
This is pre-print author version of an accepted article (Journal of Molecular Graphics 

and Modelling), available at 

http://www.sciencedirect.com/science/article/pii/S109332631400165X 
DOI: 10.1016/j.jmgm.2014.10.006 

 

3D-MoRSE Descriptors Explained 

Oleg Devinyak
†*

, Dmytro Havrylyuk
‡
 and Roman Lesyk

,‡ 

† Department of Pharmaceutical Disciplines, Uzhgorod National University, 88000, Uzhgorod, 

Ukraine 

‡ Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National 

Medical University, 79010, Lviv, Ukraine 

Corresponding author phone: +380 312 612434; e-mail: o.devinyak@gmail.com 

Received date 

ABSTRACT: 3D-MoRSE is a very flexible 3D structure encoding framework for chemoinformatics 

and QSAR purposes due to the range of scattering parameter values and variety of weighting schemes 

used. While arising in many QSAR studies, up to this time they were considered as hardly interpreted 

and were treated like a "black box". This study is intended to lift the veil of mystery, providing a 

comprehensible way to the interpretation of 3D-MoRSE descriptors in QSAR/QSPR studies.  

The values of these descriptors are calculated with rather simple equation, but may vary when using 

differing starting geometries as optimization input. This variation increases with scattering parameter 

and also is higher for electronegativity weighted and unweighted descriptors. Though each 3D-MoRSE 

descriptor incorporates the information about the whole molecule structure, its final value is derived 

http://www.sciencedirect.com/science/article/pii/S109332631400165X


mostly from short-distance (up to 3 Ǻ) atomic pairs. And, if a QSAR study covers structurally similar 

set of compounds, then the role of 3D-MoRSE descriptor in a model can be interpreted using just 

several pairs of neighbor atoms. The guide to interpretation process is discussed and illustrated with a 

case study. Realizing the mathematical concept behind 3D-descriptors and knowing their properties it 

is easy not only to interpret, but also to predict the importance of 3D-MoRSE descriptors in a QSAR 

study. The process of prediction is described on the practical example and its accuracy is confirmed 

with further QSAR modeling. 

Keywords: 3D-MoRSE descriptors, QSAR, radial basis function, descriptor interpretation, structure 

encoding 

 

INTRODUCTION 

QSAR/QSPR modeling is a widely recognized and successful approach to the prediction of 

compounds' physical and biological properties. Its major goal is to represent the studied attribute as 

some function of other numerical molecular properties and features called molecular descriptors. And 

one of the crucial steps in QSAR modeling is the interpretation of obtained models in terms of 

understandable and clear relationships between structure and activity. The importance of QSAR models 

interpretation is widely recognized.
1,2

 J.C. Dearden et al.
3
 defined the lack of mechanistic interpretation 

as an error in QSAR development. OECD guideline makes this point less strict, stating that "a (Q)SAR 

should be associated with a mechanistic interpretation, if possible".
4
 According to this document, 

mechanistic interpretation "is the basis for discovery of underlying causal relationships" and its 

consistency "with other knowledge of fundamental processes in chemistry and toxicology adds to 

credibility and acceptance of the predictions from the model". The knowledge extracted during 

interpretation of QSAR model also can be used to design new potent compounds or to describe 

molecular regions that are involved into interaction with (often unknown) biotarget.
5-9

 Citing the 

OECD guideline further, "mechanistic interpretations of (Q)SARs begin with the number and the 



nature of the molecular descriptors used in the model". That is why understanding of the meaning of 

descriptors is so important during QSAR interpretation step. A lot of descriptors such as partition 

coefficient logP, HOMO energy, molecular weight, functional group counts and so on are easy 

interpretable, since their meaning is clear and straightforward. But a major part is much more 

sophisticated and need sometimes significant efforts during interpretation. One class of such 

descriptors is represented with 3D-MoRSE. 3D-MoRSE denotes 3D molecular representations of 

structure based on electron diffraction descriptors and has been introduced in 1996 by J. Schuur, J. 

Gasteiger and coauthors in two seminal papers.
10,11

 These descriptors have found a broad application 

and have been shown as predominant in a number of QSAR/QSPR studies.
12-22

 The majority of these 

papers describe the effect of 3D-MoRSE values on activity but lacks of interpretation how the values of 

used 3D-MoRSE descriptors relate to the molecular structure. Actually, the inventors of 3D-MoRSE 

comprehensively describe computational method used to obtain these descriptors but did not give a key 

to their interpretation. Two studies of L. Saiz-Urra et al.
14,15

 were focused primarily to 3D-MoRSE 

descriptors giving the conclusion that "the distances among the different atoms will be the principal 

means to separate the molecules according to their structural features when the other parameters remain 

constant" and "deeper analysis is necessary to interpret the application of these kinds of descriptors". 

This paper is intended to evaluate the properties and to disclose the chemical meaning of 3D-MoRSE 

descriptors. 

