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MATRIX ELEMENTS OF THE DIPOLE-DIPOLE
INTERACTION BETWEEN TWO TWO-LEVEL

ATOMS DISTANCED ARBITRARILY FROM EACH
OTHER

Purpose. As a standard model for describing the processes of a resonant transmission of quantum information on
arbitrary distances is the system of two identical two-level atoms, one of which is under radiation of the field of real
photons. Such a system can serve as a basis for the construction of an element basis of quantum computers. The
purpose of this paper is to study the different modes of dynamics of a system of two identical two-level atoms when
they interacts with the field of real photons.
Methods. In this paper, we propose a general approach to the description of the processes for the transfer of quantum
information from one atom-qubit to another on the arbitrary interatomic distances, which includes two types of new
physical effects: the attenuation of quantum states and the retardation of the dipole-dipole interaction.
Results. The optical properties of a system of two identical two-level atoms in collective (symmetric Ψs and anti-
symmetric Ψa) Bell states at arbitrary interatomic distances are investigated. The closed analytical expressions for
the shifts and widths of the considered collective states are considered, taking into account the retarded dipole-dipole
interaction of atoms. In calculation of the radial matrix elements of the dipole-dipole interaction, the wave functions
of the model Fues potential are used.
Conclusions.Adetailed study of themechanisms of resonant transmission of the excitation energy at arbitrary distances
between the two-element atoms has an important practical significance for the physical realization of the logical
operator CNOT.
Keywords: quantum computer, dipole-dipole interaction, effects of retardation, Fues potential.

Introduction

Search for physical processes performing logi-
cal operations is one of the main physical prob-
lems associated with the implementation of the
idea of the quantum computer and quantum
computing [1]. In the papers [2–4], the quan-
tum computer based on electric dipole transi-
tions in a spectrum of two-level atoms inter-
acting selectively with short intensive optical
pulses was proposed. As a standard model for
describing the processes of a resonant transmis-
sion of quantum information at arbitrary dis-
tances is the system of two identical two-level
atoms, one of which is under radiation of the

field of real photons. Study of various regimes
of dynamics of such a model system interacting
with the field of real photons can serve as a ba-
sis for the construction of an element basis of
quantum computers. The theoretically elegant
proof of principle possibility of quantum infor-
mation transmission from one two-level atom to
another was given by A.S. Davidov [5], and also
by O.N. Gadomsky and K.K. Altunin in afore-
mentioned paper [2].

The problem of two interacting electrons
belonging to two different atoms being arbitrar-
ily apart from each other is one of key prob-
lems in understanding the processes of resonant
transmission of quantum information at arbi-
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trary distances. A large number of papers (see
[2, 6–15] and references therein) are devoted to
its study. The main result of these works is
that the presence of the second atom can signifi-
cantly change the lifetime of the excited state of
the atom; this change in the lifetime depends on
the mutual orientation of the dipole moments of
the transition of the atoms and distance between
them. Despite existing numerous publications
on the resonance interaction of atoms, many as-
pects of this interaction remain weakly investi-
gated up to this day, especially for two neutral
atoms located at an arbitrary distance from each
other.

Operator of electric dipole-dipole in-
teraction of two neutral atoms loca-
ted at an arbitrary distance from each
other

The resonance interaction occurs between the
excited atom and the atom in the ground state,
if the transition energy to the excited state is
the same for both atoms (the atoms are in reso-
nance). A similar situation always takes place in
the interaction of two identical two-level atoms.

