УДК 539.1.08, 539.198 В.І. Келемен, М.М. Довганич, Є.Ю. Ремета Інститут електронної фізики НАН України, 88017, Ужгород, вул. Університетська, 21 e-mail: remetov@inbox.ru

СПІНОВА ОБМІННА АСИМЕТРІЯ В ПРУЖНОМУ РОЗСІЮВАННІ ЕЛЕКТРОНА НА АТОМІ ЄВРОПІЮ

В рамках метода дійсного релятивістського оптичного потенціалу та в спінполяризованому наближенні досліджено пружне розсіювання електрона на атомі європію. Розраховані кутові залежності спінової обмінної асиметрії $A(E,\theta)$. Показано, що для енергій *d*- та *f*-резонансів форми асиметрія може досягнути великих (до 100 %) значень. В околах критичних мінімумів функція асиметрії також досягає відносно великих значень та має різку поведінку типу мінімум-максимум.

Ключові слова: релятивістський оптичний потенціал, пружне розсіювання, спінова обмінна асиметрія, резонанс форми, критичний мінімум.

Вступ

європію Атом відноситься ло лантаноілів елементів періодичної _ Таблиці з електронними конфігураціями $[Xe]4f^n 6s^2$ (*n*=3–7 і 9–14) та має конфігурацію [Xe] $4f^76s^2$ з напівзаповненою субвалентною 4f підоболонкою. Для різноманітних досліджень розсіювання поляризованих електронів на поляризованій мішені цей атом є єдиним зручним елементом з такою напівзаповненою підоболонкою. Тому є певний інтерес до вказаного теоретичного вивчення особливостей потенціального розсіювання електрона на атомі Еи.

Відмітимо, що в роботі [1] було виміряно, у відносних одиницях, енергетичну залежність диференціального перерізу (ДП) пружного розсіювання на кут 90° в інтервалі енергій зіткнень 1-10 eV. В роботі [2] напіврелятивістське локальне наближення методу комплексного оптичного потенціалу (ОП) було використано для розрахунку перерізів розсіювання та параметрів спінової поляризації (функції S, U, T) для енергій налітаючих електронів 2-500 eV. Нещодавно у [3, 4] були представлені результати розрахунків ДП пружного розсіювання електронів на деяких атомах лантаноідів, в тому числі і на атомі Еи, при малих (до 1 eV) енергіях. Однак зауважимо, що для обчислень там було використано потенціал розсіювання типу Томаса-Фермі, який хоча і має правильну асимптотику, але містить два довільні параметри.

У роботах [5-7] нами було розглянуто пружне розсіювання електронів на атомах з напівзаповненою підоболонкою в спінполяризованому наближенні з врахуванням спін-орбітальної взаємодії. Наприклад, в [5] було використано локальне спінове наближення комплексного ОП для обчислення спінової обмінної асиметрії $A(E,\theta)$ та ДП пружного е-Еи розсіювання при 10 eV. Оптичні потенціали взаємодії були представлені в спін-поляризованому наближенні – з врахуванням залежності від спіна не тільки обмінних, але і кореляційно-поляризаційних потенціалів. При цьому обмінна взаємодія налітаючого електрона з фіксованим напрямком спіна із спінполяризованим атомом відбувається з електронами відповідної спінової під-У повідомленні [7] оболонки. було представлено кутову залежність функції $A(E, \theta)$ при деяких енергіях налітаючого електрона процесу е-Еи розсіювання.

У даній статті пружне е-Еи розсіювання досліджено з більш повним врахурелятивістських ефектів ванням розсіюванні, ніж це було зроблено у [5-7]. Спін-поляризоване наближення тут застосовано для дослідження кутової залежності параметра спінової обмінної асиметрії у пружному розсіюванні електронів атомами європію В широкій області енергій взаємолії 0-500 eВ.