THEORY AND INTUITION BEHIND 3D-MORSE DESCRIPTORS 

Description and calculation of 3D-MoRSE descriptors 

3D-MoRSE (Molecular Representation of Structures based on Electronic diffraction) descriptors 

were introduced in 1996 by J.H. Schuur, P. Selzer and J. Gasteiger with the motivation for encoding 3D 

structure of a molecule by a fixed number of variables.
10,11

 Indeed, the most obvious way to present 3D 

structure is its representation within cartesian or internal coordinates. But the statistical methods used 

in computational chemistry cannot handle such objects; these methods are requiring data with fixed 



number of features instead. Simplifying equations used in electron diffraction studies, the authors have 

got the the function 1: 
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where s  is the scattering parameter, ijr  is the euclidean distance between i
th

 and j
th

 atoms, N is the 

total number of atoms and iA  and jA  are different atomic properties used as weights. Each term of 

this function depends on distance and thus may be viewed as a radial basis function itself. Further we 

will use the words "term", "summand" or "radial basis function" interchangeably. Assigning to s  

integer values in the range of 0-31 Ǻ
-1

, 32 values of function 1 can be calculated. These values 

constitute the 3D-MoRSE code of a molecule. There are few programs that provide possibility to 

calculate 3D-MoRSE descriptors,
23-25

 and we extend this set with our free "3dmorse" program which is 

written in C++ and currently supports only MOPAC2012 output files as input.
26

 3D-MoRSE 

descriptors usually are calculated with different weights. For example, widely used DRAGON program 

(version 5.5) for descriptor calculations proposes five kinds of the descriptors: unweighted 3D-MoRSE 

and weighted with atomic mass, atomic van der Waals volume, atomic Sanderson electronegativity and 

atomic polarizability.
24

 It is worth to note, that in this program the numeration of 3D-MoRSE 

descriptors starts from 1, so, for example, Mor01u denotes unweighted descriptor with scattering 

parameter s = 0 Ǻ
-1

 (since scattering parameter starts from zero), Mor02u denotes descriptor with s = 1 

Ǻ
-1

 and so on. This point often is confusing and, due to wide usage of DRAGON in QSAR studies, 

became the reason for large number of misinterpretations.  

For better understanding of 3D-MoRSE descriptors nature, let us calculate several simple examples 

by hands, starting with methane molecule. So, the simplest descriptor among the studied class is 

Mor01u. Putting zero instead of s  is giving  
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Actually, the value of sinus zero divided by zero is undefined, however, the limit (3) is one of the 

most important limits in trigonometry and is equal to 1.  

1
)sin(

lim
0


 




           (3) 

Since the descriptor is unweighted, all 1 ji AA , and we get simply a number of possible atom 

pairwise combinations, which is equal to corresponding binomial coefficient and can be calculated with 

factorials: 
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Clearly, this descriptor is a function of number of atoms only, moreover, 3D-MoRSE descriptors 

with scattering parameter s = 0 Ǻ
-1

 are always positive for all positive weightings schemes (like atomic 

mass, van der Waals atom volume, electonegativity, polarizability, but not partial charge). 

For methane, which has 5 atoms, Mor01u is equal to 
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For the second descriptor, Mor02u with 1s , we should consider another case (keeping in mind, 

that 1 ji AA  for unweighted 3D-MoRSE): 






 




N

i

i

j ij

ij

r

r
I

2

1

1 1

)1sin(
)1(           (6) 

To calculate this, the pairwise distances between all atoms in the molecule should be given. Thus the 

geometry of methane has been modeled with PM7 semiempirical method in MOPAC2012.
27

 The 

results show the same interatomic distance for 4 C-H pairs (1.085 Ǻ) and slightly varying distances for 

6 H-H pairs (range 1.771-1.773 Ǻ, mean 1.772 Ǻ). Now, since the methane molecule is highly 

symmetric and has repeating interatomic distance values, we can write the expression for Mor02u as: 

6.578318.3260.3
772.1

)772.1sin(
6

085.1

)085.1sin(
402 uMor .   (7) 



Going to more complicated molecule like acetic acid, we still can measure all interatomic distances 

with some chemical computation or visualization tool and then provide necessary calculations. Using 

information from table 1 (geometry has been optimized with PM7 method), we can write the weighted 

by atomic electronegativities Mor02e as a series of summands. Since the DRAGON program uses 

carbon-scaled weights, we will also use such convention. Anyway, the difference between the results 

with original and carbon-scaled weights lays in the constant multiplier, so this point has no effect in 

QSAR studies. The first term in a sum corresponds to O-O atom pair: 

0.654
191.21

)191.21sin(
327.1327.1 




 .       (8) 

Similarly, all other terms can be calculated and placed in an upper diagonal matrix, where the 

diagonal elements will display the contribution of corresponding atom (Table 2). The contribution is 

represented as a half-sum of all terms where studied atom participates (in such a way diagonal sum is 

equal to Mor02e value). 