There are several reasons why the theory
of resonant interaction of atoms at arbitrary dis-
tances from each other deserves further devel-
opment. First of all, in order to realise exper-
imentally two-qubit quantum operations with
cold neutral atoms it is necessary to be able to
control the interaction between the qubites [16].
That is why thorough theoretical study of all
possible types of atomic interactions is a key
to creating a quantum computer with qubits on
neutral atoms in optical traps. Depending on the
specific quantum states of the atoms involved
in the process of quantum information trans-
mission in the system of two qubits, this may
be either the Van der Waals interaction or the
resonant dipole-dipole interaction each of what
is characterized by different dependence on the

interatomic distance R (R−6 and R−3 respec-
tively, when neglecting the retardation). The
dipole-dipole interaction of atoms is stronger in
large (relatively to their own sizes) distances,
and therefore its use is a priority for increasing
the accuracy of quantum operations with neutral
atoms.

However, the standard quantum-
mechanical calculation of the energy of the res-
onance interaction of two identical atoms (see,
for example, [5]) becomes unsuitable for too
large distances of R between them. The fact is
that this calculation takes into account only the
instantaneous Coulomb interaction of charges
(the term∼ 1/R3 in the interaction operator (2)
without the retardation factor exp (i|ωfi|R/c)).
Such a consideration is only valid until the in-
teratomic distance R remains small compared
with the characteristic wavelengths λ0 in the
spectra of the interacting atoms.

A consistent theory of resonance interac-
tion of atoms that correctly describes the be-
havior of the forces of the dipole interaction of
atoms on both near and far distances can be con-
structed only if in this theory, all types of atomic
electrons interaction that are manifested in dif-
ferent spatial scales are taken into account from
the outset. Therefore, in describing the reso-
nance interaction of atoms at arbitrary distances
from each other, along with the instantaneous
Coulomb interaction, it is necessary to take into
account also the retarded interaction of atoms,
which depends on the velocity of light c and dis-
appears at c → ∞.

Such a general consideration was made
in [6, 8–11], where the operator V̂ (±)

LL of the re-
tarded interaction of two electrons belonging to
two different hydrogen-like atoms at an arbi-
trary distance from each other. It is convenient
to write both parts of the inter-electron interac-
tion operator constructed in [6,8–11] i.e. the re-
tarded part V̂ (±)

LL ) and the Coulomb part VC in
the following form:
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V̂ (±) = V̂C + V̂
(±)
LL = exp

(
i

c
|ω(1)

fi |R
){

e2

r12
− e2

2m2c2

[
ˆ⃗p1 ˆ⃗p2 + n⃗(n⃗ ˆ⃗p1)ˆ⃗p2

r12
+

+R2
ˆ⃗p1 ˆ⃗p2 − 3n⃗(n⃗ ˆ⃗p1)ˆ⃗p2

r312

]
± e2R

2mc

n⃗ ˆ⃗p1 + n⃗ ˆ⃗p2
r212

}
. (1)

Here c is the velocity of light, e = −|e| and m
are the charge and mass of an electron, r12 =
|r⃗ ′

1 − r⃗ ′
2| is the distance between electrons be-

longing to atom 1 and atom 2, n⃗ = (r⃗ ′
1−r⃗ ′

2)/r12,
r⃗ ′
1 and r⃗ ′

2 are the radius-vectors of electrons 1
and 2 in an arbitrary coordinate system, ˆ⃗p1 and
ˆ⃗p2 are the momentum operators of 1-st and 2-nd
atomic electrons respectively. In (1) and there-
after, subscripts 1 and 2 differ quantities con-
nectedwith two different atoms; subscripts i and
f characterize the initial and final states of inter-
acting electrons; |ω(j)

fi | = |ω(j)
f − ω

(j)
i | ≡ ω0

is the resonant frequency of transition in the
spectrum of two-level atoms; ω(j)

i and ω
(j)
f are

the frequencies of initial and final states of j-
th electron. In (1), the plus sign in front of
the term containing the factor R corresponds to
the case ω

(1)
f > ω

(1)
i , and the minus sign cor-

responds to the case ω
(1)
f < ω

(1)
i . Oscillating

exponential factor (so-called retardation factor)
exp (iω0R/c) determines the role of time retar-

dation of considered type of atoms interaction
[18].

