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Abstract 
 

In the paper we investigated the basic properties of the spaces  F . There were also obtained the 

estimates for the distribution of suprema on a compact set for the stochastic process from such spaces.  The 

probabilities of large deviations for the sums of independent stochastic processes from the space  F  

have been considered and the estimates for the distribution of suprema on R  for the stochastic processes 
from such spaces have been found.  
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1. Introduction 
 
The very first result devoted to the investigation of the local properties of stochastic processes 
belongs  to A.M. Kolmogorov. His theorem on sample continuity with probability one was published 
in the paper by Slutsky (1937). This theorem has created a trend in the theory of stochastic 
processes. The other fondamental work in this approach devoted to the general conditions of the 
sample continuity and belonging to the Lipshitz class of random fields, is the monogrhaph by 
Yandrenko (1980). The paper by Kozachenko and Yadrenko (1976) includes the similar conditions 
for different clases of random fields. The conditions for continuity of random functions defined on 
compact set in the Hilbert space were studied in the work by Skorokhod (1973). 
 
Many scientists investigated the properties of the distributions for suprema of stochastic processes 
and the problems of existence for the ordinary and exponential moments of the distribution for the 
supremum of a process. Much attantion has been paid to the problem of finding the estimates for 
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the probability 










>)(sup tXP
Tt

. The results connected to these questions were published in the 

books by Cramer & Leadbetter (1967), Marcus & Pisier (1981), Ledoux & Talagrand (1991), 
Buldygin & Kozachenko (1998). Such scientists as Albin (1998), Ledoux (1990), Ostrovsky (1990) 
were involved into the investigation of properties of the stochastic processes from some particular 
classes.  
 
In the 60s of the XX century the local properties of the Gaussian processes had been studied. In 
particular, Belyaev (1961) had gotten the conditions of continuity for the stationary Gaussian 
processes in the terms of spectral functions and the well-known “Belyaev alternative”. Using the 
different approaches, the conditions of continuity for the Gaussian processes had been obtained by 
Dudley (1965) and Delporte (1964). The fundamental results regarding the properties of the 
Gaussian stochastic processes were made by Lindgren (1971), Dudley (1973), Borell (1978), 
Talagrand (1987), Piterbarg (1996). The paper by Bondarenko & Ivanov (1992) is devoted to the 
investigation of the properties of the sample paths for the random fields with stable increments.  
Skorokhod (1970), Landau & Shepp (1970), Ledoux & Talagrand (1991), Lifshits (1995) focused in 
their investigations on estimation of the exponential moments and the distribution of the 
supremum for the Gaussian processes. 
 
In the 1960s there appeared a very important work considering the wider class of random 
variables and processes than Gaussian. Namely, the notion of the sub-Gaussian random variable 
was introduced by Kahane (1960). Later on, it was proved by Buldygin and Kozachenko (1980) that 
the space of sub-Gaussian random variables is a Banach space with regard to sub-Gaussian 
standard. The properties and different applications of the sub-Gaussian and strictly sub-Gaussian  
random variables were investigated in the papers by Buldygin & Kozachenko (1998), Giuliani et al. 
(2002), Ostrovsky (1990), Pashko (1998). 
 
Moreover, Kozachenko (1968) indroduced the notion of sub-Gaussian stochastic processes. The 
properties of such class of stochastic processes were studied in the works by Buldygin (1977) , Jain 
& Marcus (1978). The exponential moments and the estimates for distribution of suprema for sub-
Gaussian and related processes were considered in the works by Kahane (1960), Ostrovsky (1990), 
Fukuda (1990), Ledoux & Talagrand (1991). 
 
Kozachenko & Ostrovsky in 1985 introduced the notion of random variables and processes of sub-

Gaussian type, namely, )(Sub , which generalizes the spaces of sub-Gaussian random variables.  

The spaces of  -sub-Gaussian random variables are spaces of centered random variables with 

particular growth of the exponential moments. Properties of these spaces, estimates and 
convergence conditions for sums of independent random variables from these spaces were 
investigated in the monograph by Buldygin & Kozachenko (1998). The properties of the  -sub-

Gaussian spaces were also studied in the work by Giuliani et al. (2003) and in the monograph by 
Vasylyk et al. (2008). The estimates for the distribution of the suprema for  - sub-Gaussian 

stochastic processes were investigated in the work by Kozachenko et al. (2003). 
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Pre-Gaussian stochastic processes were introduced in the work by Buldygin & Kozachenko (1974). 
Their properties and the distribution of suprema were studied in the works by Buldygin & 
Kozachenko (1993), Dmytrovsky (1981). 
 

The space  F  had been introduced in the paper by Yermakov & Ostrovsky (1986). It was 

proved there that it is a Banach space with regard to the norm 
 

)(

E
sup=

1/

1 u

uu

u 







. In the paper by 

Kozachenko and Mlavets (2012) the basic properties of the space  F  were studied, the 

connection to Orlicz spaces was established and the estimates for the distribution of the suprema of 
the stochastic processes from these spaces were found.  
 
