фотоделения ^{nat}Pb.

Теоретическое исследование

Теория деления средне-тяжелых ядер, среди которых изотопы Pb, Ta, Au, Bi, Hg, развита значительно меньше, чем, например, для трансурановых элементов. В данработе для описания массовых ной (зарядовых) спектров деления изотопов Рb используется метод, предложенный в работах [6-8] и основанный на исследовании устойчивости ансамбля 2-х осколковых кластеров, образованных после деления исходного ядра. Результаты таких расчетов, проведенных при учете эмиссии нейтронов деления, представлены на рис. 1. Особенностью их является различное поведение массовых (а) и зарядовых (б) выходов осколков деления для различных изотопов свинца. Так, для изотопов ряда ²⁰⁶Pb - ²⁰⁷Pb - ²⁰⁸Pb наблюдается увеличение анизотропии массовых выходов, тогда как для зарядовых – имеет место противоположная тенденция. Из рис. 1 также видно, что при увеличении Т имеет место симметризация спектров выхода осколков деления. Расчет показывает, что при делении изотопов 206,207,208 Рb найбольшую вероятность образования имеют осколки: ${}^{93-98}$ Sr - ${}^{108-114}$ Ru, ${}^{88-92}$ Kr - ${}^{114-119}$ Pd, ${}^{98-104}$ Zr - ${}^{104-108}$ Mo.

Причем эта тенденция общая для всех значений энергии возбуждения (температуры) исходного изотопа^{nat}Pb.

Рис. 1. Массовые (а) и зарядовые (б) спектры осколков деления изотопов-компонент ^{nat}Pb (²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb), полученные для различных значений Т - энергии возбуждения (температуры) исходного ядра.

Эксперимент

Экспериментальное исследование проведено с использованием фотоактивационной методики. Схема эксперимента показана на рис. 2.

Рис. 2. Схема эксперимента.

Пучок электронов направлялся на вольфрамовый диск толщиной 2 мм (тормозную мишень), за которым располагался алюминиевый поглотитель толшиной 13 мм. Облучаемые мишени помещались за алюминиевым поглотителем. В качестве мишени использовался свинец естественного изотопного состава (^{nat}Pb) диаметром 30 мм и толщиной 20 мкм. Вылетевшие из мишени осколки накоплялись в полиэтиленовой пленке толщиной 40 мкм, которая устанавливалась после каждой мишени из ^{nat}Pb. Активация мишеней производилась в течении 2 часов энергией электронов 90,8 МэВ. Средний ток пучка составлял 3 мкА. Структура и принцип работы ускорителя подробно изложены в работе [9]. Измерения, наведенной в мишенях активности, осуществлялись с использованием коаксиального детектора из сверхчистого германия (HPGe) с энергетическим разрешением 1,8 кэВ для линии 1332 кэВ ⁶⁰Со на протяжении 50 часов. Время измерений составляло от 50 мин до 10 часов.

На рис. 3 приведены фрагменты аппаратурных спектров остаточной активности полиэтиленовой мишени.

Рис. 3. Фрагменты аппаратурных спектров остаточной активности полиэтиленовой мишени.

Рис. 4. Выходы продуктов фотоделения ^{nat}Pb.

Интерпретация спектров осуществлялась с учетом данных теоретического расчета и спектроскопических таблиц [10]. Выявлены следующие продукты фотоделения ^{nat}Pb:

⁹¹Sr (1024,3), ⁹²Sr (1383,9), ^{91m}Y (555,5), ⁹²Y(934,4), ⁹⁷Zr(743,4), ⁹⁷Nb(658,1), ⁹⁹Mo (140,5), ¹⁰⁵Ru (724,2), ¹⁰⁵Rh (319,1), ¹¹²Ag (617,4), ¹¹³Ag (298,5), ¹¹⁵Cd (336,24), ¹¹⁷Cd (1303,2), ¹¹⁷In (553,0). Здесь в скобках приведены энергии гамма-линий (кэВ). Статистическая ошибка измерения интенсивности пиков полного поглощения не превышала 5-8%.

Выходы продуктов фотоделения ^{nat}Pb в зависимости от массового числа осколка представлены на рис. 4.