Let the interatomic axis R⃗ of the diatomic
quantum system be directed along the z axis.
We will assume further that one two-level atom
is at the origin of the coordinate system (R⃗1 =
0) and the other at the point R⃗2 with coordi-
nates (0, 0, R). At large distances R, the opera-
tor V̂ ± describing the interaction between atoms
can be regarded as a small perturbation. Con-
sequently, we can relatively easily estimate the
energy of the resonance excitation exchange be-
tween two atoms distanced from each other on
the basis of the usual perturbation theory. As
follows from the derivation (see, for example,
[8, 10]) of the formula (1), the operator V̂ (±)

takes into account the transitions in the spectrum
of atoms of arbitrary multiplicity. In this paper,
we restrict ourselves to considering only electric
dipole transitions for which the operator V̂ (±) is
written as:

V̂
(±)
dip = exp

(
i

c
ω0R

){
d⃗1d⃗2 − 3(n⃗Rd⃗1)(n⃗Rd⃗2)

R3
± e

2mc

[
d⃗1 ˆ⃗p2 − 3(n⃗Rd⃗1)(n⃗R

ˆ⃗p2)

R2
−

−
ˆ⃗p1d⃗2 − 3(n⃗R

ˆ⃗p1)(n⃗Rd⃗2)

R2

]
− e2

m2c2

ˆ⃗p1 ˆ⃗p2 − (n⃗R
ˆ⃗p1)(n⃗R

ˆ⃗p2)

R

}
, (2)

where n⃗R = R⃗/R is the unit vector in the di-
rection of the inter-atomic axis R⃗, ω0 ≡ ωn0 =
(En − E0)/h̄ is the resonance frequency in the
spectrum of two-level atoms, d⃗1 = er⃗1 and
d⃗2 = er⃗2 are the operators of the electric dipole
moments of separate atoms, r⃗1 and r⃗2 are the
radius-vectors of electrons 1 and 2 relatively nu-
clei of atoms A(1) and A(2), respectively. This
operator is known as the generalized operator of
electric dipole-dipole interaction of two neutral
atoms located at an arbitrary distance from each
other.

The energy of resonance interaction
of atoms at arbitrary distances

Let us consider the system of two identical
atoms at an arbitrary distanceR from each other.
In each atom, we will be interested in the tran-
sition between the same pair of levels, and the
other levels will not manifest themselves in the
considered process of resonant transfer of the
excitation energy from one atom to another. In
fact, in nature, there are practically no atomic
systems with only two energy levels. But if
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the interaction with the field is of pronounced
resonant character, then, as a rule, the influ-
ence of other levels can be neglected. Thus, the
two-level atom represents a certain mathemati-
cal model of qubit – a carrier of quantum infor-
mation. The existence in the atomic quantum
system of two selected internal basis states and
the principle of superposition is enough to store
one bit of quantum information – a qubit. We
characterize each atom-qubit with two levels of
energyE0 andEn having the resonant transition
frequency ω0 = ω

(1)
fi = −ω

(2)
fi = (En − E0)/h̄

and the wave functions φ0(j) and φn(j). The
subscripts 0 and n denote the ground and ex-
cited states of the atom, respectively, and the
argumentj = (1, 2) of the wave function indi-
cates a number of the electron (and a number of
the atom) to which it belongs.

Classical computers operate with bistable
transistor circuits that have a nonlinear rela-
tionship between the input and output voltages
[1]. In a quantum computer, a role of such a
bistable transistor circuit plays a two-level atom
having two orthogonal states |0⟩ and |n⟩, be-
tween which an electric single-electron dipole
transition with a resonant frequency ω0 is al-
lowed. Let the state |0⟩ with the wave function
φ0(j) and the energy E0 be a logical “0”≡ |0⟩
and the state |n⟩ with the wave function φn(j)
and the energy En (En > E0) be a logical
“1”≡ |n⟩. The level-to-level dipole transitions
|0⟩ ↔ |n⟩, E0 ↔ En with the matrix ele-
ment of the dipole moment of atom transition
(d⃗j)n0 = ⟨n|d⃗j|0⟩ correspond to the transitions
“0”↔“1”. As noted in [1], a quantum bistable
element (qubit) has a new (compared with the
classical one) property of the superposition of
states: it can be in any superposition state |φ⟩ =
α|0⟩ + β|n⟩, where α and β are complex num-
bers satisfying the condition |α|2 + |β|2 = 1.
It is the quantum principle of states superposi-

