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On of solving nonlinear Noether integral-differential boundary value
problems by the of Newton-Kantorovich method

Constructive conditions for the existence of a nonlinear Noether integral-differential boundary
value problem are found. An iterative scheme with quadratic convergence is constructed to find the
solution of a nonlinear integral-differential boundary value problem based on the modification of the
Newton-Kantorovich method. In order to justify the quadratic convergence of the modified Newton-
Kantorovich method in the case of an undefined system, the original conditions of convergence are
proposed.

SuaiiieHi KOHCTPYKTUBHI yMOBH PO3B’sI3HOCT] HEJIiHIHOT HeTepOBOT iHTerpaIbHO-AMEPEHIIATbHOL
KpaitoBol 3amaqi. st po3s’si3amisa HeTIHIHHOT iHTerpaabHo-aIudepeHItiaIbHol Kpaiiosol 3a1a4i Ha
ocuoBi Merony Heiorona-KarToposrda nobynoBaHo iTepariiiiny cxemy 3 KBaIpaTuIHOK 301K HICTO.

OcobauBicTio y3aranbaenns merony Heiorona-KanTopoBuda € iioro 3acTocyBanHs 10 HEIOBU3HA-
YEeHHUX CHUCTEM.

1. Statement of the problem. We are investigating the problem of constructing
a solution |1, 2]
y(t) € Dasb), y/(t) € L2[a;b)

nonlinear Noether (n # p) integral-differential system

y'(t) = A)y(t) + 2(t) / F(y(s),y'(s), s)ds + (1), (1)
that satisfy the boundary condition
ly(-) =a, aecR (2)

We seek a solution of the Noetherian boundary value problem (1), (2) in a small
neighborhood of solution

yo(t) € D?[asb],  yo(t) € L2[a;b]

of the generating problem

Yo(t) = A(t)yo(t) + f(t),  Lyo(-) = cv. (3)
Here
A(t) e L2, [a; 0] = L2[a; b] @ R™", - ®(t) € L2, [a; b, f(t) € L2[a; b];

ly() : D?*[a;b] — RP —linear bounded vector functional defined in space D?|a; b
n-dimensional absolutely continuous on a segment [a, b] functions. Nonlinear vector-
function F(y(t),y'(t),t) twice continuously differentiable in the small neighborhood
of the solution yo(t) generating boundary value problem (3), twice continuously
differentiable with respect to y((t), and continuous in the independent variable t
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on the segment [a,b]. The study of the boundary value problem (1), (2) continues
the investigation of the linear integral-differential boundary value problem [2] in the
case of a nonlinear integral vector-function F'(y, v/, t).

2. The generalization of the Newton-Kantorovich theorem. We investi-
gate the problem of finding the solution z € R™ of the nonlinear equation

p(z) = 0. (4)
We assume that the function
e(z): R" > R™, m#n

is twice continuously differentiable with respect to z in some domain €2 C R". To
construct an iteration scheme {z;}, that converges to the solution Z € R", we use
the Newton method [3-5]. Interest in the use of the Newton-Kantorovich method
is associated with its effective application in solving nonlinear equations, as well as
in the theory of nonlinear oscillations |3-6|, including in the theory of non-linear
Noetherian boundary value problems [1,7,8§].

Suppose an approximation zj is found that is sufficiently close to an exact soluti-
on Z of the equation (4). We expand the function ¢(z) in a neighborhood of the exact
solution

©(2) = p(ze) + ¢ (21, €) <5 — Zk) + R(&, 2 — ), (5)
where

1
R(&, 2 — z) = / (1 —5)d*p(&; 2 — ) ds.
0

Here & is a point lying between the points Z and z;. In a small neighborhood of the
exact solution we have the approximate equality

oo + /() (2 -2 ) w0,

therefore, in order to find the next approximation of zx,; to the exact solution, it is
natural to put

o) + /() (01 = ) =0, (©)

whence under the condition
Pp=0, Jy:=¢'(z)cR™" (7)
we find
Zer1 =2k — J p(z), k=0,1,2, ... (8)

Here Pj. : R™ — N(J;) is an orthogonal projector of the matrix J; € R™™
and J," is the pseudoinverse Moore-Penrose matrix [1,9]. Note that condition (7) is
equivalent to the requirement of completeness of the rank matrix J;, and is possible
only in case m < n. We show that the iteration scheme (8) converges to the exact
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solution z. Suppose that in the neighborhood of the exact solution Z there are
inequalities

and note that it follows from the equalities (5) and (6) that

s

< o1(k), HdQSO(fk ;2 — 2x)

\gaxmwﬁ—zm2

o' (21, €) <2 - Zk) = —R(&, Z — z1),

SO
5 5 o1(k)os(k B
I = sl < | -| | e 2 = )| < 22 oy
Let there be a constant
- {M}
keN 2

