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OPTIMAL CONTROL IN NON-SELF-ADJOINT ELLIPTIC
BOUNDARY VALUE PROBLEM WITH TERMINAL CRITERION

We obtain precise solution of the optimal control problem for elliptic equation with nonlocal bound-
ary conditions in a circular sector with terminal quadratic cost functional in the class of controls
that depend only on the angular variable.

B pobori omepxxano TouHMit po3B’30K 3329l ONTUMAIHHOIO KEPYBAHHS JJIsl €JIITHIHOTO DiBHSH-
Hel 3 HEJIOKAJLHIMHI KPAOBUMI YMOBAME B KPYTOBOMY CEKTODI Ta 3 KBaIPATHIHUM T€PMiHAIbHAM
KPUTEPIEM SKOCTI, B KJIaCl KEPYyBaHb, IO 3aJI€XKATh JIUIIE BiJl KyTOBOI 3MIHHOI.

Introduction.

The theory of linear-quadratic optimal control problems for distributed systems
is well researched [1,2] and for many cases with the help of Fourier method it can
be reduced to countable number of finite-dimensional problems [3]. In this paper we
consider control problem for elliptic equation with non-local boundary conditions
in circular sector [4,5] with terminal quadratic cost functional. This problem does
not allow total splitting and using L?-theory. For resolving this problem in the class
of controls that depend only on the angular variable we use apparatus of specially
constructed biorthonormal basis systems of function [6].

1. Setting of the problem.

In circular sector @ = {(r,0)|r € (0,1), 6 € (0,7)} we consider the optimal
control problem

[ Ay= 505 + 5 =), (n0) €Q.
y(1,6) = p(6), p(0) =0, 0
y(r,0) =0, r € (0,1),
[ 55 (r,0) = G4(r,m), € (0,1),
J(y,u) = ly(@)[[5 + [lull, — inf, (2)
where p € C'([0,7]) is given function, a € (0,1) is given number, | - ||p is norm in

L?(0,7), which is equivalent to standard one and is given by the equality

™

- 1/2
Iollp = (ng> . where 1, — / o(0) i (6)d0,
n=1

0

2 4 ) 4
o(0) = 5 o, (0) = ﬁ(ﬁ — 0)sin2nd, 1y, 1(0) = — Cos 2nb.

The aim of the paper is to find optimal process of the problem (1), (2) in classical
sense, that is, to find optimal among admissible processes

{u,y} € C([0,7]) x (C(Q)NC*Q)).
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For the application of the spectral method we use biorthonormal and complete in
L*(0,7) well-known Samarsky-Tonkin systems of functions [6] ¥ = {t,,}>, and

O = {po(f) =0, @on(0) =sin2nb, @o,_1(0) = O cos2nb}o ;. (3)

Then Yu € L*(0, )

=2 i), (4)

where u, = [ u( 0)df. So we seek solution of the problem (1) in the form
y(r,0) = y0(r)0 + > _ (Yan—1(r)0 cos 2nf + ya, (r) sin 2n6) , (5)
n=1

where functions {y(r) }72, are solutions of the system of ordinary differential equati-
ons

d, d
dr< d@io) =7 -, Yo(1) = po, (6)
d dyos—
" (7" : %) — (2k)*yor—1 = 1 - ugp—1, Yor—1(1) = pan—1, (7)
d d
" <7” : %) — (2k)*yor — 4k - yor—1 = 1% - wag, Yor(1) = po, (8)
where pr = [ p( 0)do.

Thus the or1g1nal problem (1), (2) is reduced to the following one: among admi-
ssible pairs {u,(r), yn(r)}o, of the problem (6) - (8) one should minimize the cost
functional

J(y,u) = 58(0) + 13+ 3 (VBa (@) + vu(e) + by + ) = Fo+ D Tk (9)
k=1 k=1

and for obtained process { i, 7, (1) }52, one should prove that the formula (4) defines
function from C([0, 71]), and the formula (5) defines function from C(Q) N C?(Q).
2. The main result.
For fixed set {uy}?2, after integration of (6) - (8) and using conditions at r = 1
and conditions }13[1) Yn(r) = 0 we obtain the following formula

Ug 2

) =po— 2+ T (10)
y(r) = pir® + %rz Inr. (11)
u
Ya(r) = por? +r? <§11n2r—|—( 1 + —1—6)1117“) (12)
and for k > 2:
U2k—1 2k o U2k—1
() = oy — L el 1
Yor—1(7) (pzk 1Ty (2]{:)2> T+ 1= (2K)? (13)
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1 Ak - uop_
_ 2% 2%—1\ ok
Yar(r) = par™ — Ty PBE (U% + e (%)2) it
1 4k - ugr—1\ o Ugk—1 2%
_— _— o — Inr. 14
I @ (“Qk*'4-—<2k>2) ' *‘<?”k 1 4-—<2k>2)7" ur. (14

Then admissible set {gx(r), Uy }7>, minimizes (9) if and only if when 1, is solution
of
Jo — inf, (15)

and for Vk > 1 {@gg_1, o} is solution of the problem
Jp — inf . (16)

From formula (10) — (14) we can deduce that J, and J; are quadratic forms on
variables ug and {ugx_1,us}, and, additionally, Jy > u2, Ji, > u3, | + u3,. So the
problems (15), (16) have unique solution {ay}32,, where for £ > 2

’L~L2k_1 = A;l (—(ai —|— 1)(akp2k_1oz2k —I— dk(akbk — Ck)) —|— aidk(akbk — Ck)>, (17)

{Lgk = Alzl (—akdk(ai + (CLkbk — Ck)Q + 1)—|‘

+ag(arby, — i) (arpar—10”" + di(arby — Ck)))» (18)
where
Ay = (1+a;)* + (arby — )%,
a? — ok 4k a**lna ok
W= g T e T goge G = o7 Panalnat pay).