tion that allows the quantum computer to pro-
vide fundamentally new possibilities.

For the system of two interacting atoms
having only one electron, the Hamiltonian Ĥ
can be represented in the form of sum of Hamil-
tonians of isolated atoms, Ĥ0 = Ĥ1(r⃗1) +
Ĥ2(r⃗2), and operator of electric dipole-dipole
interaction between them, V̂ (±)

dip :

Ĥ = Ĥ0 + V̂
(±)
dip

= Ĥ1(r⃗1) + Ĥ2(r⃗2) + V̂
(±)
dip (r⃗1, r⃗2;R). (3)

Let En1n2 = En1 + En2 and |n1n2⟩ are respec-
tively the eigenvalue and eigenfunction of op-
erator of energy Ĥ0 = Ĥ1 + Ĥ2 without in-
teratomic interaction. In accordance with the
partition (3), let us denote the wave function of
the state of the system in which both the non-
interacting atoms are in the ground state by |00⟩,
that is,

|00⟩ = φ0(1)φ0(2) exp(−iE0t1/h̄)

× exp(−iE0t2/h̄) ≡ φ̃0(1)φ̃0(2). (4)

Here E0 is the energy of the initial states of the
first A(1) and second A(2) atoms, the numbers
1 and 2 correspond to the coordinates and times
for the atoms A(1) and A(2), respectively. For
neutral atoms having not constant dipole mo-
ments, the energy correction to the two-atom
system is equal to zero, because ⟨00|V̂ (±)

dip |00⟩ =
0. At the same time, the dipole-dipole interac-
tion being effective at small distances between
atoms distorts in some way the wave functions
of atomic states. Thus, in the first approxima-
tion of the perturbation theory in the interatomic
interaction V̂

(±)
dip (2), the perturbed wave func-

tion of the system of two identical atoms in the
ground state is of the standard form (see, for ex-
ample, [5, 17]):

Ψ0(1)Ψ0(2) = φ̃0(1)φ̃0(2) +
∑
n1n2

< φ̃n1(1)φ̃n2(2)|V̂
(±)
dip |φ̃0(1)φ̃0(2) >

2E0 − En1 − En2

φ̃n1(1)φ̃n2(2), (5)

where summation is carried out with respect to
all possible intermediate states of atoms except
of |00⟩. According to the representation (5),

a non-zero correction to the energy of the two
neutral atoms system in the ground state will
appear only in the second order of the pertur-
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bation theory [5, 17, 18]. We consider the state
Ψ0(1)Ψ0(2) (see (5)) as an initial state of pair of
atoms interacting with field of real photons.

Let the final state |n0⟩ of two reso-
nant atoms corresponds to the excited state |n⟩
of atom A(1) with wave function φ̃n(1) =
φn(1) exp(−iEnt1/h̄) and energy En as well as
the ground state |0⟩ of atom A(2) with wave
function φ̃0(2) = φ0(2) exp(−iE0t2/h̄) and en-
ergy E0. According to the resonance condi-
tion, the state |0n⟩ being described by the wave
function φ̃0(1)φ̃n(2) corresponds to the same
energy. Consequently, the unperturbed system
(two isolated identical atoms) has the additional
degeneration here associated with the possibil-
ity of permutation of states between atoms. In
the first approximation of the perturbation the-
ory, we have the energy matrix of the second or-
der. It is diagonalized when constructing sym-
metric and antisymmetric linear combinations
of the initial wave functions of individual atoms:

Φs(1, 2) =
1√
2
[φ̃n(1)φ̃0(2) + φ̃0(1)φ̃n(2)] ,

(6)

Φa(1, 2) =
1√
2
[φ̃n(1)φ̃0(2)− φ̃0(1)φ̃n(2)] .