This paper consists of introduction and four sections. In the second section the main properties of 

the spaces  F  are investigated. The section 3 includes the estimates for the distribution of 

suprema of stochastic processes defined on compact set and belonging to the space  F . In the 

forth section we consider the probabilities of large deviations for the sums of independent 

stochastic processes from the space  F . The estimates for the distribution of suprema on R  for 

the stochastic processes from the space  F  are founded in the fifth section. 

 

2.  


F  - spaces 
 

Definition 2.1 (Kozachenko and Mlavets, 2012) Let 0>)(u , 1u  be a monotonicaly 

increasing continuous function for which )(u  as u . A random variable   belongs to 

the space  


F  if the following is true:  
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The space  


F  is a Banach space equipped with a norm  
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Theorem 2.1 (Kozachenko and Mlavets, 2012) If a random variable   belongs to the space  


F , 

then for any 0>  the following inequality holds true:  

  .
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1
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Theorem 2.2 (Kozachenko and Mlavets, 2012) If a random variable   belongs to the space 

 


F and 
 uu =)( , where 0> , then for any 



  e  the inequality holds:  
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Theorem 2.3 (Kozachenko and Mlavets, 2012) If a random variable   belongs to the space 

 


F and 


 aueu =)( , where 0>a , 0> , then for any 


  1)(  ae  the following is true:  
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Definition 2.2 (Kozachenko and Mlavets, 2012) A positive nondecreasing number sequence 

 1),( nn  is said to be M -characteristic (majorizing characteristic) for the space  


F , if 

for any random variables ni
i

,1,2,=,   from this space the following inequality holds:  

.max)(max
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ni
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ni
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Theorem 2.4 (Kozachenko and Mlavets, 2012) The sequence  
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is the majorizing characteristics for the space  


F . 

Theorem 2.5 (Kozachenko and Mlavets, 2012) The sequence  

,)ln)(,(exp
1

=)( 1













 naS
e

n
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where 1)()(=),( 11

1

  aaS  is the majorizing characteristics for the space  


F , where 

0>,=)( aeu au


 , 0> , and 1=(1) .  

Definition 2.3 (Kozachenko and Mlavets, 2012) We shall say that the condition H  for the Banach 

spaces )(B  of random variables is fulfilled if there exists such an absolute constant 
B

C  that for 

any centered and independent random variables 
n
 ,,,

21
  from )(B  the following is true:  

.
2

1=

2

1=
i

n

i
Bi

n

i

C     

The constant 
B

C  is called a scale constant for the space )(B . For all spaces  


F  we shall 

denote the constants 
)(F

C  as 


C . 
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The general conditions when the condition H  is fulfilled for the space  


F  are found in the 

paper by Kozachenko and Mlavets (2012). In particular, there was shown that the condition H  is 

fulfilled for the space  


F  if 
 uu =)( , 

2

1
 . It’s worse to mention that if 

2

1
<  then 

the condition H  for this space is not fulfilled.  
 

3. Estimates for the distribution of suprema on compact set for 
the stochastic processes from  


F  spaces 

 

Definition 13.1 It is said that a stochastic process }),({= TttXX  , where T is some set, 

belongs to the space  


F  if for any Tt  the random variable )(tX  belongs to the space 

 


F . 

Definition 3.22 As metric massiveness )(uN  of the compact metric space ),( T  we shall call the 

least number of close circles with radius less or equal to u  and covering the set T .   

Theorem 3.13 (Kozachenko and Mlavets, 2012) Let ),(= TT  be a compact metric space, )(uN  

be a metric massiveness of the space  ,T , }),({= TttXX   be a separable stochastic process 

from the space  


F , )(n  be the majorizing characteristics of the space  


F  and )(u , 

1u  be any monotonically increasing function coinciding with )(n  for natural numbers 1n . 

Assume there exists such a function  

,),(sup0),(=
, 











sthh
Tst

  

that )(h  is continuous, monotonically increasing, 0=(0)  and  

).()()(sup
),(

hsXtX
hst







 

If for any 0>z  the following condition is fulfilled  

   ,<)(1)(

0



 duuN
z

  

where )(1)( u  is an inverse function for )(u ,  then the random variable )(sup tX
Tt

 belongs to 

the space  


F  with probability one and  
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a number p  satisfies 1<<0 p . 

Corollary 3.14 (Kozachenko and Mlavets, 2012) Let a process }),({= TttXX  belonging to the 

space  


F , satisfy the conditons of the theorem 3.1, then the following inequality holds true for 

any 0> :  
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Corollary 3.25 (Kozachenko and Mlavets, 2012) Let  },),({= dcttXX  ,  <<< dc  

be a separable stochastic process from the space  


F . Assume, the following condition is fulfilled 

for it  
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where  cdhh 0),(=  is a continuous monotonically increasing function and 

0=(0) . If for any 0>z  the additional condition is true  
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with probability one and for any 1<<0 p the following inequality holds 

true  
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where  
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, )(= cd  , )(u is the 

mojorizing characteristics for the space  


F , )(1)( u  is an inverse function for )(u . 