As A, ~ 1, k — oo, so for all sufficiently large k£ > 1 we have
|tap—1| + |tio| < @™ kT (Ipar—1] + |pax])- (19)

Functions {px}2, from (3) are bounded, |¢,.(0)| < M - k, so formula
a(f) = i - or(9) (20)
k=0

defines function from the class C'([0, 7]).

The following theorem guarantees, that the formula (20) defines optimal control
of our problem in classical sense and, moreover, the class of admissible controls
includes smooth on [0, 7] functions.

Theorem 1. For every u € C*([0,7]), uw(0) = 0 the formula (5) with coefficients
{ye(r)}22, from (10) — (14) defines classical solution of the problem (1).

Proof Let us prove that the formula (5) defines function y(r, ), for which

y e C((0.1] x [0,7]), y € C2(0,1] x [0,7)). (1)
Let us denote
Fi(r,0) = Z (pgk_l 172k .0 cos 2k0 + poy, - 72 sin 2k6 + poj_1 - ¥ Inrsin 2k9) )
k=2
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Then Fj satisfies condition (21). Indeed, functions r2* - sin 2k and r?*(6 cos 2k6 +
In 7 sin 2k6) are harmonic, so for (21) it is sufficient to prove the uniform convergence
of series Fy on [0,1] x [0, 7], which follows from [5]. For remainder of the series

4“2"2152 -12% . 0 cos 2k0 due to Bessel inequality k%ui < oo and Cauchy-Schwarz
1nequahty we have
- U2k—1 2k
Z m’r . QCOS 2]{39 S
k=N
o 1/2 0o ] 1/2
2
<7 <Z u%_l) : (Z (@ = 4)2> <e, (22)
k=N k=N

beginning from some N > 1 uniformly on [0, 1] x [0, 7].

Moreover, because of the multiplier % the partial derivatives of this series

on r and # up to second order are uniformly convergent series on every compact in

(0,1) x (0, 7).
Let us conduct a similar argument for the series Z . 2k)2 (uzk + Af?—;’;@f) )

kgin 2k6.
U2k —1

For remainder of the series Z (@) r?* . Inr sin 2k0 we have:

00 9 1/2
= (Z <4—2<2_k>2>2> "

Z . u% ! r?* . nrsin 2k6

k=N k=N
00 1/2 AN 1.2 N\ 1/2
r* . In®r
( r4k . In2 r) (Z ng1> : (—1 — )
k=N =
for every 6 € [0, 7], ,1). Then Ve >0 IN >1
= Ugk—1 2% .
sup — o T - Inrsin 2k0| <e.
rel01,0€0,q] |, “n F T (2k)

Let us consider the series Fy(r, 6) = Z “2’“ 12 -r*.0 cos 2k0. It is uniformly convergent

4—

on [0,1] x [0, 7] due to Cauchy—Schwarz mequality.

ie OF2 OF  9*F  9%F
In the same way one can prove convergence of the series 52, 52, 57 oo

Convergence of the series 8;91;2 will follow from convergence of the series Z 4”2(’“%3
(2k)? - 72 - 0 cos 2k6, which is convergent with the series
Z Uop_1 - 12 - 0 cos 2k0. (23)
k=2
For u € C*([0, 71]) we obtain
i 4 2 1 (" 2 1
Ugp—1 = /u(@) — cos2k0dh = —— - —/ u'(0) sin 2k0dl = —— - —vay.
™k Jy w2 k

0
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™

Asfor v =o' € C([0,7]) Y v2 < o0, v, = [v(0)pn(0)dh, then > v3, < co and
n=0 k=2

0
from Cauchy-Schwarz inequality the series (23) converges uniformly on [0, 1] x [0, 7].
Applying the previous discussion to the series

> 1 4k - ugp—1 2
Fg(’l“, ‘9) = ; m (UQk + m) T sm?k@,

we need to prove the convergence of the series

Z Ugy, - 7% - sin 2k6). (24)

k=2

For w € C*([0, 7]), u(0) = 0 we have:

gy, = iz / w(0)(x — 0) sin 2k0d0 — = % / W (0)( — 0) cos 2k0dH—
72
0 0
—% . %/u(@) cos 2k0df = 2. %/u cos 2k6dl—
7r 7T
0 0
2 1 2 1 [ 1
s E/ '(0)6 cos 2k0dH — = /u(G) cos 2k0df = E(ak + B + Vi),
0 0

where > (ai+82+72) < oo, asu’ € C(]0,7]). Then from Cauchy-Schwarz inequality
k=0
the series (24) converges uniformly on [0, 1] x [0, 7]. Theorem is proved.
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