Теоретичний метод

Атом європію в основному стані має напівзаповнену 4f⁷-підоболонку. Відповідно до правила Хунда така система має максимальний спін 7/2. В наближенні локальної спінової густини (ЛСГ) теорії функціоналу густини (ТФГ) всю електронну оболонку атома Eu (Z=63) розбивають на дві заповнені спінові підоболонки: 35 електронів спіна вверх (sp= \uparrow) та 28 електронів спіна вверх (sp= \downarrow). В результаті атомного розрахунку для цих підоболонок маємо дві електронні спінові густини $\rho_{\uparrow}(r)$ та $\rho_{\downarrow}(r)$ Повна електронна густина

дорівнює $\rho(r) = \rho_{\uparrow}(r) + \rho_{\downarrow}(r)$

Обмінна взаємодія налітаючого електрона з фіксованим напрямком спіна із спін-поляризованим атомом можлива лише з електронами відповідної підоболонки. Таким чином, процес розсіювання може бути розглянуто для двох випадків, коли орієнтація спінів налітаючого електрона та атома співпадають – розсіювання з паралельними ($\lambda = \uparrow \uparrow$) спінами, і коли ці спіни мають протилежну орієнтацію – розсіювання із антипаралельними ($\lambda = \downarrow \uparrow$) спінами. Характеристики розсіювання для цих випадків розраховані з використанням дійсного релятивістського оптичного безпараметричного потенціалу

$$V_{\lambda}^{\pm}(r,E) = V_{st}(r) + V_{ex}^{\lambda}(r,E) + V_{pol}^{\lambda}(r) + V_{so}^{\pm}(r,E) + VRS(r,E)$$
(1)

Ми використовуємо атомну систему одиниць (а.о.): $\hbar = e = m_e = 1$, $E = k^2/2$, де E – енергія та k – імпульс налітаючого електрона. Позначення '±' відповідає величині повного кутового моменту електрона $j = \ell \pm 1/2$, де ℓ – орбітальний момент електрона.

У виразі (1) $V_{st}(r)$ – статичний, $V_{ex}^{\lambda}(r,E)$ – обмінний та $V_{pol}^{\lambda}(r)$ – поляризаційний потенціали. Релятивістські ефекти в розсіюванні враховані шляхом використання потенціалу спін-орбітальної

взаємодії $V_{so}^{\pm}(r, E)$ та скалярної частини *VRS*(*r*, *E*) релятивістського Діраківського потенціалу.

Статичний потенціал $V_{st}(r)$, спінові електронні густини $\rho_{sp}(r)$ та повна густина $\rho(r)$ знайдено чисельно у самоузгодженому атомному розрахунку у межах скалярно-релятивістського та ЛСГ наближень ТФГ з виключенням енергії самодії електронів. Ці величини апроксимовані аналітичними виразами, подібними до виразів в [8]

$$V_{st}(r) = -\frac{Z}{r} \left[\sum_{i=1}^{n} A_i \exp(-B_i r) + r \sum_{j=1}^{m} C_j \exp(-D_j r) \right],$$
(2)

$$\rho_{sp}(r) = \frac{N_{sp}}{4\pi r} \left[\sum_{i=1}^{n} A_i B_i^2 \exp(-B_i r) + \sum_{j=1}^{m} C_j D_j (D_j r - 2) \exp(-D_j r) \right].$$
(3)

Тут величини *n*, *m* та параметри *A*, *B*, *C*, *D* знайдені із найкращого наближення до розрахованих значень вихідних таблиць. Так, в (2) сума береться до *n*=6 та *m*=6. Для обчислення $\rho_{\uparrow}(r)$ та $\rho_{\downarrow}(r)$ в рівнянні (3) $N_{\uparrow} = 35$ та $N_{\downarrow} = 28$, відповідно, а значення *n*=6 та *m*=6 однакові в обох випадках. Для обчислення повної густини $\rho(r)$ також

використано вираз (3), але із заміною $N_{sp} \rightarrow N_{\uparrow} + N_{\downarrow} = Z$, суми обчислюються до *n*=6 та *m*=6, а параметри *A*, *B*, *C* і *D* мають ті ж значення, що і для розрахунку $V_{st}(r)$ в (2).

