EUROPEAN NETWORK FOR ACADEMIC INTEGRITY

The international research and practical conference
THE DEVELOPMENT OF TECHNICAL SCIENCES: PROBLEMS AND SOLUTIONS
April 27–28, 2018
Proceedings of the Conference

INFORMATICS AND CYBERNETICS
ELECTRONICS, RADIO ENGINEERING AND COMMUNICATIONS
AUTOMATION AND COMPUTER ENGINEERING
ELECTRICAL ENGINEERING
POWER ENGINEERING

Brno – 2018
Organising Committee

Mgr. Tomas Foltyněk PhD – Head of the Board;
Mgr. Eva Klepářinková PhD – Deputy Head of the Board;
Kostiantyn Shaposhnykov Professor, Head of Black Sea Research Institute of Economy and Innovation, Ukraine.

CONTENTS

SECTION 1. INFORMATICS AND CYBERNETICS

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дослідження технології DLT в якості основи для аутентифікації пристроїв IoT</td>
<td>Бондарчук А. П., Онищенко В. В., Трембовецький М. П., Полоневич О. В.</td>
<td>1</td>
</tr>
<tr>
<td>Інноваційні моделі управління знаннями в групах</td>
<td>Буслов П. В.</td>
<td>3</td>
</tr>
<tr>
<td>Імовірнісний аналіз кіберзагроз інформаційних об’єктів енергетики</td>
<td>Гончар С. Ф.</td>
<td>6</td>
</tr>
<tr>
<td>Подання знань в системах підтримки прийняття рішень нейронними мережами</td>
<td>Гулах Н. К.</td>
<td>7</td>
</tr>
<tr>
<td>Моделювання процесів управління людськими ресурсами проектів в період кризи</td>
<td>Доценко Н. В.</td>
<td>10</td>
</tr>
<tr>
<td>Обґрунтування місця закладання зарядів вибухової речовини в масиві міцних гірських порід</td>
<td>Іщенко О. К., Ус С. А., Іщенко К. С</td>
<td>13</td>
</tr>
<tr>
<td>Adaptive method for identification of points in the image that are damaged by impulse noise</td>
<td>Kalinichenko Yu. V.</td>
<td>17</td>
</tr>
<tr>
<td>Комп’ютерно-інтегрована система підтримки прийняття управлінських рішень на основі бізнес-процесів</td>
<td>Козир С. В.</td>
<td>20</td>
</tr>
<tr>
<td>Software consideration for a lightweight hybrid power unit</td>
<td>Kotunov V. O.</td>
<td>24</td>
</tr>
<tr>
<td>Програмний комплекс для контролю та підвищення ефективності робочого часу в ІТ компанії</td>
<td>Коцун В. І.</td>
<td>25</td>
</tr>
<tr>
<td>Features of construction of information system of diagnostics of household electrical equipment as part of IoT</td>
<td>Kuznetsov D. I.</td>
<td>27</td>
</tr>
</tbody>
</table>
Adaptive compression of IoT devices signal
Manzhos Yu. S., Sokolova Ye. V.31

Модель рационального размещения металлопроката
на складах на основе АВС-анализа
Мироненко Д. С., Буц Ю. В. ..35

Software of monitoring and consulting of commercial online services
Oleshchenko L. M., Tsarikov M. S.38

Шагающий робот с гибкими педипуляторами
Полищук М. Н. ..41

Информационная технология организации
индивидуальной городской поездки
Пронина О. И., Левицкая Т. А., Пятикоп Е. Е.45

Інформаційна ройова технологія тематичного сегментування зображень,
що отримані з бортових систем оптико-електронного спостереження
Хижняк І. А., Худов В. Г., Худов Р. Г.48

Дослідження впливу інтервалів групування на точність
апроксимації щільності розподілу
за негаусових експериментальних даних
Чепинога А. В. ...52

SECTION 2. ELECTRONICS,
RADIO ENGINEERING AND COMMUNICATIONS

Выбір діагностичних показників у схемі коректора потужності
Басаджи В. І. ..56

Розрахунок коефіцієнта потужності випрямної схеми Міткевича
Артеменко М. Ю., Батрак Л. М.................................60