Table 1. Parameters of acetic acid 3D structure required to calculate Mor02e 

N Atom pair Interatomic 

distance, Ǻ 

N Atom pair Interatomic 

distance, Ǻ 

 N Atom Carbon-scaled 

Sanderson 

electronegativity 

1 O(1)-O(2) 2.191 15 C(3)-H(5) 1.993 1 O 1.327 

2 O(1)-C(3) 1.198 16 C(3)-H(6) 2.179 2 C 1 

3 O(1)-C(4) 2.411 17 C(3)-H(7) 2.146 3 H 0.942 

4 O(1)-H(5) 3.041 18 C(3)-H(8) 2.147  

O

O
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H

H

H 1

2
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5 O(1)-H(6) 3.256 19 C(4)-H(5) 2.484 

6 O(1)-H(7) 2.953 20 C(4)-H(6) 1.096 

7 O(1)-H(8) 2.645 21 C(4)-H(7) 1.101 

8 O(2)-C(3) 1.366 22 C(4)-H(8) 1.104 

9 O(2)-C(4) 2.426 23 H(5)-H(6) 2.301 

10 O(2)-H(5) 0.978 24 H(5)-H(7) 2.917 



11 O(2)-H(6) 2.615 25 H(5)-H(8) 3.493 

12 O(2)-H(7) 2.953 26 H(6)-H(7) 1.780 

13 O(2)-H(8) 3.313 27 H(6)-H(8) 1.769 

14 C(3)-C(4) 1.494 28 H(7)-H(8) 1.765 

 

Table 2. Summands and atom contributions of Mor02e descriptor for acetic acid 

 O(1) O(2) C(3) C(4) H(5) H(6) H(7) H(8) 

O(1) 1.178 0.654 1.032 0.367 0.041 -0.044 0.079 0.225 

O(2)  1.640 0.951 0.359 1.06 0.24 0.079 -0.064 

C(3)   2.086 0.667 0.431 0.355 0.368 0.368 

C(4)    1.957 0.232 0.764 0.763 0.762 

H(5)     1.016 0.287 0.068 -0.087 

H(6)      1.291 0.487 0.492 

H(7)       1.169 0.493 

H(8)        1.094 

 

This way, a value of Mor02e is set at 11.431, and exactly the same value is given by DRAGON 

program. Atoms contributions can be further used to identify the most and the less influential atoms or 

groups in the molecule. 

Theoretical studies of 3D-MoRSE descriptors 

Let us consider the roles of all three parameters (pairwise interatomic distance, weighting and 

scattering) in 3D-MoRSE framework. 

Pairwise interatomic distance 

Interatomic distance participates both in the numerator and denumerator of radial basis function in eq 

1. Thus the result is a periodical function with decreasing amplitude (except Mor01 descriptors where 

the distance has no any effect). To describe the dependence of 3D-MoRSE summand values on 

interatomic distance we may visualize the radial basis function of Mor02u. (fig. 1). Since distance is 



always positive, the x-axis should be presented with its positive half only (unlike the plot of radial basis 

function in L. Saiz-Urra et al.
15

). 

 

Figure 1. Mor02u radial basis function 

When s  is fixed at 1 Ǻ
-1

, its period is 2π. So radial basis function reaches zero at π, has the largest 

negative value at 1.5π (this corresponds to interatomic distance 4.712 Ǻ), and then begin to increase, 

crossing zero at 2π and so on. Since amplitude drops down quickly, the influential summands of 

Mor02u are represented by atoms with pairwise distance less than 2 Ǻ. And the effect of atoms located 

at more than 5 Ǻ apart is tiny. 

Weighting scheme 

Being a multiplicator at periodic function, weight changes the amplitude of radial basis function. 

Unweighted descriptors treat each atom equally. Weighting is intended to bring discrimination among 

atoms, and thus weighted descriptors are sensitive to the presence of specific molecular fragments. The 



properties of different weighting schemes can be easily deduced from weighting tables (e.g. table of 

atomic van der Waals volumes or radii, table of atomic polarizabilities, electronegativities etc), thus 

only brief summary is presented here: 

 atomis mass – practically eliminates the role of Hydrogen atoms, while significantly 

increases the effect of Phosphorus, Sulfur and Chlorine and greatly increases the effect of 

heavy atoms like Bromine and Iodine on the values of 3D-MoRSE descriptors; 

 van der Waals volume – significantly decreases the effect of Hydrogen, diminishes the roles 

of Nitrogen, Oxygen and Fluorine, while giving more influence to Silicium, Phosphorus, 

Bromine and Iodine; 

 polarizability – acts similarly to van der Waals volume. The major difference is greatly 

enhanced effect of metals, but metalorganic compounds are rare in medicinal chemistry; 

 electronegativity – increases mainly the contributions of Fluorine, Oxygen and Chlorine. 

 atomic partial charge – unlike the other weighting schemes, this can take both positive and 

negative values. The weights are not constant across atoms and depend on the surroundings. 

