МАТЕРІАЛИ ДЛЯ СЕНСОРІВ

SENSOR MATERIALS

УДК 537.226, 538.936, 621.315

БАРИЧНА ПОВЕДІНКА ДІЕЛЕКТРИЧНОЇ ПРОНИКНОСТІ В КРИСТАЛАХ TIGaSe,

О. О. Гомоннай¹, М. Ю. Риган², І. Ю. Роман³, П. П. Гуранич¹, О. Г. Сливка¹

 Ужгородський національний університет, 88000, Ужгород, вул.Підгірна, 46, тел. +380-3122-34408, e-mail: optics@univ.uzhgorod.ua
Ужгородський НТЦ МОНІ Інституту проблем реєстрації інформації НАН України, 88000,

Ужгород, вул. Замкові сходи, 4

³ Інститут електронної фізики НАН України, 88000, Ужгород, вул. Університетська, 21

БАРИЧНА ПОВЕДІНКА ДІЕЛЕКТРИЧНОЇ ПРОНИКНОСТІ В КРИСТАЛАХ ТІGaSe,

О. О. Гомоннай, М. Ю. Риган, І. Ю. Роман, П. П. Гуранич, О. Г. Сливка

Анотація. Досліджено шаруваті сегнетоелектрики TlGaSe₂ з неспівмірною фазою при високих гідростатичних тисках ($p_{amm} \le p \le 660$ МПа). Встановлено, що при збільшенні тиску спостерігається зміщення аномалій діелектричної проникності в область вищих температур, зміна температур характерних аномалій має лінійний характер і визначено їх баричні коефіцієнти у досліджуваному інтервалі тисків. За результатами досліджень баричних залежностей діелектричної проникності, піроелектричного коефіцієнта та петель гістерезису побудована (p, T)— діаграма кристалів TlGaSe₂.

Ключові слова: шаруватий кристал, фазовий перехід, гідростатичний тиск

PRESSURE BEHAVIOUR OF DIELECTRIC PERMEABILITY IN TIGASe, CRYSTALS

O. O. Gomonnai, M. Yu. Rigan, I. Yu. Roman, P. P. Guranich, A. G. Slivka

Abstract. Layered TlGaSe₂ ferroelectrics with an incommensurate phase are studied at high hydrostatic pressures ($p_{atm} \le p \le 660$ MPa). With the pressure increase a shift of anomalies of dielectric permeability towards higher temperatures is observed. The variation of temperatures of the characteristic anomalies is linear, the pressure coefficients are determined. Based on the studies of pressure dependences of dielectric permeability, pyroelectric coefficient and hystheresis loops, a (p, T) phase diagram of TlGaSe₂ crystals is built.

Keywords: layered crystal, phase transition, hydrostatic pressure

БАРИЧЕСКОЕ ПОВЕДЕНИЕ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ В КРИСТАЛЛАХ TIGaSe₂

А. А. Гомоннай, М. Ю. Риган, И. Ю. Роман, П. П. Гуранич, А. Г. Сливка,

Аннотация. Исследованы слоистые сегнетоэлектрики TlGaSe₂ с несоизмеримой фазой под действием высоких гидростатических давлений ($p_{amm} \le p \le 660$ МПа). Установлено, что при увеличения давления наблюдается смещение аномалий диэлектрической проницаемости в область более высоких температур, изменение температур характерных аномалий имеет линейный характер и определены их барические коэффициенты в исследованом интервале давлений. По результатам исследований барических зависимостей диэлектрической проницаемости, пироэлектрического коэффициента и петель гистерезиса построена (p, T)— диаграмма кристаллов TlGaSe₂.

Ключевые слова: слоистый кристалл, фазовый переход, гидростатическое давление

1. Вступ

Дослідження індукованих тиском фізичних ефектів у складних фероїках різної вимірності дають можливість глибше проникнути в природу виникнення неспівмірно-модульованих структур і появи на їх діаграмах стану полікритичних точок та дозволяють цілеспрямовано проводити пошук матеріалів для розробки на їх основі функціональних елементів для вимірювачів тиску, температури, піроелектричних приймачів електромагнітного випромінювання. До такого класу матеріалів належать і шаруваті кристали TlGaSe₂, в яких існує неспівмірна фаза у інтервалі температур 107–116 K [1-4].

Монокристали TlGaSe₂ відносяться до моноклінної сингонії і при нормальних умовах належать до просторової групи C_{2h}^6 [5]. Зі зниженням температури в кристалах спостерігаються структурні фазові переходи (ФП): при температурі $T_i \sim 120$ К перехід із параелектричної в неспівмірну, і при $T_c \sim 110$ К — в співмірну сегнетоелектричну фазу, в якій вектор спонтанної поляризації лежить в площині шару [6].

Дослідженню впливу гідростатичного тиску на властивості кристалів TlGaSe₂ присвячено незначну кількість робіт [7-9].