Методика управління параметрами багатоантенних засобів радіозв’язку
Бєляков Р. О., Головко Д. О., Ковальчук О. О., Шишацький А. В.64

Прогнозування часу виконання функціональних задач
радіоелектронними системами
Бичковський В. О., Реутська Ю. Ю.67

Introduction of intelligent sensors in polymer materials
by compression molding
Ivitskyi I. I. ..70
Методи підвищення завадозахищеності
багатоантенных систем радіозв'язку
Калантаєвська С. В. ... 72

Анализ операторской деятельности
при возникновении опасной полетной ситуации
Аль-Аммори Али, Аль-Аммори Х. А., Ключан А. Е. 75

Choice of a threshold at the compression of voice signals
Rozorinov H. N., Larina E. Yu., Chichikalo N. I. 78

комплексна оцінка ефективності системи зв’язку
Сакович Л. М., Романенко В. П., Гиренко І. М., Гнатюк С. Є. 82

Компенсатор поляризаційної модової дисперсії
на базі оптичного волокна з анізотропними властивостями
Сташук О. М., Багачук Д. Г., Степанов Д. М., Степанова Л. І. 85

Поліноміальне оцінювання параметра сигналу
при усіченному оцінюванні дисперсії негаусівської завади
Філіпов В. В. ... 89

Підвищення ефективності виявлення малорозмірних
повітряних об’єктів на основі об’єднання методів
однопозиційного та рознесеного прийому сигналів
Худов Г. В., Ковалевський С. М., Зоц Ф. Ф. 94

Методика ієрархічного управління канальними
та мережевими ресурсами систем радіозв’язку
Шишацький А. В., Животовський Р. М., Гаценко С. С., Петрук С. М. 97

SECTION 3. AUTOMATION
AND COMPUTER ENGINEERING

Системна оцінка технологічного та автоматичного контролю
продуктивності рециклу при збагаченні залізної руди
Дмітрієв В. І. .. 100

Оптимізація керування авіаційного газотурбінного двигуна
в реальному часі
Єнчев С. В. ... 102

Research of integrated identification method for the work of grain dryer
Silvestrov A. M., Kryvoboka G. I., Zaharchenko R. V. 105
Measuring the movement of moving objects
Korobko A. I., Shein V. S. ... 109

Синтез гібридної нейронної мережі для керування двохмасовою електромеханічною системою з зazorом
Маринич І. А. ... 111

Контроль енергетичної ефективності руйнування руди кульовим млином
Мацуй А. М., Кондратець В. О... 115

Дослідження точності системи регулювання нульового положення
Ткачук А. Г.. 119

SECTION 4. ELECTRICAL ENGINEERING

Регулювання напруги коливального заряду суперконденсатора від джерела постійної електрорушійної сили
Білецький О. О., Котовський В. Й.................. 123

Обеззаражування води електричними разрядами в газових пузырях при помощи генераторов високовольтных имультс
Бойко Н. И., Макогон А. В... 127

Електромагнітна сумісність та обмінні процеси в автономних системах електроживлення
Горенко Д. С., Денисюк С. П., Радиш І. П.. 130

Моделювання теорії реактивної потужності Fryze для несинусоїдних режимів
Ковальова Ю. В.. 133

Research of photovoltaic characteristics of organosilicon hybrids
Kuznietsova D. A .. 137

Система управління перетворювачем частоти з використанням лінійної частотної модуляції
Кулик М. В.. 139

Распределение температуры в светодиоде в одномерном приближении
Якунин А. А.. 143

SECTION 5. POWER ENGINEERING

Analysis of the structure and systems of diagnosis of electromechanical equipment for coal mining
Altukhova T. V.. 147
Моделирование переходных процессов тягового электропривода в режиме пуска-торможения шахтного электровозосостава
Синчук О. Н., Барановская М. Л., Федотов В. А. .. 150

Аналіз особливостей функціонування локальних систем енергозабезпечення
Денисюк С. І., Василенко В. І... 154

Method of process control automation by energy supply
a farm from autonomous energy sources
Holyk O. P., Zhesan R. V., Miroshnichenko M. S.. 157

Hydraulic turbine with static excitation synchronous generator
and governor systems... 160
Ahmed Ibrahim Jaber Alzubaydy, Raid Anam Gaib,
Ahmed. B. Aziz, Dorohobid V. P... 160