Потенціал спін-орбітальної взаємодії $V_{so}^{\pm}(r, E)$ пропорційний похідній dV_{st}/dr та має вигляд [9]

$$V_{so}^{\pm}(r,E) = \zeta^{\pm}(j,\ell) \frac{\chi}{r} \frac{dV_{st}}{dr}$$

де $\zeta^+(j,\ell) = \ell/2$ для $j = \ell + 1/2$ і $\zeta^-(j,\ell) = -(\ell+1)/2$ для $j = \ell - 1/2$ та α – постійна тонкої структури. Для врахування скалярних релятивістських поправок використовується Діраківський потенціал [10]

$$VRS(r, E) = -\frac{\alpha^2}{2} V_{st}^2 + \frac{\chi}{4} \frac{d^2 V_{st}}{dr^2} + \frac{3\chi^2}{8} \left(\frac{dV_{st}}{dr}\right)^2 .$$
 (5)

Спіновий потенціал обмінної взаємодії $V_{ex}^{\lambda}(r, E)$ у наближенні вільного поляризованого електронного газу (див., наприклад, [5, 11] і посилання там) має вигляд

$$V_{ex}^{\lambda}(r,E) = -\frac{k_F^{sp}(r)}{\pi} \left(1 + \frac{1 - \eta_{sp}^2}{2\eta_{sp}} \ln \left| \frac{1 + \eta_{sp}}{1 - \eta_{sp}} \right| \right).(6)$$

Для випадку, коли $\lambda = \uparrow \uparrow$ імпульс Фермі $k_F^{sp}(r) = k_F^{\uparrow}(r) = [6\pi^2 \rho_{\uparrow}(r)]^{1/3}$, і для випадку $\lambda = \downarrow \uparrow - k_F^{sp}(r) = k_F^{\downarrow}(r) = [6\pi^2 \rho_{\downarrow}(r)]^{1/3}$. У виразі (6) величина $\eta_{sp}(r, E) = k_s^{sp}(r, E) / k_F^{sp}(r)$, а імпульс розсіяного електрона $k_s^{sp}(r, E)$

імпульс розсіяного електрона $k_s^{op}(r, E)$ має вигляд (див., також, вираз (5) в [11])

$$\left[k_{s}^{sp}(r,E)\right]^{2} = k^{2} + \left[k_{F}^{sp}(r)\right]^{2} + 2I/\left[1 + \frac{1}{2}(kr)^{2}\right].$$

Для розрахунку $k_s^{sp}(r, E)$ використовується потенціал іонізації атома європію $I = 5.67045 \, eV$ [12].

Безпараметричний спіновий кореляційно-поляризаційний потенціал складається із двох частин на малих (SR) та великих (LR) відстанях:

$$V_{pol}^{\lambda}(r) = \begin{cases} V p_{SR}^{\lambda}(r), & r \le r_c^{\lambda} \\ V p_{LR}(r), & r > r_c^{\lambda} \end{cases}.$$
(7)

У внутрішній області атома спіновий потенціал $V_{pol}^{\lambda}(r)$ визначається кореляційною взаємодією налітаючого електрона з *N*-електронами мішені (див., наприклад, [5] та посилання там). На цих малих

$$\chi = \alpha^2 / [2 + \alpha^2 (E - V_{st})], \qquad (4)$$

відстанях, $r \leq r_c^{\lambda}$, кореляційна частина $Vp_{SR}^{\lambda}(r)$ поляризаційного потенціалу (7) має вигляд

$$Vp_{SR}^{\lambda}(r) = \varepsilon_{c}(r_{s},\zeta) - \frac{r_{s}}{3} \frac{\partial \varepsilon_{c}}{\partial r_{s}} \pm (1 \mp \zeta) \frac{\partial \varepsilon_{c}}{\partial \zeta} , \quad (8)$$

де верхній та нижній знаки відповідають $\lambda = \uparrow \uparrow$ випадкам та $\lambda = \downarrow \uparrow$. Густина кореляційної енергії $\varepsilon_{c}[r_{s}(r), \zeta(r)]$ визначається радіусом Вігнера $r_{\rm s}(r) = \{3/[4\pi\rho(r)]\}^{1/3}$ спінової функцією та поляризації $\zeta(r) = [\rho_{\uparrow}(r) - \rho_{\downarrow}(r)] / \rho(r)$. На великих відстанях, $r > r_c^{\lambda}$, потенціал має добpe відомий асимптотичний вигляд $Vp_{IR}(r) = -\alpha_d(0)/2r^4$. Величина статичної дипольної поляризації атома європію $\alpha_d(0) = 204.4 a_0^3$ одержана в [5] у локальному наближенні часозалежної ТФГ з релятивістським ефективним локальним потенціалом.