In this case, there is an estimate
Z— Zpa1 Z — zk|”,

which holds that if the iteration scheme (8) converges to the exact solution Z of the
equation (4), then this convergence is quadratic. Let us find the condition for the
convergence of the iteration scheme (8) to the exact solution Z of the equation (4).
To do this, we make estimates

12— 21| <012 — 2% |F—2]<0-]7— 2> <02 |7 — %%,

2 3
S 91-1—2-1—2 2 e

|2—2’3|§9|2—22|2 |2—ZO|

2 k—1 - k
< QURRRRE 2 s Rt

2k:

indicating the convergence of the iterative process (8) to an exact solution Z of the
equation (4) under condition

|§ — Zk’ S 9 . |§ — Zk,1|2

So there’s an inequality |5]

k_
17— 2 <O |5 — ) =

| =

In practice, the last inequality can be replaced by the following one:
0|z —20] <1, k=1,2, ...
Lemma. Suppose that for the equation (4) the following conditions are satisfied.

1) A non-linear vector-function f(z) : R" — R™, twice continuously differentiable
with respect to z in some region 2 C R™, in a neighborhood of the point zy has
a root z*.
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2) In the neighborhood of the zeroth approzimation zy €  C R™ there are
inequalities

3) The following constant erists

URES sup{M}.

P& 2—z)|| < ook)-|Z—zl, k=0,1,2, ... (10)

s

Sal(kf)?’

keN 2

Then, under conditions (7) and (9), to find the solution z* of equation (4) the
iteration scheme (8) is applicable, and the rate of convergence of the sequence {zy}
to the solution z* of equation (4) is quadratic.

Example 1. The iterative scheme (8) is approzimate for finding the solution of
the non-linear equation (4), where the vector-function is as follows:

(u) = T+ siny + cos 2 . v
PR = y+sinz+cosx )’ S

This vector-function ¢(u) : R?* — R?is defined in any open domain D C R3 and is
twice continuously differentiable with respect to z in the neighborhood Q C D C R3.
We set

up:=( —0,45 —0,45 —0,45 ),

wherein
rank [ (ug)] = 2,
besides
up ~ (—0,455 961 —0,457 894 —0,455 547 )",
and
rank [¢'(uq)] = 2,
Then
‘ [/ (u)] || = o(1) = 2,09903, ||do(u)|| = oo(1) ~ 0,897 838.
In this case, the weakened condition (9)
1 1
0 - ||ur — wol|se A~ 0,00743 856 < 1, 6, = M ~ 0,942 293

is satisfied. Since the condition (9) is satisfied for the first step of the iteration scheme
(8), we find
—0,455 968 239 769 595
ug = | —0,457 889 951 795 185
—0,455 537 594 550 856
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Then
rank [¢'(ug)] = 2,

besides

[go’(UQ)]+ = 01(2) ~ 2,099, d*p(us)

(o)

= 03(2) ~ 0,897 835.

[e.e]

In this case, the weakened condition (9)

is satisfied, where
2 2
0y == % ~ 0,00743 453,

For the second step of the iteration scheme (8) the discrepancy of the obtained

approximation
l1o(u2)||oe & 3,69 679 x 10711

is sufficiently big, so we find
0,455 968 239 730 150

us ~ | 0,457 889 951 789 936
0,455 537 594 568 580

Then
rank [¢'(u3)] = 2,

besides

[ (us)] " = 01(3) &~ 2,099, d*p(us)

o0

= 05(3) ~ 0,897 835.

oo

In this case, the weakened condition (9)
0 - ||us — wo||oo A 0,00743 453 < 1

is satisfied, where
3 3
b= LT g g1z 7,

For the third step of the iteration scheme (8) the discrepancy of the obtained approxi-

mation is
[o(u3)|eo = 0,

so it’s natural to confine with this approximation.

The Lemma just proved generalizes the corresponding results [4-8] to the case
of matrix Jj irreversibility and can be used in the theory of non-linear Noetherian
boundary-value problems [1,7,8], in the theory of matrix boundary-value problems
[10], and also in the theory of matrix linear differential-algebraic boundary value

problem [11-15].
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3. Construction of solutions of the integral-differential boundary value
problem. Let’s denote X (¢) normal (X (a) = I,,) the fundamental matrix of the
homogeneous part of the generating system (3). As you know [1], in a critical case

Po- #0, Q:=(X(-) € R*"

generating boundary value problem (3) is solvable if and only if the condition is
fulfilled

Pog{a— k1610 b =0 )
with r-parametric family of solutions of a problem (3)
wolt,e) = Xo(H)ey + Gl () al(t), ¢ R

depicted by a generalized Green operator

G[f(s); o] (t) := X(t)Q+{a - fK[f(S)](')} + K[f(s)](%).