This weighting may be the most relevant, since it reflects distances between atoms with 

excessive or deficient electronic density. Unfortunately, it is not implemented in DRAGON, 

but it is available in ChemoPy
25

 and 3dmorse.
26

 

Also, since each summand represents some atomic pair, the weights of two atoms are multiplying, so 

the distance between two influential atoms may define the major part of the descriptor (like two 

Bromines in a single molecule for weighted by atomic mass 3D-MoRSE  descriptors). To understand 

the effect of weighting, we may look at the plot providing Mor02e summands values on the ordinate 

axis and corresponding interatomic distance on the abscissa using acetic acid example (fig. 2.) 

 



 

Figure 2. The dependence of Mor02e summand value on interatomic distance and corresponding values 

for acetic acid (hollow circles) 

While electronegativity of Oxygen is only 1.33 times higher the Carbon electronegativity, the effect of 

O-O pair is 1.77 times higher than that of C-C. However only amplitude is changing, while period 

remains the same (all curves are crossing at distance that corresponds to π Ǻ). 

Scattering parameter 

Like pairwise interatomic distance, the scattering parameter occurs both in numerator and denumerator 

of radial basis function in eq 1. While treating interatomic distance as indepenent variable, the 

scattering parameter in numerator can be viewed as angle frequency. So the period of radial basis 

function decreases with scattering parameter growth. In the same time, the amplitude is also decreasing 

due to denominator augmentation (fig. 3.). 



 

Figure 3. 3D-MoRSE radial basis function at different scattering parameters 

EMPIRICAL PROPERTIES OF 3D-MORSE DESCRIPTORS 

In order to test the properties of studied descriptor class we need slightly more complicated model 

molecule than acetic acid. That molecule should be closer to the structures of modern drugs but also 

should be as simple as possible to preserve the understanding of the relationship between molecular 

geometry and descriptors values. So we have chosen γ-aminobutyric acid (GABA) as such model 

molecule. The next text is organized as follows: for each property the theoretical suggestion are 

formulated firstly, and then the results of empirical testing are given and discussed. 

3D-MoRSE descriptors are random variables. 

The variable in probability and statistics is called random if its value is subject to variations due to 

chance. 3D-MoRSE descriptors depend on interatomic distances (except the cases when scattering 

parameter equals zero). Interatomic distances are subject to random variations both in nature 

(molecular vibration) and in computational studies (due to stochastic methods of molecular geometry 



optimization). Consequently, though 3D-MoRSE descriptors are calculated with exact equation 1, 

indeed their values are drawn from some probability distribution. According to Central Limit Theorem, 

we can expect this distribution to be normal, since 3D-MoRSE descriptor is represented with sum of 

terms, each depending on distance between two atoms, which in turn is affected by multiple factors.  

To study this point empirically, we have calculated the values of Mor02u for 100 cases of GABA 

geometry optimization (with PM7 method) using starting preoptimized atom coordinates altered with 

normally distributed N(μ=0, σ
2
=0.01) random shifts (fig. 4).  

 

Figure 4. Distribution of Mor02u values for GABA calculated with slightly varying starting atomic 

coordinates 

Standard deviation of the sample of Mor02u values is 0.012. But from practical point of view we are 

interested not in absolute values of 3D-MoRSE descriptor variation, but in its ability to preserve the 

discrimination among different structures. That is why the comparison of standard deviation of 3D-



MoRSE values for single compound with the standard deviation for some decoy set of compounds is 

highly relevant. Clearly, when within-compound standard deviation (noise) comes close to between-

compounds standard deviation (signal, i.e. standard deviation of a sample of descriptor values, each 

corresponding to single compound from some decoy set), it becomes impossible to identify any 

compound from a set by its 3D-MoRSE descriptor value. For naturally occuring 20 α-amino acids as a 

decoy set, standard deviation of the sample of 20 Mor02u values is 3.834. In order to score relative 

variation of Mor02u, we can use the ratio between two standard deviations SDGABA/SDα-amino acids 

(equivalent to noise-to-signal ratio). When the value of ratio equals to 1 that means complete absence 

of discriminative power of descriptor. In the studied case the ratio SDGABA/SDα-amino acids is 0.00312 

which is small. The visual comparison of between-copmounds Mor02u values variation of α-amino 

acids and within-compound Mor02u values variation of GABA is provided as supplementary 

information. Additionally, the shape of distribution (fig. 4.) is not smooth, showing two spikes which 

may correspond to two close but distinct energetically favorable geometries. 

The relative variation of 3D-MoRSE descriptors increases together with scattering parameter. 

As it has been already shown, the increase in scattering parameter leads to shorter period of radial 

basis function. When period is rather short, small perturbations in geometry lead to significant changes 

in the value of radial basis function, which in turn become the source of variation. Since the positions 

of H-atoms are constrained the least, they contribute much to the variation and thus 3D-MoRSE 

descriptor weighted with schemes where the role of Hydrogen is diminished should exhibit lower 

variation. The validity of these theoretical suggestions is clearly demonstrated on the GABA-vs-amino 

acids example by the polynomially smoothed curves of relative variation as a function of scattering 

parameter (fig. 5.). All weightings show positive correlation between relative variation and scattering 

parameter with Spearman's ρ values in 0.77-0.91 range. The lowest relative variation is observed for 

atomic mass, van der Waals volume and polarizability weightings as it has been predicted. The 

variation of 3D-MoRSE descriptors with high scattering parameter causes significant decrease in 

discriminatory ability. For example, the range of GABA Mor32u decriptor values obtained with 



slightly modified starting geometry covers the values of three different amino acids, making the 

differentiation between GABA and those amino acids impossible. The comparison of within-compound 

and between-compound variations of 3D-MoRSE values at scattering parameters 1 and 31 Ǻ
-1

  is 

provided as supplementary information. 