У випадку розсіювання з паралельними спінами ($\lambda = \uparrow \uparrow$) дві частини поляризаційного потенціалу (7), а саме, $Vp_{SR}^{\uparrow\uparrow}(r)$ та $Vp_{LR}(r)$, перетинаються вперше в точці $r_c^{\uparrow\uparrow} = 9.544 \ a_0$. У іншому випадку ($\lambda = \downarrow \uparrow$), дві частини поляризаційного потенціалу, $Vp_{SR}^{\downarrow\uparrow}(r)$ та $Vp_{LR}(r)$, перетинаються вперше в точці $r_c^{\downarrow\uparrow} = 11.6 \ a_0$.

У спін-поляризованому наближенні з використанням потенціалу $V_{\lambda}^{\pm}(r, E)$ (1) в результаті розрахунків маємо чотири набори дійсних парціальних фаз розсіювання $\delta_{\ell}^{\lambda,\pm}(E)$. Так, як і в попередніх роботах [5, 6, 11], для розрахунку фазових зсувів використаний метод фазових функцій [13, 14].

Маючи фази $\delta_{\ell}^{\lambda,\pm}(E)$, можна розрахувати "пряму" амплітуду розсіювання:

$$f^{\lambda}(E,\theta) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} \left\{ \left(\ell+1\right) \left[\exp(2i\delta_{\ell}^{\lambda,+}) - 1 \right] + \ell \left[\exp(2i\delta_{\ell}^{\lambda,-}) - 1 \right] \right\} P_{\ell}(\cos\theta)$$
(9)

та амплітуду розсіювання "з переворотом спіну":

$$g^{\lambda}(E,\theta) = \frac{1}{2ik} \sum_{\ell=1}^{\infty} \left[\exp(2i\delta_{\ell}^{\lambda,-}) - \exp(2i\delta_{\ell}^{\lambda,+}) \right] P_{\ell}^{1}(\cos\theta) \quad .$$
(10)

Тут θ – кут розсіювання, $P_{\ell}(\cos \theta)$ – многочлен Лежандра, $P_{\ell}^{1}(\cos \theta)$ – приєднана функція Лежандра першого роду. Спінові диференціальні перерізи паралельного $d\sigma^{\uparrow\uparrow}/d\Omega$ та антипаралельного $d\sigma^{\downarrow\uparrow}/d\Omega$ пружного розсіювання визначаються цими амплітудами

$$\frac{d\sigma^{\lambda}}{d\Omega}(E,\theta) = \left| f^{\lambda}(E,\theta) \right|^2 + \left| g^{\lambda}(E,\theta) \right|^2.$$
(11)

Параметр спінової обмінної асиметрії $A(E, \theta)$ при розсіюванні повністю поляризованого пучка електронів на поляризованому атомі знаходимо як [5, 6]

$$A(E,\theta) = \frac{d\sigma^{\downarrow\uparrow} / d\Omega - d\sigma^{\uparrow\uparrow} / d\Omega}{d\sigma^{\downarrow\uparrow} / d\Omega + d\sigma^{\uparrow\uparrow} / d\Omega} \quad (12)$$

Обговорення результатів

На рис. 1 і 2 наведені кутові залежності параметра спінової обмінної асиметрії $A(E,\theta)$ при енергіях налітаючого електрона 0.9, 1.2, 4 та 4.8 еВ. Ці значення енергії *E* відносяться до енергетичних околів ряду резонансів форми. А саме, як бачимо у таблиці 1, мова йде про *d*- та *f*- резонанси форми.

Рис. 1. Кутова залежність функції спінової обмінної асиметрії $A(E, \theta)$ (в %) пружного розсіювання електрона на атомі Еu. Енергії налітаючого електрона 0.9 та 1.2 еВ з енергетичного околу *d*-резонансів форми (j=5/2) для паралельного і антипаралельного випадків, відповідно.

Кутова залежність $A(E,\theta)$ при 0.4 eB, енергія *f*-резонанса форми для *j*=7.2 та $\lambda=\uparrow\uparrow$, не наведена на рис. 1, оскільки величина асиметрії при цій енергії відносно мала – не перевищує 6.5%. Навпаки, для енергетичного околу інших резонансів форми характерні великі значення асиметрії, аж до –96% (для 1.2 eB при 136°) та +93% (для 4.8 eB при 126.5°).