Анализ результатов и выводы

Следует отметить, что для данных условий эксперимента осколки деления ^{nat}Pb определены впервые. Результатом эксперимента является симметричная форма кривой выхода осколков фотоделения ^{nat}Pb. Согласно расчету (см. рис.1) это свидетельствует об высоких значениях фотовозбуждения ^{nat}Pb и превалировании симметричных компонент осколков деления. Отметим, что эта же тенденция наблюдалась другими авторами (см., например, [11]).

В результате совместного анализа результатов теоретического и экспериментального исследования нами предложены такие цепочки β -распадов, объясняющие наличие в эксперименте продуктов фотоделения ^{nat}Pb, которые показаны на рис. 5. Здесь жирным печатным текстом выделены осколки деления, ^{nat}Pb полученные в результате теоретического расчета.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Rubbia C., Rubio J.A., Buono S. et. al. Conseptual Desing of a Fast Neutron Operated Hight Power Energy Amplifer. CERN/AT/95-44 T.
- Proc. of the Internat. Workshop Nuclear Methods for Transmutations of Nuclear Waste. Problems, Perspectives, Cooperetive Research. Dubna, Russia, 29-31 May, 1996. Eds. M. Kh. Khankhasayev, H.S. Plendl, Z.B. Kurmanov. Word Scientific. Singapure, New Jersey, London, Hong Kong.
- Айзацкий Н.И., Борц Б.В., Водин А.Н. и др. Источник нейтронов ННЦ ХФТИ // ВАНТ. – 2012. – № 3. – С. 3-9.
- Обухов И.А. Деление ядер при взаимодействии с протонами и нейтронами промежуточных энергий // ЭЧАЯ. – 2001. – Т. 32, вып. 2. –

Жирным прописными литерами обозначены продукты деления, выявленные в эксперименте.

$${}^{91}\mathbf{Kr}_{8.5c} \rightarrow {}^{91}\mathbf{Rb}_{584c} \rightarrow {}^{91}Sr_{96x} \rightarrow {}^{91}Y_{585\,\mu_{Re}} \rightarrow {}^{91}Zr_{crv6.}$$

$${}^{92}\mathbf{Kr}_{1.8c} \rightarrow {}^{92}\mathbf{Rb}_{4.4c} \rightarrow {}^{92}Sr_{2.7x} \rightarrow {}^{92}Y \rightarrow {}^{92}Zr_{crv6.}$$

$${}^{97}\mathbf{Sr}_{426\,\mu_{K}} \rightarrow {}^{97}Y_{3.7c} \rightarrow {}^{97}Zr_{16.9\,\mu} \rightarrow {}^{97}Mb \rightarrow {}^{97}Mo_{crv6.}$$

$${}^{99}\mathbf{Sr}_{426\,\mu_{K}} \rightarrow {}^{97}Y_{150\,c} \rightarrow {}^{97}Zr_{16.9\,\mu} \rightarrow {}^{97}Mb \rightarrow {}^{97}Mo_{crv6.}$$

$${}^{99}\mathbf{Zr}_{2.1c} \rightarrow {}^{99}Nb \rightarrow {}^{99}Mo_{65.9\,\mu} \rightarrow {}^{99}Tc \rightarrow {}^{99}Ru_{crv6.}$$

$${}^{105}\mathbf{Mo}_{7.6\,\mu_{Rec}} \rightarrow {}^{105}Tc \rightarrow {}^{105}Ru \rightarrow {}^{105}Rh \rightarrow {}^{105}Pd_{crv6.}$$

$${}^{112}\mathbf{Ru}_{1.7c} \rightarrow {}^{112}\mathbf{Rh}_{2.1c} \rightarrow {}^{112}Pd \rightarrow {}^{112}Ag \rightarrow {}^{112}Cd_{crv6.}$$

$${}^{113}\mathbf{Ru}_{1.7c} \rightarrow {}^{113}\mathbf{Rh}_{2.8\,c} \rightarrow {}^{113}Pd \rightarrow {}^{113}Ag \rightarrow {}^{113}Cd \rightarrow {}^{113}\mathbf{In}_{crv6.}$$

$${}^{115}\mathbf{Pd}_{2.5\,c} \rightarrow {}^{117}Ag \rightarrow {}^{117}Cd \rightarrow {}^{117}\mathbf{In}_{33\,4\nu} \rightarrow {}^{117}\mathbf{Sn}_{44\,4\nu} \rightarrow {}^{117}\mathbf{Sn}_{43\,5c} \rightarrow {}^{117}Ag \rightarrow {}^{117}\mathbf{Sn}_{crv6.}$$

Рис. 5. Цепочки β -распадов фотоделения ^{nat}Pb.