 

Figure 5. Relationships between relative variation of 3D-MoRSE descriptors and scattering parameter 

for different weighting schemes 

The effect of distant atom pairs on 3D-MoRSE values is small and can be neglected. 

Since interatomic distance participates in the denominator of radial basis function, the greater 

distances correspond to smaller summand values. This inference is valuable for the interpretation of 

3D-MoRSE descriptors: when looking for atoms and groups responsible for certain 3D-MoRSE value, 

we can narrow the searching scope to those atomic pairs in which the distance is small. To inspect the 

impact of different interatomic distances in GABA molecule, we can look at the dynamics of 



cumulative sum of 3D-MoRSE terms ordered by interatomic distance (fig. 6.). On the given example, 

the terms that correspond to atoms located more than 5Ǻ away practically has no influence. Moreover, 

it can be seen that all presented descriptors reach their approximate values before 3Ǻ, and the changes 

of 3D-MoRSE values after this threshold is small. Now how this fact can be utilized? For example, if 

increasing values of some 3D-MoRSE descriptor lead to increase in biological activity, then atomic 

groups that contribute to the 3D-MoRSE descriptor mostly are prefferential for activity. So searching 

for these groups we may check only those pairs that are closer than 3Ǻ (in most cases such interval 

corresponds to α and β atoms relative to the each studied). That is a key point for translating differences 

in 3D-MoRSE values into structural differences. We have no need to wade through all possible atomic 

binary combinations: checking the closest neighbors is sufficient, since 3D-MoRSE descriptors are 

defined predominantly by short-distance atom pairs. 

 

Figure 6. The role of interatomic distance in unweighted 3D-MoRSE descriptors at different scattering 

parameters 



3D-MORSE DESCRIPTORS IN ACTION 

Prediction of 3D-MoRSE descriptors effects in a QSAR model 

One of the key points of scientific method tells that a good theory should make accurate predictions. 

Let us show how the knowledge about 3D-MoRSE descriptors can help to make reasonable prior 

suggestions about their effect in a QSAR model. The classification of 20 naturally occurring α-amino 

acids into ring-containing (cyclic) and acyclic structures has been utilized as a case study. This 

classification task is not trivial, since there are four aromatic α-amino acids (histidine, phenylalanine, 

tryptophan and tyrosine) and one alicyclic heterocycle (proline). Additionally, only three aromatic α-

amino acids contain phenyl ring, while the fourth (histidine) has imidazole cycle in its structure. Our 

goal is to predict which 3D-MoRSE descriptors (i.e. which weightings and scattering parameter values) 

will discriminate ring-containing and acyclic α-amino acids better. To make a prediction, the first step 

will be to answer: what are the atomic pairs that can differentiate ring-containing and acyclic structures 

in the given context? First of all, these are two carbons linked with an aromatic bond, since they are 

present in aromatic α-amino acids while in acyclic acids carbons are linked with single bonds. 

However, not the bond nature is primary for 3D-MoRSE, but bond length. The lengths of aromatic 

bond (about 1.40 Ǻ) and C(sp
3
)-C(sp

3
) bond (about 1.54 Ǻ) differ, and that contributes to the 

possibility of distinguishing between the two amino acids classes. The second pair could be C(sp
2
)-H 

with bond length 1.09 Ǻ, but it is very close to C(sp
3
)-H, which is about 1.11 Ǻ. The difference in 0.02 

Ǻ is too small to has some effect. Even the most sensitive to small changes 3D-MoRSE descriptors 

with the highest scattering parameter 31 Ǻ
-1

, have period 2π/31= 0.20 Ǻ. So to obtain effect of 

amplitude size we need at least 0.05 Ǻ difference. Going to further neighbors, we may select few more 

atomic pairs that are relevant for classification purposes (table 3.). 

Table 3. Closest atomic pairs that could differentiate cyclic α-amino acids from acyclic ones 

Atomic pair in cyclic 

(aromatic) α-amino 

acid 

Distance, 

Ǻ 

 The typical counterpart 

in acyclic (aliphatic-

chain) α-amino acid 

Distance, 

Ǻ 

 The difference has 

a tangible effect  

on 3D-MoRSE 



descriptors values 
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1.76  Yes 

 Now, to predict the values of scattering parameter that provide the best discrimination, we can sum 

up the values of radial basis function for the three selected atomic pairs in cyclic amino acids and 

substract the values of radial basis function for the corresponding three atomic pairs in acyclic amino 

acids: 
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Carrying out this procedure for each integer value of scattering parameter in the range 1-31 (fig. 7), 

we may assess the relative discriminative power of 3D-MoRSE descriptors (clearly, the scattering 

parameter values at which radial basis functions for aromatic acid atomic pairs fall into one phase and 

radial basis functions for aliphatic acid atomic pairs fall into corresponding counterphase should 

provide excellent discriminatory ability). 