Рис. 2. Кутова залежність функції спінової обмінної асиметрії $A(E, \theta)$ (в %) пружного розсіювання електрона на атомі Еu. Енергії налітаючого електрона 4 та 4.8 eB з енергетичного околу *f*-резонансів форми у антипаралельному випадку для j=5/2 та j=7/2, відповідно.

Відносно околу низькоенергетичного *p*-резонанса форми (див. табл. 1) відмітимо, що асиметрія для 0.077 еВ при 87° досягає також великих значень ~65%.

Таблиця 1

Енергетичні положення E_r^λ (eV) парціально-хвильових d- та *f*-резонансів форми

ℓ	j	$E_{\rm r}^{\rm TT}({\rm eV})$	$E_{\rm r}^{\downarrow\uparrow}$ (eV)
	1/2	0.077	0.078
1	3/2	0.072	0.077
	3/2	0.80	1.17
2	5/2	0.91	1.24
	5/2	0.351	4.04
3	7/2	0.403	4.75

Із збільшенням енергії *Е* величина асиметрії зменшується і досягає декількох десятків процентів тільки в околах критичних мінімумів ДП.

Нагадаємо, що критичними мінімумами ДП називають такі мінімуми, де досягаються найменші величини перерізів та спінова поляризація може бути повною (100%) [6]. Енергетичні та кутові положення цих мінімумів визначаються співвідношенням між комплексними амплітудами $f^{\lambda}(E, \theta)$ (9) та $g^{\lambda}(E, \theta)$ (10).

Рис. 3. Кутова залежність функції спінової обмінної асиметрії $A(E, \theta)$ (в %) пружного розсіювання електрона на атомі Еu. Енергії налітаючого електрона 6.9 та 47 еB з околів критичних мінімумів [7.1 eB; 125.88°] та [46.6 eB; 139.14°], відповідно.

На рис. 3 бачимо відносно великі значення асиметрії для енергій 6.9 еВ при куті 128° (до 40%) та для 47 еВ при кутах 138° і 140° (до 60%). Ці значення енергій та кутів відносяться до околів критичних мінімумів: [7.1 eB; 125.88°] та [46.6 eB; 139.14°]. Як видно на рис. 4, для енергій більших ніж 100 еВ асиметрія досягає менших значень, не більше за 30% при 145° для 149 еВ та –9% при 58° для 346 еВ. Останній мінімум функції $A(E, \theta)$ можна віднести до широкого околу критичного мінімуму при [290.6 eB; 62.46°], в якому значення асиметрії не перевищує 25%. Різку зміну в поведінці параметра $A(E, \theta)$ типу мінімум-максимум при 145° та 152° маємо для околів критичних мінімумів [148.6 eB; 144.65°] та [345.7 eB; 151.31°], відповідно.

Рис. 4. Кутова залежність функції спінової обмінної асиметрії $A(E, \theta)$ (в %) пружного розсіювання електрона на атомі Еu. Енергії налітаючого електрона 149 та 346 eB з околів критичних мінімумів [148.6 eB; 144.65°] та [345.7 eB; 151.31°], відповідно.

Висновки

У методі релятивістського дійсного оптичного потенціалу, з врахуванням спінорбітальних та скалярних релятивістських ефектів, теоретично вивчено поведінку функції спінової обмінної асиметрії процесу пружного розсіювання електрона на атомі європію. Оптичні потенціали розглянуто у спін-поляризованому підході, що базується на локальному спіновому наближенні теорії функціонала густини.