Анализируя рис. 5, можно заключить о хорошем согласии между расчетными и экспериментальными данными. Отметим также необходимость постановки новых экспериментов, особенно, при низких энергиях деления ^{nat}Pb с целью обнаружения анизотропии выхода его осколков деления.

C. 318–367.

- 5. Грузевич О.Т.Эмиссия нейтронов и γквантов из осколков деления // http://www.ippe.ru/podr/cjd/vant/00-1/1-05.pdf
- Маслюк В.Т. Статистична модель двофрагментарного поділу // УФЖ. – 1996. – Т.41, № 11-12. – С. 1029-1031.
- Maslyuk V.T. New statistical approach to the systematization of heavy nuclei fission fragment // Intern. J.Phys. – 2000. – V.6, N. 1-2. – P.1-8.
- Маслюк В.Т., Парлаг О.А., Маринец Т.И. Исследование массовых спектров изотопов Кг и Хе при делении легких актинидов в рамках нового статистического подхода // ЭЧАЯ. 2007. Т.4, №1(137). С. 78-84.

9. Айзацкий Н.И., Белоглазов В.И.,

Божко В.П. и др. Ядерно-физический комплекс на основе линейного ускорителя электронов с энергией до 100 МэВ // VANT. Nuclear Physics Investigations. – 2010. –№ 2. – Р. 18-22.

10. Firestone R.B. WWW Table of

Radioactive Isotopes. Version 2.1, January 2004. http://ie.lbl.gov/toi/.

 Naik H., Kim G., Goswami A. et. al. Mass-yield distribution of fission products from photofission of ^{nat}Pb inducated by 50-70 MeV bremsstrahlung // J. Radional. Nucl. Chem. – 2010. – 283. – P. 439-445.

Стаття надійшла до редакції 20.10.2012

O.S. Shevchenko¹, Yu. M. Ranyuk¹, A.M. Dovbnya¹, V.T. Maslyuk², O.O. Parlag², V.I. Kasilov¹, W.A. Kushnir¹, V.V. Mitrochenko¹, S.S. Kandybey ¹National Science Center "Kharkov Institute of Physics and Technology" 61108, Kharkiv, Akademichna Str., 1 e-mail: oksshevchenko@mail.ru ²Institute of Electron Physics, National Academy of Sciences of Ukraine 88017, Uzhhorod, Universitetskay Str., 21

INVESTIGATION Of ^{nat}Pb PHOTOFISSION

The results of theoretical and experimental research photofission ^{nat}Pb under the bremsstrahlung energy 90.8 MeV are present.

Keywords: photofission, products of fission, bremsstrahlung, gamma-spectroscopy, natPb.

О.С. Шевченко¹, Ю.М. Ранюк¹, А.М. Довбня¹, В.Т. Маслюк², О.О. Парлаг², В.І. Касилов¹, В.О. Кушнир¹, В.В. Митроченко¹, С.С. Кандибей¹ ¹Національний науковий центр "Харьківській фізико-технічний інститут" 61108, Харків, вул. Академічна, 1 е-mail: oksshevchenko@mail.ru ²Інститут електронної фізики НАНУ, 88017, Ужгород, вул. Університетська, 21

ДОСЛІДЖЕННЯ ФОТОПОДІЛУ^{nat}Pb

Представлено результати теоретичного та експериментального дослідження фотоподілу ^{паt}Pb під дією гальмівного випромінювання з максимальною енергією 90,8 MeB.

Ключові слова: фотоподіл, продукти поділу, гальмівне випромінювання, гаммаспектроскопія, ^{nat}Pb.