- K [f<s>] 0= x0 [ XN () f(s) ds

is Green’s operator of the Cauchy problem yo(a) = ¢ for the generating system (3),
X, (t) — (n x r) — dimensional matrix, formed from r-linear-independent columns
of a normal fundamental matrix X (t); matrix Py, € R, formed from d line-
independent rows of orthoprojector matrix

Py : R? — N(Q).

In the critical case, boundary value problem (1), (2) has r-parametric system of
solutions
y(t) =volt,c) +2(t), ¢ €R".

To find a deviation
x(t) € D*a;b], 2/(t) € L*[a;b]

from the generative solution (¢, ¢,) we get the boundary value problem

P(0) = AWa(t) + 00) [ Plo(s).v/(s),9) s, (12)

lx(-) =0. (13)

Deviation
z(t) = X(t)v + ¥(t)u

from the generative solution yo(t, ¢.) identify unknown steel

b
u = / F(y(s),y'(s),s)ds e R", veR™

and the matrix
U(t) .= K[®(s)](t) € D?

nxm

[a; b].
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Solution of the integral-differential system (1) satisfies the boundary condition (2)
y(t) = yol(t,cr) + x(t), x(t) = X(t)v+ ¥(t)u
can be found with the use of the equation
Quv+Ru=0, R:=/(V¥()ecR™. (14)

Let’s denote P, € RO +m)xp matrix formed from p linearly independent columns of

orthoprojector Py matrix
[Q: R] € RPX(m+n)

Condition (14) satisfying vectors
v=~Pc, u=P~Fc, c,c€R

here
P()Z: COl(Pl,PQ), PleR”x", PQGRmXp.

To find the vector c¢,, necessary to identify unknowns u(c,) and v(c,) we obtain a
nonlinear equation (4); here

p(cp) = plulcp), v(cp)) = ulcp)—

b
- / F(X(s)v+¥Y(s)u, A(s) X (s)v + D(s)u, s) ds.

If for the obtained equation (4) the conditions of the Lemma are fulfilled, we find
the unknown u(c,) ta v(c,). Thus, the following theorem is proved.

Theorem. In the critical case (Pg+« # 0) generating boundary value problem (3)
is solvable if and only if the condition is fulfilled (11); with r-parametric family of
solutions of the generating problem (3) looks like

yo(t,cr) = X, (e, + Gf(s);a](t), ¢ €R".
The wanted solution
y(t) = yolt ) +2(t), o(t) = X(Ov+U(Hu, v=Pic, u=Pyc, c, R

nonlinear integral-differential boundary value problem (1), (2) defines a vector c,,
which satisfies the nonlinear equation (4): ¢(c,) = 0, the conditions of solvability of
which is determined by the Lemma. To find the vector c, applicable iterative scheme
(8), the rate of convergence of the sequence of approzimations to the solution of the
equation (4) quadratic.

In the partial case of the equation (4) is linear:
¢(c,) ==Bc,+d, BeR"™,
the condition of solvability which is equivalent to demand

Py. = 0. (15)
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Here Pg« : R™ — N(B*) — orthoprojector matrix B*. For terms (15) solution of
the linear equation (4) looks like

c,=Pjc, — Jtd, cu € R

here P; : R? — N(J) — orthoprojector matrix B.

Example 2. The requirements of the Theorem satisfy the problem of construc-
ting 2m-periodic solutions of a nonlinear integral-differential system

y = A(t)y+‘1>(t)/0 WF(y(S),y'(S%S) ds + f(t); (16)

A:<gé),f@:($:) yw=($¥8)’
in addition ) 7001 = v — () cost.

For a generating periodic boundary value problem in the case of a system (16)
Py =PFPy-=1,#0,

therefore there is a critical case, and the condition of solvability (11) is fulfilled, with
this two-parameter family of solutions of the generating problem

volt,cr) = Xo(D)e, + G (5)](1), ;€ R?

depicted by a generalized Green operator

sint + sin 3t
cost — cos 3t

L)) = (

and a normal fundamental matrix of the homogeneous part of the generating system
(16)

—sint cost

3m (1 0
@=9 R__I(l o)’

1 00
P=(g 1 0) m=(001).