Doцільність використання паливних ресурсів України на території Полісся
Дурас М. В.. 164

Підвищення ефективності роботи когенераційних газопаротурбінних установок використанням котлів-утилізаторів різних типів
Долганов Ю. А., Козловський А. В.. 168

Selecting optimal mathematical method for building model
of peat drying process
Kulakovskyi L. Ya. ... 172

Використання коронного розряду для очищення викидного повітря в сільському господарстві
Лавріщев О. О.. 175

Дослідження розподілу газоповітряного потоку на виході газовідвідного тракту
Лобов В. Й., Лобова К. В... 177

Application of economizer in biomass boiler house
in boryspil airport: case study
Nazarova I. O., Heletukha S. H... 180

Design of relevant criteria for segmenting of the retail power market
Petrova K. N... 184
Simulation of conditions of the production environment during the extraction of uranium ores
Poliakova I. O. .. 186

Modeling of heat transfer processes in stabilizer burners with heat-resistant coatings
Fialko N. M., Prokopov V. G., Sherenkovskyi Yu. V., Aleshko S. A.,
Meranova N. O., Yurchuk V. L., Hanzha M. V. ... 190

Efficiency of the use of polymer micro- and nanocomposition materials for heat exchange surfaces of heat-power equipment
Fialko N. M., Navrodkaya R. A., Shevchuk S. I., Gnedash G. A.,

Дослідження проблеми управління розвитком систем розподілу електроенергії України в історичному контексті
Чернецька Ю. В. .. 198
ЕЛЕКТРОМАГНІТНА СУМІСНІСТЬ ТА ОБМІННІ ПРОЦЕСИ В АВТОНОМНИХ СИСТЕМАХ ЕЛЕКТРОЖИВЛЕННЯ

Горенко Д. С.
аспірант кафедри електропостачання
Національний технічний університет України

Денисюк С. П.
доктор технічних наук, професор
Національний технічний університет України
«Київський політехнічний інститут імені Ігоря Сікорського»
м. Київ, Україна

Радиш І. П.
кандидат технічних наук, доцент
Ужгородський національний університет
м. Ужгород, Україна

В автономних системах електроживлення (Microgrid), за рахунок широкого використання пристроїв силової електроніки для узгодження великої кількості різноманітних джерел розсіянної енергії, виникає проблема електромагнітної сумісності [1; 2]. В роботі запропоновано проводити оцінку електромагнітної сумісності з використанням обмінних процесів. В попередніх дослідженнях було розглянуто взаємний вплив груп елементів автономної системи електроживлення. Макромодель та еквівалентна схема якої зображена на рисунку 1 де умовно виділено три групи об’єктів (\{A\} – домінуюча група генераторів електроенергії, \{B\} – група, що може генерувати та споживати електроенергію та \{C\} – пасивні споживачі) генеруючі елементи яких є синусоїдальними.

Рис. 1. Макромодель автономної системи електроживлення з виділеними трьома групами елементів

130
Взаємний вплив груп елементів автономних систем електроживлення визначається з врахуванням обмінної потужності (1) [3-5]:

\[Q_{\text{об.}(i)} = \frac{1}{T} \int_{0}^{T} u_{an}(t) i_{p,(i)}(t) \, dt, \]

де \(i_{p,(i)}(t) = i_{(i)}(t) - i_{a,(i)}(t) \) – реактивна складова струму в \(i \)-му ланцюзі автономної системи електроживлення; \(i_{a,(i)}(t) = u_{an}(t) P_{(i)}/U^2 \) – активна складова струму в \(i \)-му ланцюзі автономної системи електроживлення; \(i_{(i)}(t) \) – повний струм в \(i \)-му ланцюзі автономної системи електроживлення;

\[P_{(i)} = \frac{1}{T} \int_{0}^{T} u_{an}(t) i_{(i)}(t) \, dt \] – активна потужність творена \(i \)-ю групою;

\[U = \sqrt{\frac{1}{T} \int_{0}^{T} u_{an}(t)^2 \, dt} \] – діюче значення напруги у вузлі \(a \).

