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Abstract

We obtained an exact analytic expression for the second independent so-

lution of Schoedinger equation for the hydrogen atom. The solution consists

of a sum of two parts, one of which increases inde�nitely over long distances,

while the other is limited and contains a logarithmic term. This feature

is peculiar to all values of the orbital angular momentums. In known for

us textbooks on quantum mechanics, the �rst regular solution is considered

only. To exclude the second linearly independent solution from the general

solution, di�erent textbooks give various arguments.

1 Introduction

The problem for the hydrogen atom, as one of the few that allows an exact
analytical solution, is considered for methodological reasons in most textbooks on
quantum mechanics. One of the two independent solutions of the Schoedinger
equation is square integrable and satis�es the boundary conditions at the coor-
dinate origin (r = 0) and at in�nity (r → ∞). For states with orbital angular
momentum l ≥ 1, the second singular solution gives the divergence of the normal-
ization integral at the point r = 0.

However, for the angular momentum l = 0, the singularity of the second so-
lution is expressed weakly and does not lead to the divergence of the integral at
the origin, but it is rejected by guiding various arguments in various textbooks.
These arguments can be classi�ed into three groups. The �rst group of textbooks
[1, 2, 3, 4] indicates the unsatisfactory boundary conditions of the second solution
at the origin. In another group of textbooks [5, 6, 7], it is indicated that this solu-
tion does not satisfy the Schoedinger equation at the origin of coordinates r = 0
due to the appearance of the Dirac function δ(r). In the practical textbook [8],
there is argued that in the singular state of l = 0 the mean value of the kinetic
energy takes the in�nite, therefore this solution is unacceptable.

We tried to deal with this variety of arguments also because if the singular
solution for the orbital moment l = 0 is possible to normalize, then it represents a
state with limited energy of the system but an in�nite average kinetic energy (+∞)
and in�nite potential energy (−∞), that is, the sum of two in�nite quantities is
�nite

E = 〈Ψ|Ĥ|Ψ〉 = 〈EK〉+ 〈EP 〉 = (+∞) + (−∞). (1)
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To demonstrate our investigation about the singular solution we brie�y re-
peat one of the methods for obtaining the analytical solution of the Schroedinger
equation with the Coulomb potential.

2 The radial Schroedinger equation

In the Schroedinger equation

HΨ(~r) = EΨ(~r) (2)

with the Coulomb potential for the hydrogen atom

H =
~p2

2µ
+
α

r
, (3)

where µ is a reduced mass of the atom, one separates the variables in the
spherical coordinate system

Ψ(~r) = Ψ(r, θ, φ) = Rl(r)Ylm(θ, φ) =
ul(r)

r
Ylm(θ, φ), (4)

where Ylm(θ, ϕ) is spherical harmonics. For radial function ul(r), we obtain
the equation

u
′′

l + (−k2 − l(l + 1)

r2
+

2A

r
) · ul(r) = 0, (5)

where l is the orbital angular momentum, and parameters k and A have the
same dimension and are given by expressions

k2 =
2µ|E|
~2

, A =
e2µ

~2
(6)

The normalization of the radial function u(r) looks as

∫ ∞
0

u2l (r) · dr = 1. (7)

At large distance (r →∞) equation (5) takes the form

u
′′
− k2 · u(r) = 0, (8)

and has two independent solutions e−kr and e+kr. Since the normalization
condition is ful�lled for the asymptotic (r →∞) solution e−kr, the radial function
of equation (5) is sought in the form
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u(r) = f(r) · e−kr, (9)

which leads to an equation for the unknown function f(r)

f
′′
− 2kf

′
− l(l + 1)

r2
f +

2A

r
f = 0. (10)

We shall now look for solution of equation (10) by the power series method

f(r) = rs ·
∞∑
j=0

ajr
j , a0 6= 0, (11)

where s and aj are unknown parameters that are determined from the substi-
tution of function (11) into equation (10) with subsequent zeroing of coe�cients
for each power of variable r. The coe�cient at the lowest power gives the equation
for determining the parameter s

a0(s2 − s− l2 − l) = 0. (12)

This equation has two solutions s1 = l + 1 and s2 = −l. Since the roots of
the indicial equation (12) di�er by an integer, according to [9] two independent
solutions of the di�erential equation are de�ned in the way

f1(r) = rl+1 ·
∞∑
j=0

ajr
j , (13)

f2(r) = r−l ·
∞∑
q=0

bqr
q + g · f1(r) · ln(r), (14)

where unknown coe�cients aj , bq and g are successively determined by sub-
stituting the formulas (13) and (14) into equation (10) and equating to zero the
coe�cients for powers of the variable r.