 

Figure 7. The relative discriminative power of unweighted 3D-MoRSE descriptors predicted for the 

case classification study 

Looking into the obtained results, we may predict that 3D-MoRSE descriptors with scattering 

parameters 5, 6 and 8 Ǻ
-1

 are the most relevant to discriminate cyclic α-amino acids from acyclic ones.  

The lowest scattering parameter 0 Ǻ
-1

 was not taken into consideration, since corresponding 3D-

MoRSE descriptor Mor01u depends only on total number of atoms (see discussion above, in the 

theoretical part of article). In turn, there is no significant difference in total number of atoms between 

cyclic and acyclic α-amino acids. However, ring-containing acids have more carbons, while acyclic 

have more hydrogens. Thus, when applying weighting schemes which provide carbon atoms with much 

more influence than hydrogen atoms (atomic mass, polarizability, van der Waals volume), we may 

expect the rise of discriminative ability. Speaking further about impact of different weightings on 

relative discriminative ability of 3D-MoRSE descriptors, we may note, that those schemes that give 



larger role for carbon atoms should lead to better performance. The weighting by atomic masses greatly 

diminishes influence of hydrogens, but increase the influence of heteroatoms, the last unlikely 

contribute to the classification task. In the other hand, weightings by van der Waals volumes and by 

polarizabilities decrease roles of nitrogen and oxygen atoms as well as hydrogen. Since the major 

difference between cyclic and acyclic α-amino acids is presented with carbon atoms, these two 

weightings are expected to be optimal for the given case study. 

In order to test the validity of predictions made, the classification models each using single 3D-

MoRSE descriptor have been fitted with logistic regression. Goodness-of-fit has been evaluated as 

model deviance (lower value of deviance corresponds to better accuracy of model). To see how likely 

each deviance value can be reached by chance, response permutation test has been carried out for each 

model with the number of iterations equal to 100.  

The results showed good agreement with the prediction (fig. 8). The best classification performance 

for unweighted 3D-MoRSE descriptors is observed for Mor07u, that corresponds to scattering 

parameter s = 6 Ǻ
-1

. The values of s = 5 and 8 Ǻ
-1

 also lead to reasonable and statistically significant 

models. As it has been predicted, when s = 0 Ǻ
-1

 unweighted descriptor Mor01u has no discriminative 

ability, but Mor01m, Mor01v and Mor01p do have. The suggestion that van der Waals volume and 

polarizability weighting schemes are favorable is confirmed as well. For sure, there are some other 

scattering parameter values with discriminative ability, not covered by prediction (especially for van 

der Waals volume and polarizability weightings). That is because our analysis was rather shallow. It 

should be emphasized, that all predictions were based entirely on the theory behind 3D-MoRSE and 

analysis of distances in just few atomic pairs. This case study also illustrates the claim that analysis of 

the closest atoms (and here we used only the atoms connected directly with covalent bond or through 

the third atom) is sufficient to obtain the overall picture in 3D-MoRSE framework. 



 

Figure 8. Deviance of logistic regression models of the α-amino acids classification study developed 

with different 3D-MoRSE descriptros. The results of response permutation test are illustrated with 

violin plots 

Interpretation of 3D-MoRSE descriptors in a QSAR model 

In the presented above case study the structural features that distinguish two classes were known and 

the task was to find the most favorable 3D-MoRSE descriptors without using QSAR models. In the 



typical QSAR analysis the problem is reverse: the developed QSAR model contains the most favorable 

3D-MoRSE descriptors and we should interpretate them. That means we should identify those 

structural features that are responsible for the desired class (or level) of biological activity. 

The road of 3D-MoRSE descriptors interpretation can be passed with the next steps: 

1. Estimate the favorable values of 3D-MoRSE descriptors (whether these are high or low values, 

or the best activity is observed in some optimal range of 3D-MoRSE values). 

2. Plot radial basis function with corresponding to studied 3D-MoRSE descriptor scattering 

parameter and consider weights for different atomic pairs if the descriptor is weighted. 

3. Identify on the plot ranges of interatomic distance that lead to desired 3D-MoRSE values. 

4. Search in your active compounds the pairs of atoms located at previously found distance. Check 

whether these pairs are absent in non-active compounds. Those atomic pairs that are present in 

active compounds and absent in non-active and having interatomic distance in the favorable 

ranges promote biological activity. 