Furthermore, for any 0>  the following inequality holds true:  
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Corollary 3.36 (Kozachenko and Mlavets, 2012) Let  },),({= dcttXX  ,  <<< dc  

be a separable stochastic process from the space  


F  and for some 1<<0   the following 

condition is true  
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where 0>C is some constant, cdh < . Then, 
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 belongs to the space  
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probability one and the following is true  
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Moreover, for any 0>  it is true that  
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4. Probabilities of large deviations for sum of independent 
stochastic processes from the spaces  


F  

 

Lemma 4.17  Let )(


 F , 1p . Then  

.


 E  

Proof. If m  is an arbitrary constant then  
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It follows from the definition of the norm 


  that  

(1).


E       (2) 

So, the proof of the lemma are completed acording to the equality (1) and inequality (2).  

Theorem 4.18  Let ),( T  be a compact metric space,  ),(= tYY  Tt  be a stochastic process 

belonging to the space  


F  and satisfying condition H with constant 


C . We assume that Y is 

the separable process on ),( T . Moreover, it is assumed that there exists such a continuous 

monotonically increasing function )(h  0)=(0)(  that   
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and for any 0>z  the following condition is fulfilled  
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It is evident that for every Tt 
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Therefore, the proof the theorem can be completed according to the theorem 3.1. 

Corollary 4.19 If the conditions of the theorem 4.1 are fulfilled for the process }),({= TttXX  , 

belonging to the space  


F  then for any 0>  the following is true:  
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Proof. The proof of the corollary 4.1 follows from the corollary 3.1.  
 

5. Estimates for the distribution of the suprema on R  for the 
stochastic processes from  


F  spaces 

 

Theorem 5.110 Let }),({= RttXX   be a separable stochastic process from the space  


F , 
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function for )(u
k

 , )(u  is the majorizing characteristics  for the space  


F ;  

2. The series 
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The theorem 4.1 will also be valid if in the definition of 
k

B  we put 
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The inequalities (3) and (4) imply that for B 22>   
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This completes the theorem’s proof.  

Example 5.1  14Let  )(tX  be a stochastic process from the space  
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and for sufficiently large k   
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then the series (5) is convergent.   

Remark15 5.3 The condition (6) can be written as: there exists 0>D  that  



)ln(

1~

k
DB

k
 , 

as 0> .   
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Proof. The theorem’s statement follows from the theorems 5.1, 2.3 and  2.5. Indeed:  
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The last inequality impliles that:  
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This completes the proof.  

Theorem 5.4 18 Let }),({= RttXX   be a separable stochastic process from the space  


F , 
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 with probability one and the following inequality holds  
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Moreover, for any 0>  the following is also true:  
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Proof. The proof of the theorem follows from the corollary 3.3 and theorem 5.1.  

Theorem 5.5 19  Let }),({= RttXX   be a separable stochastic process from the space  
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Remark 205.4 The theorem 5.5 implies that there exists such a random variable 0>  that 

<
)(

)(

tc

tX
 with probability one.  

Theorem 5.621  Let  }),({= RttXX   be a separable stochastic process from the space  
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Proof. The proof of the theorem follows from the theorem 5.5 and can be performed in a similar 
way as  the proof of the theorem 5.2.  

Corollary 5.122 Let  )(tX  be such a stochastic process from the space  


F  that  

)(=)( tXtX  . Then the condition 3 of the theorem 5.6 holds if there exists such a constan 0>D  
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where  0> .   
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Proof. The proof of the the corollary follows from the example 5.1.  

Corollary 5.2 23If  
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where 
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S  are some constants. So, the inequality (7) is true and the corollary 5.2 holds.  

Corollary  5.3 24 The condition 3 of the theorem 5.6 holds true if  
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Example 5.3 Let us consider the process }),({= RttXX  , where )(=)(
1=

tLtX
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 and the 

random variables 
k
  belong to the space  


F  with 
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 . For this space the 

condition H is fulfilled. Let the functions )(tL
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 satisfy the Lipshitz condition:  
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numbers that   1<<0
k

p , )(u being a majorizing characteristis  of the space  


F .  

Then for any 0>  we’ll get:  
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Proof. The statement of the theorem follows from the theorems 4.1, 5.1 and the corollary 4.1. 
 

6. Conclusions 
 

So, in the paper we have estimated the probabilities of large deviations for the sums of independent 

stochastic processes from the spaces  F . It has been found the estimates for the distribution of 

suprema on R  for  the stochastic processes from the  F  spaces. 
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