3 The regular solution

Substituting formula (13) into equation (10) we obtain the following chain of
equations for coe�cients aj

a0(k · l + k −A)− a1(l + 1) = 0, a1(k · l + 2k −A)− a2(2l + 3) = 0, . . . (15)

In the general case, starting with coe�cient a1, the following are sequentially
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aj =
2 · (k · (l + j)−A)

(2l + j + 1) · j
· aj−1, j = 1, 2, 3, . . . (16)

The only coe�cient a0 remains inde�nite, but it serves as a common factor and
de�nes only the normalization of the function (13). The ratio of the coe�cients of
the series (13) with the growth of the index j gives the value

lim
j→∞

aj
aj−1

=
2k

j
, (17)

which corresponds to the ratio of coe�cients of the Taylor series for the function
e2kr. That is, taking into account formula (9), the radial function u(r) will behave
like ekr. However, when the coe�cients of the series (13) vanish, starting with
a1 we break an in�nite series and obtain a polynomial as the �rst independent
solution. The zero value of the coe�cient aJ can be achieved by a special choice
of the parameter k (eigenvalue of the energy (6))

k =
A

l + J
, J = 1, 2, 3, . . . (18)

The given algorithm allows �nding the eigenvalues of energy and the regular
radial eigenfunction

u1(r) = f1(r) · e−kr, (19)

where the coe�cient a0 is determined by the condition of normalization (7).
In this case, the function f1(r) is a polynomial with powers of the variable from
rl+1 up to rJ+1.

4 The singular solution

The second independent solution of equation (10) is given by formula (14),
which includes the �rst solution (13). We note that for orbital momentum l ≥ 1
the solution (14) is singular at zero, which does not allow normalizing the radial
function. Therefore, we consider the case l = 0, when the solution is regular at
zero. To simplify the calculations, we take into account the ground state (l =
0, J = 1, k = A) for which the �rst solution has the form f1(r) = a0 · r. Then the
formula for the second independent solution (14) will take the form

f2(r) =

∞∑
q=0

bqr
q + g · r · ln(r) (20)

We substitute formula (20) into equation (10) and consistently vanish co-
e�cients for every degree of variable r (logarithmic members are reduced au-
tonomously). To determine unknown coe�cients we obtain a chain of equations
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2Ab0 + g = 0, 2b2 − 2Ag = 0,−2Ab2 + 6b3 = 0, (21)

−4Ab3 + 12b4 = 0,−6Ab4 + 20b5 = 0, . . . (22)

From these equations, one can sequentially �nd g, b2, b3, b4, etc. Coe�cient b1
remains uncertain. This re�ects the fact that the sum of two independent solutions

f(r) = αf1(r) + βf2(r) (23)

is also a solution to the equation (10). For simplicity, the coe�cient b1 can be
set to zero. The coe�cient b0 also remains as an inde�nite common factor of the
function f2(r). The chain of equations (21) is not interrupted, and the relation
of neighboring coe�cients with the growth of the index q has the same form as
formula (17). Accordingly, an in�nite series in (20) behaves asymptotically as e2kr.
So the second independent solution of the radial equation (5) will have a term that
behaves like ekr as r →∞.

That is, we have found two independent solutions of the ground state of hy-
drogen (hydrogen-like atoms) of the forms

u1(r) = a0 · r · e−kr, (24)

u2(r) = (

∞∑
q=0

bqr
q) · e−kr + g · r · ln(r) · e−kr. (25)

The �rst solution (23) is normalized (regular), and the second solution (24) is
not normalized (singular) since the power series behaves like e2kr at large distances.

5 Discussion and conclusion

We found the exact formula (14) of the second independent solution of the
Schroedinger equation for the hydrogen atom, which contains a logarithmic term
and satis�es the equation at the origin of the coordinate r = 0. For the orbital
angular momentum l = 0, the second independent solution is �nite at the origin but
exponentially increases at long distances. The exponential behavior of the second
independent radial solution at large distances is inherent for every value of the
angular momentum l. That is, one independent solution of the radial Schroedinger
equation for hydrogen-like atoms has a regular behavior and is normalized on
the interval [0,∞), and the second independent solution is not normalized and
exponentially increases at large values of variable r.

The exponential rise of the second independent solution of (5) can be proved
by based on general considerations. Namely, at large distances, the Schroedinger
equation has two independent solutions ũ1(r) ∼ e−kr and ũ2(r) ∼ ekr, which
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don't depend on orbital angular momentum l. At the origin of the coordinates,
independent solutions are u1(r) ∼ rl+1 and u2(r) ∼ r−l. The solution u1(r)
converges to the solution ũ1(r) as r → ∞, but the independent solution u2(r)
must converge either to the solution ũ2(r) or to linear sum [α · ũ1(r) + β · ũ2(r)]
(here β 6= 0) as r → ∞. That is the second solution exponentially rise at the
in�nite.

One can note that the Schroedinger equation for the scattering problem of an
electron on a proton di�ers from equation (5) only by a sign of the parameter
k2 (+k2 instead of −k2). For such equation, two independent solutions are well
known - the regular Fl(k, r) and irregular (logarithmic) Gl(k, r) Coulomb wave
functions [10].

We want to emphasize that for the hydrogen atom with Coulomb potential and
for deuteron wave function [11], the logarithmic term in (14) ensures the correct
behavior of the solution at the origin. However, for other potentials, it can appear
that the coe�cient g in equation (14) is zero.
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