Cramer's steroid data has been used to produce the case QSAR study with 3D-MoRSE 

interpretation.
28

 The data has been downloaded from web resource
29

 and the molecular geometries were 

left as is. The dependent variable was the negative logarithm of corticosteroid-binding globulin (CBG) 

binding constant. Iterating through the set of 3D-MoRSE descriptors treated as independent variables, 

simple monoparametric linear regression models were fitted. The whole dataset was employed in 

model deriving and none validation was carried out since the primary aim is to show 3D-MoRSE 

descriptor interpretation process, while just simulating the QSAR study to be close to  a real one. In 

such a way, the best monoparametric model (10) has been obtained. 

pK=-5.98-4.75×Mor23v          (10) 

The determination coefficient of this model is R
2
 = 0.7385, and this value is rather high considering 

the level of parsimony. The Mor23v descriptor is the 3D-MoRSE descriptor calculated with scattering 

parameter s = 22 Ǻ
-1

 and weighted by atomic van der Waals volume. Now to find how this descriptor 

is related to molecular structure, let us pass the required steps. 



Step 1. Since high activity in steroid data is expressed with negative numbers (i.e. the less pK values 

mean the better binding) and β coefficient at the Mor23v descriptors is negative too, the higher Mor23v 

values correspond to higher activity levels.  

Step 2. In this stage the plots of corresponding radial basis functions (11) should be produced.  

,
22

22sin
)( 21

r

r
AArf            (11) 

where A1 and A2 are corresponding carbon-scaled atomic van der Waals volumes, r is interatomic 

distance. 

 The steroid dataset include molecules with common atoms C, O, and H (additionally, the compound 

31 contains flourine). The carbon-scaled van der Waals volumes for these atoms are 1, 0.715 and 0.263 

respectively. The low weight for hydrogen atom makes the contribution of hydrogen-containing atomic 

pairs negligible (and we would plot radial basis function for the most influential hydrogen-containing 

atomic pair C-H just for visual support of this claim). Since it is reasonable to search the favorable 

atomic pairs restricting maximum interatomic distance to 3 Ǻ, and there are no C-C or C-O bonds 

shorter than 1 Ǻ, we specify the proper limits for the x-axis. The result is presented in figure 9. 



 

Figure 9. Radial basis functions of Mor23v descriptor corresponding to different atomic pairs 

Step 3. Looking at the figure 9, the most favorable atomic pairs are located at the distances about 1.21, 

1.50, 1.78, 2.07, 2.36, 2.64 and 2.93 Ǻ, while the most detrimental pairs are located at 1.07, 1.36, 1.64, 

1.93, 2.21, 2.50 and 2.78 Ǻ. Not only these exact interatomic distances should be searched in studied 

molecules, but the deviations up to 0.02 Ǻ are acceptable also (for smaller scattering parameter values 

the acceptable region is larger). The favorable and detrimental distances also can be obtained more 

accurately with direct calculations. Indeed, the coordinates of extremums for srsin function (other 

components do not have impact on the period) are 

,

)
2

(

s

k



            (12) 

where s  is scattering parameter and k takes all non-negative integer values. 



Step 4. To search the prespecified distances in studied molecules, we can safely take into 

consideration only few the most and the least active compounds. Here only two compounds are 

utilized: compound 6 and compound 2 that are one of the most and the least active compounds 

respectively (fig. 10). First of all, the single C-C bonds lengths in cyclopentaneperhydrophenantrene 

fragment can be omitted since that part is common for all steroid molecules (ignoring the influence of 

substituents on the steroid core geometry). In the compound 6 C(3)=O, C(20)=O, C(17)-C(20) and 

C(20)-C(22) bonds have favorable lengths, while C(4)=C(5) bond has unfavorable length (fig. 10).  

Considering the different amplitude for C-C and O-C atomic pairs, the positive contribution of C-C is 

higher, despite the double bond in C=O is shorter. C(10)-C(19) and C(13)-C(18) are located at 1.53 Ǻ 

in both molecules. Such distance is not so far from positive peak at 1.50 Ǻ, so the methyl groups in 10
th

 

and 13
th

 positions of steroid core have small positive effect on the activity predicted. Single C-O bond 

has length 1.43 Ǻ, which, according to fig. 9, has zero impact. Compound 2 do not show specific 

favorable or unfavorable close pairs of atoms. Summarizing, the interpretation of Mor23v descriptor in 

the current case study can be formulated as follows: the presence of carbonyl groups and carbon chain 

in the 17
th

 position have positive impact on the CBG binding affinity, and the presence of double C=C 

bonds is detrimental. 

O

OH

O

OH

1.21
1.34

1.21

1.51

1.51

 

OH

OH

 

Compound 6, pK=-7.881 Compound 2, pK=-5 

* The compounds are depicted in 2D representation just for easy understanding, while the distances are measured in 3D for sure. 

Figure 10. Representatives of the most and the least active steroid compounds with the most relevant 

for Mor23v descriptor interatomic distances. 



What about improving the monoparametric model with one more 3D-MoRSE descriptor? Making an 

exhaustive search, the best two-parametric QSAR model (R
2
= 0.793, the improvement is not so high) 

is: 

pK = -7.61 -5.06×Mor23v -1.36×Mor13m       (13) 

Let us find what is the sense of Mor13m in this QSAR model. Using the known properties of 3D-

MoRSE descriptors and making some model diagnostics it is possible to interpretate the descriptor in a 

more elegant way than four-steps distance analysis. To know which atomic pairs have the greatest 

influence on Mor13m, the identification of those compounds that have decreased their prediction error 

significantly when moving from monoparametric to two-parametric model may be used due to the 

causal chain (fig. 11).  