(7)

In the case of complex atoms A(1) and
A(2) with an arbitrary number of electrons, the
interaction between them at small distances R
plays a significant role. In this, the Hamil-
tonians Ĥ1 and Ĥ2 as well as the zeroth ap-
proximation functions Φs (6) and Φa (7) should
be interpreted in the approximation of the self-
consistent field for the two-center potential [19].
In this case, V̂ ±

dip is the correlation interaction of
atoms with each other. The transition to the cor-
responding operator of the electric dipole-dipole
interaction V̂ ±

dip of atoms with many electrons
can be carried out by transition in (2) from the
momentum operator ˆvecpj of j -th electron to
the operator of the dipole moment d⃗j [5] and the
subsequent replacement of the operators d⃗1 and
d⃗2 by the operators of the dipole moments of the
atoms A(1) and A(2), respectively.

In order to obtain corrections to the en-
ergy of symmetrical (6) and antisymmetrical (7)
states of the system of two resonant atoms in the
first order of perturbation theory one has to cal-

culate the mean values of the perturbation oper-
ator V̂ (±)

dip (2) in these states, i.e.,

∆Es = ⟨Φs|V̂ (±)
dip |Φs⟩,

∆Ea = ⟨Φa|V̂ (±)
dip |Φa⟩. (8)

Substituting the expressions (2), (6) and (7) into
(8), after simple transformations with use of the
known ratio [5]

⟨n| ˆ⃗pj|0⟩ = i
mω0

e
⟨n|d⃗j|0⟩

we obtain the final expression

∆Es(R) = −∆Ea(R) = ω3
0e

iω0R/c|⟨n|d⃗|0⟩|2

×
[(

1

ω3
0R

3
− i

cω2
0R

2

)
Φ(1, 2)− Φ′(1, 2)

c2ω0R

]
≡ ∆EAA(R). (9)

Here

Φ(1, 2) ≡ cos θx1 cos θ
x
2 + cos θy1 cos θ

y
2

− 2 cos θz1 cos θ
z
2,

Φ′(1, 2) ≡ cos θx1 cos θ
x
2 + cos θy1 cos θ

y
2

are the geometric factors depending on the ori-
entation of dipole transitions in both atoms, θxi ,
θyi , θzi (i = 1, 2) are the angles between one of
corresponding axes and the direction of dipole
transition in i-th atom A(i).When writing the
expression (9) it is taken into account that the
atom-qubits of the considered quantum system
are identical, that is, they have identical matrix
elements of the operator of the dipole moment
between the ground |0⟩ and excited |n⟩ states:

|⟨n|d⃗1|0⟩| = |⟨n|d⃗2|0⟩| = |⟨n|d⃗|0⟩| ≡ |(d⃗)n0|.

Note that the quantity∆Es (∆Ea) is com-
plex shift of energyEs (Ea) of symmetrical (an-
tisymmetrical) state Φs (Φa) of the pair of iden-
tical atoms. For further analysis, in the formulas
(9) for ∆Es and ∆Ea, it is convenient to sepa-
rate explicitly real and imaginary parts:

∆Es = δEs −
i

2
h̄γs, ∆Ea = δEa −

i

2
h̄γa.

(10)
The complexity of the shifts ∆Es and ∆Ea re-
flects in the first place purely relativistic ef-
fects of retardation of the interaction (1) of two
resonant atoms at an arbitrary distance from
each other. The appearance of imaginary terms
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−ih̄γs/2 and −ih̄γa/2 in ∆Es(a) (10) arising
from the retarded dipole-dipole interaction of
atoms, was first revealed in [20], and later, inde-
pendently in the more systematic approach [14].