Показано, що потенціальне розсіювання електрона на атомі європію характеризується резонансами форми у парціальних р-, d-, f-хвилях. Розраховано енергії цих резонансів. Показано, що великі значення функція спінової асиметрії досягає як в околах d- та f-резонансів, так і в енергетичних та кутових околах критичних мінімумів диференціальних перерізів. Кутова поведінка функції асиметрії в цьому випадку має різку форму – типу мінімум-максимум.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- Казаков С.М., Христофоров О.В. Электронный спектр паров европия // ЖЭТФ. – 1984. – Т.86. – С. 835-846.
- Neerja, Tripathi A.N. Spin polarization of electrons elastically scattered from europium and bismuth atoms // Eur. Phys. J. D. – 2001. – Vol.13. – P. 5-10.
- Felfli Z., Msezane A.Z., Sokolovski D. Resonances in low-energy electron elastic cross sections for lanthanide atoms // Phys. Rev. A. – 2009. – Vol. 79. – P.012714 (19pp).
- Felfli Z., Msezane A.Z., Sokolovski D. Differential cross sections for low-energy electron elastic scattering by lanthanide atoms: La, Ce, Pr, Nd, Eu, Gd, Dy, and Tm // Phys. Rev. A. – 2009. – Vol. 79. – P. 062709, 10 pp.
- Remeta E.Yu., Kelemen V.I. Potential elastic electron scattering by atoms in the spin-polarized approach // J. Phys. B: At. Mol. Opt. Phys. – 2010. – Vol. 43. – P.045202 (10pp).
- Kelemen V.I., Remeta E.Yu. Elastic electron scattering from the antimony atom in the spin-polarized optical potential approach // J. Phys. B: At. Mol. Opt. Phys. – 2010. – Vol. 43. – P.235204 (18pp).
- 7. Kelemen V.I., Remeta E.Yu. Spin exchange asymmetry in the elastic

electron scattering by Eu atom // Proc. 5th Conf. on Elementary Process in Atomic Systems, Belgrad, Serbia. – 2011. – P. W9.

- Strand T.G., Bonham R.A. Analytical expressions for the Hartree-Fock potential of neutral atoms and for the corresponding scattering factors for X rays and electrons // J. Chem. Phys. – 1964. – Vol. 40. – P. 1686-1691.
- 9. Cowan R. Theory of Atomic Structure and Spectra / University of California Press, Berkeley. – 1981.
- Фок В.А. Начала квантовой механики. М.: Наука, 1976. – 376 с.
- Kelemen V.I., Remeta E.Yu., Sabad E.P. Scattering of electrons by Ca, Sr, Ba and Yb atoms in the 0-200 eV energy region in the optical potential approach model // J. Phys. B: At. Mol. Opt. Phys. – 1995. – Vol. 28. – P. 1527-1546.
- Радциг А.А., Смирнов Б.М. Параметры атомов и атомных ионов. Справочник. М.: Энергоатомиздат. – 1986. – 344 с.
- Калоджеро Ф. Метод фазовых функций в теории потенциального рассеяния / Пер. с англ. М.: Мир. 1972. 292 с.
- 14. Бабиков В.В. Метод фазовых функций в квантовой механике. - М.: Наука, 1988. – 256 с.

Стаття надійшла до редакції 29.09.2012

V.I. Kelemen, M.M. Dovhanych, E.Yu. Remeta Institute of Electron Physics, National Academy of Sciences of Ukraine 21 Universytetska Str., 88017, Uzhhorod, Ukraine

SPIN EXCHANGE ASYMMETRY IN ELASTIC ELECTRON SCATTERING FROM EUROPIUM ATOM

In the framework of the real part of relativistic optical potential method and in the spin-polarized approach the elastic electron scattering by europium atom have been investigated. The angular dependences of spin exchange asymmetry $A(E,\theta)$ are calculated. It is shown, that at the *d*- and *f*- shape resonance energy the asymmetry has the large values (up to 100%). In the vicinities of the critical minima the asymmetry function as well reaches the relatively large values and has a minimum-maximum-type sharp behavior.

Keywords: relativistic optical potential, elastic scattering, spin exchange asymmetry, shape resonance, critical minimum.

В.И. Келемен, М.М. Довганич, Е.Ю. Ремета Институт электронной физики НАН Украины 88017, Ужгород, ул. Университетская, 21

СПИНОВАЯ ОБМЕННАЯ АСИММЕТРИЯ В УПРУГОМ РАССЕЯНИИ ЭЛЕКТРОНА НА АТОМЕ ЕВРОПИЯ

В рамках метода вещественного релятивистского оптического потенциала и в спин-поляризованном приближении исследовано упругое рассеяние электрона на атоме европия. Вычислены угловые зависимости спиновой обменной асимметрии $A(E,\theta)$. Показано, что для энергий d- та f-резонансов формы асимметрия может достигать больших (до 100 %) значений. В окрестностях критических минимумов функция асимметрии также достигает относительно больших значений и имеет резкое поведение типа минимум-максимум.

Ключевые слова: релятивистский оптический потенциал, упругое рассеяние, спиновая обменная асимметрия, резонанс формы, критический минимум.