 

Figure 11. The relationship between the presence of influential atomic pairs in molecular structure and 

the decrease of prediction error for this structure 

The plot of squared residual dynamics (fig. 12) shows that compound 31 has the greatest decrease of 

prediction error. The term that corresponds to the compound 31 holds 68% of total decrease in the sum 



of squared errors (SSE). Taking into account, that compound 31 contains fluorine, which is the heaviest 

atom in the studied dataset, and the chosen second descriptor is weighted accordingly, i.e. with atomic 

masses, it may be argued that one of Mor13m roles is to penalize the compound 31 for the fluorine 

atom. Indeed, the C-F distance (1.40 Ǻ) is close to one of the local minimums on the corresponding 

radial basis function plot (fig. 13.). Additionally, single C-O bonds (each having the length of 1.43 Å) 

created by three attached hydroxyl groups also fall into the local minimum, thus penalizing the 

predicted activity of 31 further (fig. 13.). 

 

Figure 12. The dynamics of squared residuals when moving from monoparametric to two-parametric 

QSAR model 



 

Figure 13. Radial basis functions of Mor13m descriptor corresponding to different atomic pairs 

The interpretation of Mor13m descripor in this case study can be formulated as follows: the presence 

of fluorine atoms and hydroxyl groups in steroid structure is unfavorable and decreases CBG binding 

affinity. However, we would like to note, that this inference is caused mostly by the single compound 

31, and thus muсh credits should not be given to it. Apparently, when a model begin to optimize the 

prediction error just for single compounds, that is stopping criterion and further complication of such 

model is inappropriate. 

METHODS 

All structures used in the theoretical analysis and case studies were downloaded in three-dimensional 

representation and further optimized in MOPAC2012 with PM7 method
27

 (except the steroids, which 

were used as-is for the consistency purposes). To calculate 3D-MoRSE descriptors from MOPAC2012 

output files the short program "3dmorse" has been written in C++. The possibility to return 3D-MoRSE 



summands in a separate file is implemented as a specific feature of the program. The source code and 

the executable file compiled for Windows environment can be freely downloaded from the web
26

. All 

other calculations has been carried out in R 3.0.1 environment
30

 with additional package for graphics 

preparation "ggplot2".
31

 

CONCLUSIONS 

Lifting the veil of 3D-MoRSE descriptors, we have showed both their strength and weakness. The 

range of scattering parameter values and variety of weighting schemes provide 3D-MoRSE with 

significant flexibility, ensuring good discriminatory power even for similar structures. The values of 

the descriptors are calculated with rather simple equation, but when using differing starting geometries 

as optimization input the values were unstable and exhibited variation. This variation increased with 

scattering parameter and also was higher for electronegativity weighted and unweighted descriptors. 

Though each 3D-MoRSE descriptor incorporates the information about the whole molecule structure, it 

has been shown that its final value is derived mostly from short-distance (up to 3 Ǻ) atomic pairs. Thus, 

if a QSAR study covers structurally similar set of compounds, then the role of 3D-MoRSE descriptor in 

a model can be interpreted using just several pairs of neighbor atoms. As a brief synopsis, to explain 

the effect of 3D-MoRSE descriptor its radial basis function should be plotted and then atoms that are 

located at distances that coincide with maxima or minima of the function should be identified. In turn, 

the presence or absence of the found atomic pairs in a molecule determine its biological activity value 

(at least this is suggested by the interpreted descriptor). Realizing the mathematical concept behind 3D-

descriptors and knowing their properties it is easy not only to interpret, but also to predict the 

importance of 3D-MoRSE descriptors in a QSAR study. 

Finishing the paper, we would like to compare any descriptor class with a human language. We, the 

medicinal chemists, speak about compounds in terms of their structure: atoms, bonds, groups, 

templates, scaffolds and substituents. But machine learning methods do not understand such language. 

Thus we have to project chemical structures into a space of numbers following the predefined rules and 

equations. Each molecular descriptor is a word, and QSAR models choose the best words to explain 



activity phenomenon. Thus, the ability to translate these words into the familiar language of structural 

entities is crucial for successful application of QSAR method. And, like there are no better or worse 

languages, there no better or worse descriptor classes. The languages of Alaska Natives can perfectly 

describe snow, but are poor to describe, for example, technology. In such a way some descriptors are 

suitable in one case and not relevant in another. 3D-MoRSE descriptors cannot describe complex 

atomic groups or regions with high or low electron density or some quantum-chemical properties etc, 

but result in a good model performance when activity variation coincides with variation in interatomic 

distances due to changes of bonds order and the introduction of new atoms. 

SUPPLEMENTARY INFORMATION 

A figure with the visual comparison of within-compound and between-compound variations in 3D-

MoRSE values at scattering parameters 1 and 31 Ǻ
-1

  is provided as supplementary information. 
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