The first-order corrections to the energy
En+E0 of initially degenerated collective states
(6) and (7) give only real parts δEs and δEa of
the complex shifts (8):

δEs,a(R) = ±Re∆EAA(R)

= ±e2|⟨n|r⃗|0⟩|2F (1, 2;R). (11)

The dependence of the shifts δEs(a)(R) on
the interatomic distance R is completely deter-
mined by the multiplier F (1, 2;R). In order to
simplify the expression (11), there is the nota-
tion used:

F (1,2;R) =

=

[
Φ(1, 2)

R3
− ω2

0Φ
′(1, 2)

c2R

]
cos

(
ω0R

c

)
+

ω0Φ(1, 2)

cR2
sin

(
ω0R

c

)
, (12)

where the plus and minus signs in (11) corre-
spond to the symmetric Φs and the antisymmet-
ric Φa wave functions of the pair of identical
atoms. As can be seen in (11), for the states
of different symmetries (Φs (6) and Φa (7))
with respect to permutations of atoms, the con-
sidered retarded dipole-dipole interaction gives
the shifts δEs and δEa having opposite signs:
δEs = −δEa. At the same time, with increas-
ingRmoduli of the shifts δEs(a) of energy levels
of the system of dipole-dipole interacting atoms
decrease and tend to zero in the limit of sepa-
rated (R → ∞) atoms as 1/R.

Let us study the behavior of δEs(a)(R) in
the limiting cases of large and small R. Thus,
the expressions for δEs and δEa can be essen-
tially simplified at ω0R/c → 0, when linear
sizes of two-atom quantum system are much
smaller than characteristic wave length λ0 =
2πc/ω0 in spectrum of interacting atoms (R ≪
λ0). In this limiting case, one can neglect
the retardation of the dipole-dipole interaction
of atoms, that makes it possible to substitute
cos(ω0R/c) = 1, sin (ω0R/c) = ω0R/c in the
expression (12) for F (1, 2;R) and to omit terms
proportional to 1/R and 1/R2. Then, instead of

(11) we obtain

δE ′
s,a = ± e2

R3
|⟨n|r⃗|0⟩|2Φ(1, 2). (13)

As it is expected, this expression coincides with
the known formula [5] for the energy of reso-
nant exchange of excitations between two neu-
tral atoms located closely from each other.

We now consider the opposite limiting
case ω0R/c ≫ 1, when the distance between
atoms is much larger than the wavelength λ0 =
2πc/ω0. As can be seen from (1) and (2), only
the mostly long-range retardation term, propor-
tional to 1/R, plays the main role in the inter-
action between atoms (when R ≫ λ0). For
this reason, in the formula (12) for the factor
F (1, 2;R), terms decreasing with the distance
as 1/R2 and 1/R3 can be neglected. As a result,
for sufficiently large R (R ≥ 0), the expression
(11) got the following form:

δEs = −δEa =

= −e2ω2
0Φ

′(1, 2)

c2R
|⟨n|r⃗|0⟩|2 cos

(
ω0R

c

)
.

(14)

This expression is consistent with the corre-
sponding formula [20] for the energy of the res-
onance excitation exchange between two distant
(R ≫ λ0) neutral atoms.

Let us take note of the following impor-
tant circumstance related to the difference be-
tween formulas (11) and (13). The presence of
the real cos(ω0R/c) and imaginary sin(ω0R/c)
parts of the retardation factor exp(iω0R/c) in
various terms of the expression (12) indicates to
the complicated periodic dependence of the ma-
trix element of the excitation transfer δEs(a)(R)
on the interatomic distanceR. It is this property
of the oscillating behavior of δEs,a(R) on the
background of power decreasing (∼ 1/R) with
the distanceR being slower than (13) is themost
characteristic feature of the formula (11) for the
energy of the resonant excitation exchange be-
tween two neutral atoms. The dependence of
δEs,a(R) on R distinguishes from (13) due to
the retardation part of the dipole-dipole interac-
tion of atoms.