X() = X, (1) = ( cost sint )

Because

get matrices

Periodic solution
y(t) =vo(t,co) +z(t), 2(t)=XHv+V(t)u, v=Pec, u=Pc, c,€R?

nonlinear integral-differential system (16) defines a vector c,, which satisfies the
linear equation (4):
o(c,) =B, + d;
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B _ 1/ -8 0 = ’
8 —-m 8 —8m
d(c)_l 1—3201+402 o = C1
" _32 —4(2+Cl+802) T Co ’

The last equation is solvable due to the completeness of the matrix rank B. Let’s
put it ¢, := 0; the desired 27-periodic solution of a nonlinear integral-differential

system (16) looks like
N ENORY
v = (480 )

here

in addition

here 3 862 708 cost 124 805¢;cost 12 394 757 cocost
n(t) =7 333 008 045 | 89 428 786 | 1110 179 952
12 053 843sint 12 394 757 ¢;sint 11 712 929 ¢y sint  sin 3t
530 822 306 | 1110179952 | 131138704 4
12 053 843 cost 12 394 757 cicost 11 712 929 c¢ycost  cos 3t
balt) = 530822306 | 1110179952 | 131138704 4
3862 708sint 124 805¢ysint 12 394 757 ¢y sint
1383908045 89428786 1110 179 952

In a non-critical case (Pg+ = 0) solvability condition (11) of integral-differential
boundary value problem (1), (2) is satisfied for all inhomogeneities f(t) € L?[a;b]
and o € RP. This is a typical case for Noether boundary-value problems [1,2].

Consequence. In a non-critical case (Pg« = 0) generating problem (3) has an
r-parametric family of solutions

yo(t,cr) = Xo(t)er + G f(s);a](t), ¢ €R".
Then, under condition (14) solutions
y(t) =yolt,c.) +x(t), z(t)=XEtv+¥Yt)u, v=~"Pc, u=PFPc, c,€R’

nonlinear Noether integral-differential boundary value problem (1), (2) defines a
vector c,, which satisfies the nonlinear equation (4): ¢(c,) = 0, the conditions of
solvability of which is determined by the Lemma. To find the vector c, applicable
iterative scheme (8), the rate of convergence of the sequence of approrimations to
the solution of the equation (4) quadratic.

Example 3. The requirements of the proved Consequence satisfy the problem of
construction 2m-periodic solutions of the scalar integral-differential system

Y =y + (1) / " F(y(s).y/(s). s) ds + £(): a7

here
f(t) :==sint, ®(t) := cost,
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i addition

Fly(),y'(),1) = (1 = (1) (1= y7()).

For a generating boundary-value problem in the case of a system (17) there is a
non-critical case, with the unique solution

here )
sint 4 cost

2
is generalized Green operator. Periodic solution

y(t) = yo(t) + 2(t), 2z(t)=Xt)v+V(t)u, u=-—2v, veR

nonlinear integral-differential system (17) determines the constant v, which satisfies
the nonlinear equation (4):

we get
&
Jo=-2-3 0 =
0 7T7é ) U1 8"’1277'7
with
256 + 11527 + 251272 + 3216 73 + 1421 74
16 (24 37)3 ’

o1(1) ~ 0,0 894 281,

Ji

in addition
o(vy) = 0,0894 281.

Similarly
o9(1) &= 13,2612, 6; ~ 0,285 343 < 1,

hence the condition of convergence of the iterative scheme (8) to the exact solution
of the equation (4) the first step is complete. At the second step of the iterative
scheme (8) we get

vy = (4352 + 26 1127 + 69 728 7% + 91 680 7° + 39 525 1),
w

with
Jy = —11,1795 # 0, 01(2) ~ 0,0894 495,
in addition
¢(vg) A 2,70 456 x 107",
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Here
w = 16(2 + 37)(256 4+ 11527 + 2512 7% 4 3216 7 + 14217).

Similarly
09(2) ~ 13,2685, 6, ~ 0,285 449 < 1,

hence the condition of convergence of the iterative scheme (8) to the exact solution
of the equation (4) the first step is complete. On the third step of the iterative
scheme (8)we get

o 149 078 559
7309 925 526
with
o1(3) &~ 0,0894 496, 02(3) ~ 13, 2685.
Because

05 ~ 0,285 449 < 1,

condition of convergence of the iterative scheme (8) to the exact solution of the
equation (4) the third step is completed; in addition

©(v3) &~ 3,99 680 x 1071,

Thus, an approximation to a periodic solution is obtained

160 106 464 cost 20 751 201 sint

163 205 053 1 092 981 631

y(t) =
integral-differential system (17). To evaluate the accuracy of the approximation

found to the periodic solution of the integral-differential system (17) define an devi-
ation

In addition, we note the periodicity of the approximation obtained.

~ 3,44 169 x 10715
C0;27]

y —y— o() / " F(y(s).y/(s), s) ds — £(1)

In the case of insolubility of a nonlinear integral-differential boundary value
problem (1), (2) it can be regularize the same way [16-19]. We also note that
the scheme proposed in the paper for the study of a nonlinear integral-differential
boundary value problem (1), (2) can be transferred to the integral-differential boun-
dary-value problem with delay [1,20,21].
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