Обмінна потужність, що характеризуватиме обмінні процеси у вузлі \(a \) між групами елементів автономної системи електроживлення \(\{A\} \), \(\{B\} \) та \(\{C\} \), визначається за формулою (2) [2]:

\[Q_{\text{об}} = \sum_{i=1}^{n} Q_{\text{об.}(i)} = Q_{\text{об.}\{A\}} + Q_{\text{об.}\{B\}} + Q_{\text{об.}\{C\}}. \]

Доля впливу \(i \)-ої групи елементів на автономну систему електроживлення визначається за формулою (3):

\[\Delta_{(i)} = \frac{Q_{\text{об}}}{Q_{\text{об.}(i)}}, \text{ в.о.} \]

Доля впливу окремих груп елементів автономної системи електроживлення при синусоїдальному характері живлячих елементів від зміни параметрів групи пасивних споживачів \(\{C\} \) зображено на рисунку 2.

Рис. 2. Залежності долі впливу груп елементів на автономної системи електроживлення при зміні модуля та аргументу навантаження пасивної групи \(\{C\} \)

Рисунок 2а видно, що при зростанні \(|Z| \) для впливу групи \(\{C\} \) навпаки зменшується, тим самим збільшуючи долю перерозподілу взаємообміну.
енергією між групами \(\{A\} \) та \(\{B\} \). Не дивлячись на те, що група \(\{A\} \) є домінуючою \((E_{\{A\}} > E_{\{B\}}) \) для впливу групи \(\{B\} \) на систему є більшою. При зростанні \(|Z| \) доля впливу групи \(\{B\} \) знижується, а групи \(\{A\} \) зростає. Залежності долі впливу на автономної системи електроживлення від фази \(\varphi \) є нерівномірними, це можна пояснити початковим внеском зсувів фаз напруги окремих груп.

В автономних системах електроживлення як і в електричних мережах загального призначення виникають спотворювальні сигнали. Для прикладу до вузла \(a \) підключимо джерело несинусоїдальної завади (рисунок 3), що описується \(J(t) = I_m^{(1)} \sin(\omega \cdot t + \varphi^{(1)}) + I_m^{(3)} \sin(3\omega \cdot t + \varphi^{(3)}) + I_m^{(5)} \sin(5\omega \cdot t + \varphi^{(5)}) \).

Рис 3. Макромодель автономної системи електроживлення з виділеними трьома групами елементів та генератором спотворювального сигналу

Аналогічно використовуючи наведені раніше формули (1) – (3) розраховуються долі впливу \(\Delta_{\{i\}} \) з врахуванням несинусоїдальної завади. На рисунку 4 наведено аналогічні залежності долі впливу від навантаження групи елементів автономної системи електроживлення \(\{C\} \) з врахування впливу завади \(J(t) \).

Рис. 4. Залежності долі впливу груп елементів на автономної системи електроживлення при зміні модуля та аргументу навантаження пасивної групи \(\{C\} \) з врахуванням спотворювального джерела

132
Як видно з рисунку 4 вплив груп елементів \{A\} і \{B\} автономної системи електрозв'язання порівняно з рисунком 2 змінився, причиною зміни стала дія завади. Вплив груп не зменшується і важливим стає питання виділення впливу не просто несинусоїдальної завади, а і окремих гармонічних складових [6]. Вплив групи елементів \{B\} прикінці зсуву навантажувальної групи елементів \{C\} мінімальний при куті зсуву \(\pi/2\) тоді як вплив групи \{C\} є максимальним, а вплив групи \{A\} рівний нулю.

Література:

МОДЕЛЮВАННЯ ТЕОРІЇ РЕАКТИВНОЇ ПОТУЖНОСТІ FRYZE
ДЛЯ НЕСИНУСОЇДНИХ РЕЖИМІВ

Ковальова Ю. В.
кандидат технічних наук, старший викладач
кафедри систем електропостачання
tа електропоживання міст
Харківський національний університет міського господарства
імені О. М. Бекетова
м. Харків, Україна

Актуальність теми. На теперішній час існує низка теорій реактивної потужності при несинусоїдних режимах, яким присвоєні імена їх авторів. Спільною проблемою цих теорій є неповне розкриття фізичного змісту отриманих математичних виразів, з одного боку, а з іншого – недостатність експериментальних підтверджень щодо їх достовірності. Тому задача