Therefore, we see that at account of
dipole-dipole interatomic interaction (2) the
symmetrical and antisymmetrical states of the
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pair of atoms have the different energies

Es = En + E0 + δEs

= En + E0 + e2|⟨n|r⃗|0⟩|2F (1, 2;R), (15)
Ea = En + E0 + δEa

= En + E0 − e2|⟨n|r⃗|0⟩|2F (1, 2;R). (16)

Two collective states of the system of two res-
onant atoms: symmetric s and antisymmetric a,
initially degenerated with respect to energy, are
described by the two types of wave functionsΦs

(6) and Φa (7) which with taking into account
the corrections δEs, δEa to the energy En +E0

can be written as

Ψs = Φs exp(−iδEst1/h̄),

Ψa = Φa exp(−iδEat1/h̄), (17)

where Φs and Φa are determined in (6) and (7),
t1 is the local time for the atomic pair associated
with the position of the atom A(1).

As can be seen from (15) and (16), the
dipole-dipole interaction between atoms leads
to the splitting of the initially degenerate (with
respect to the energy) level E0 + En into two
collective energy levelsEs (15) andEa (16) dis-
tanced from each other by the quantity ∆E =
Es − Ea = 2δEs, which characterizes the pro-
cess of resonance transfer of the excitation en-
ergy from one atom to another. At the same
time, due to the resonance interaction of atoms,
the energy level Es (15) lies∆E = 2δEs above
the level Ea (16).

Thus, in order to calculate the energy of
symmetric Es (15) and antisymmetric Ea (16)
states of the system of two resonant atoms, it is
necessary to calculate the matrix elements of the
dipole transitions ⟨n|r⃗|0⟩. In this case, the wave
function should take into account the influence
of the electrons of the atomic core on the non-
Coulomb additive to the potential acting on the
valence electron in the atom.

Such a modification is present, for exam-
ple, in the Fues model potential, which takes
into account simultaneously action of the po-
larization potential on states with large orbital
quantum numbers l and the action of the Pauli
principle that “forces out” a valence electron
from the core in states with small l [21]. The
Fues potential for the motion of an electron in
the field of an ion residue with the charge Zi has
the form

V (r) = −Zi

r
+
∑
l

Bl(E)

r2
P̂l, (18)

where P̂l is the projection operator on the sub-
space of states with the orbital moment l,Bl(E)
is the constant that changes the centrifugal po-
tential in this subspace in such a way that the
eigenvalues Enl = −Z2/(2ν2

nl) of the corre-
sponding radial Schrödinger equation, which
are determined by the effective principal quan-
tum number [21, 22]

νnl = nr + λnl + 1,

λnl =
√
(l + 1/2)2 + 2Bl(Enl)− 1/2 (19)

(λ is the effective orbital moment, nr =
0, 1, 2, . . . is the radial quantum number), co-
incide exactly with energies of a real atom.

The eigenfunctions of the radial Hamilto-
nian with the potential (18) normalized by the
condition

∞∫
0

|⟨r|nlj⟩|2r2 dr = 1

can be written using the confluent hypergeomet-
ric function 1F1(a; c;x) in the form

⟨r|nlj⟩ = 2Z
3/2
i

ν2
nl

√
(2λ+ 2)nr

nr!Γ(2λ+ 2)

(
2Zir

νnl

)λ

exp
(
−Zir

νnl

)
1F1

(
−nr; 2λ+ 2;

2Zir

νnl

)
; (20)

Here, the standard notations for the gamma
function Γ(x) and the Pochammer symbol
(a)n = a · (a+1) · . . . · (a+n−1) [23] are used.
It is obvious that this solution satisfies the stan-
dard requirements of continuity, uniqueness and
boundedness in the entire numerical semiaxis,

which represents the distance from the atomic
nucleus to electron r ∈ [0;∞). Therefore, af-
ter integrating, the radial matrix element Rnn′

in (15) and (16) can be represented analytically
using the generalized hypergeometric function
of two variables F2 [23, 24]:
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Rnn′ =
1

4Zi

Γ(λ+ λ′ + 4)√
Γ(2λ+ 2)Γ(2λ′ + 2)

√
(2λ+ 2)nr

nr!

(2λ′ + 2)n′
r

n′
r!

(
2ν

ν + ν ′

)λl+2(
2ν ′

ν + ν ′

)λl+2

×

× F2

(
λ+ λ′ + 4;−nr;−n′

r; 2λ+ 2; 2λ′ + 2;
2ν ′

ν + ν ′ ,
2ν

ν + ν ′

)
, (21)

where the primed quantities refer to the final
state, and non-primed ones – to the initial state.

Summary

In this paper, on the basis of the theory of res-
onance interaction of atoms through the field of
virtual photons [6, 8–11], the influence of the
retarded dipole-dipole interaction of atoms on
the formation and decay of quasi-stationary col-
lective (symmetric Ψs and antisymmetric Ψa)
states of the quantum system consisting of two

fixed identical two-level atoms is investigated.
The closed analytic expressions for the shifts
andwidths of the considered collective statesΨs

and Ψa are obtained taking into account the re-
tarded dipole-dipole interaction of atoms. The
theoretical analysis of the shift and splitting of
the collective energy levels of the given system
caused by interatomic interaction is carried out.
The asymptotic expansions of the real and imag-
inary parts of energy of the quasi-stationary Bell
states Ψs and Ψa in the limit of large and small
interatomic distances are studied.
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МАТРИЧНЫЕ ЭЛЕМЕНТЫ
ДИПОЛЬ-ДИПОЛЬНОГО ВЗАИМОДЕЙСТВИЯ

МЕЖДУ ДВУМЯ ДВУХУРОВНЕВЫМИ
АТОМАМИ, РАСПОЛОЖЕННЫМИ НА

ПРОИЗВОЛЬНОМ РАССТОЯНИИ ДРУГ ОТ ДРУГА

Исследовано оптические свойства системы из двух одинаковых двухуровневых атомов в коллективных (сим-
метричномΨs и антисимметричногоΨa) белловских состояниях при произвольных межатомных расстояниях.
Получены замкнутые аналитические выражения для сдвигов и ширин рассматриваемых коллективных состо-
яний с учетом запизнюючеи диполь-дипольного взаимодействия атомов. При исчислении радиальных матри-
чный элементов диполь-дипольного взаимодействия использованы волновые функции модельного потенциала
Фьюса.
Ключевые слова: квантовый компьютер, диполь-дипольное взаимодействие, эффекты запаздывания, потен-
циал Фьюса.
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МАТРИЧНІ ЕЛЕМЕНТИ ДИПОЛЬ-ДИПОЛЬНОЇ
ВЗАЄМОДІЇ МІЖ ДВОМА ДВОРІВНЕВИМИ

АТОМАМИ, РОЗТАШОВАНИМИ НА ДОВІЛЬНІЙ
ВІДСТАНІ ОДИН ВІД ОДНОГО

Досліджено оптичні властивості системи з двох однакових дворівневих атомів у колективних (симетрично-
му Ψs і антисиметричному Ψa) беллівських станах при довільних міжатомних відстанях. Отримано замкнуті
аналітичні вирази для зсувів і ширин розглядуваних колективних станів з урахуванням запізнюючої диполь-
дипольної взаємодії атомів. При обчисленні радіальних матричний елементів диполь-дипольної взаємодії ви-
користано хвильові функції модельного потенціалу Фьюса.
Ключові слова: квантовий комп’ютер, диполь-дипольна взаємодія, ефекти запізнювання, потенціал Фьюса.
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