2. Методика експерименту

Кристали TIGaSe₂вирощено у кварцевих ампулах методом Бріджмена. Для досліджень використовувалися зразки розміром $7 \times 1 \times 3.5$ мм. Вимірювання діелектричної проникності виконано на частотах 1 кГц та 1 МГц зі швидкістю зміни температури в межах 0.03-0.1 К/сек. Дослідження петель гістерезиса проводилися по традиційній методиці за допомогою модифікованої схеми Сойера-Тауера, а піроелектричного струму —квазістатичним методом. В якості контактів використовувалася срібна паста. Вимірювання температури зразків здійснювалося мідь-константановою термопарою.

Гідростатичний тиск створювався за допомогою камери високого тиску з робочим об'ємом 5 см³ і контролювався з точністю 5 МПа. В якості середовища, що передає тиск, використовувався гас [10].

3. Експериментальні результати

При атмосферному тиску в кристалах TlGaSe, на температурних залежностях діелектричної проникності $\varepsilon(T)$ (рис. 1) спостерігаються аномалії при $T_i = 116$ К і $T_c = 107$ К, які відповідають ФП в неспівмірну та сегнетоелектричну фазу. При збільшенні гідростатичного тиску до 660 МПа відбувається зміщення вказаних аномалій діелектричної проникності в область вищих температур. Визначено баричні коефіцієнти зміщення аномалій $\varepsilon(T)$, які складають: $\partial T_i / \partial p = 5 \text{ K} / \Gamma \Pi a$, $\partial T_c / \partial p = 0.9 \text{ K} / \Gamma \Pi a$. Як видно з рис.1,а і б, для кристалів TlGaSe, є характерною слабка дисперсія є в області ФП. Додатній знак баричного зсуву температур аномалій є вказує на те, що сегнетоелектричний ФП є типу лад-безлад.

В інтервалі тисків $p_{amm} \le p < 0.65$ ГПа в параелектричній фазі виконується закон Кюрі — Вейса $\varepsilon = C/(T - T_c)$, де С і T_c — константа і температура Кюрі — Вейса відповідно. Як видно з рис.2, зі зростанням тиску величина константи Кюрі — Вейса збільшуєтся від 7.43×10³ К при атмосферному тиску ($p = p_{amm}$) до 8.0×10³ К при

p = 660 МПа, а баричний коефіцієнт цієї зміни складає $dC/dP = (0.86 \pm 0.10) \times 10^3 \text{ K/GPa}$.

Рис. 1. Температурні залежності діелектричної проникності кристалів TlGaSe₂ в режимі охолодження на частоті 1 МГц (а) та на частоті 1 кГц (б) при різних значеннях тиску.

Рис. 2. Барична залежність константи Кюрі–Вейса кристалів TlGaSe,.

Відомо [11,12], що в сегнетоелектричній фазі зміна величини спонтанної поляризації кристала зі зміною температури при закорочених гранях, які перпендикулярні полярній осі, викликає у зовнішньому колі електричний струм (піроелектричний ефект). Величина піроелектричного струму визначається швидкістю зміни спонтанної поляризації зі зміною температури та швидкістю зміни температури з часом [11]:

$$I_n = S \frac{dP_s}{dT} \frac{dT}{dt},\tag{1}$$

де S — площа поперечного перерізу кристала; $\gamma = dP_{s}/dT$ — піроелектричний коефіцієнт; dT/dt — швидкість зміни температури.

На рис.3 наведено температурні залежності піроелектричного коефіцієнта при різних тисках, які отримано в режимі нагрівання зі швидкістю 0.15-0.25 К/сек, з попереднім заполяризуванням зразка TlGaSe₂ зовнішнім електричним полем напруженістю E = 100 В/ мм. На залежностях $\gamma(T)$ спостерігається максимум, який відповідає ФП в співмірну сегнетоелектричну фазу, а також розмитий максимум в інтервалі температур 80–100 К, який можливо пов'язаний зі зміною доменної струтури та її взаємодією з дефектами кристалічної гратки.

Рис. 3. Температурні залежності піроелектричного коєфіцієнта γ для кристалів TlGaSe₂ при різних тисках.

На основі отриманих даних $\gamma(T)$ кристалів TlGaSe, при різних тисках було розраховано температурні залежності спонтанної поляризації $P_{c}(T)$ за співвідношенням:

$$P_{S}(T) = \frac{1}{\nu_{T}S} \int I_{n}(T) dT . \qquad (2)$$

Зазначимо, що одержані залежності $P_s(T)$ для різних величин гідростатичних тисків (рис.4.) узгоджуються зі значеннями P_s , які визначено із петель діелектричного гістерезису.

Рис. 4. Температурні залежності спонтанної поляризації в TlGaSe, при різних тисках.

На основі екмпериментальних досліджень баричних залежностей діелекричної проникності, піроелектричного коефіцієнта та петель гістерезису побудована (p, T)— діаграма кристалів TlGaSe₂ (рис.5).

Рис. 5. *р*, *T*- фазова діаграма кристалів TlGaSe₂.

4. Висновки

Досліджено шаруваті сегнетоелектрики TlGaSe, з неспівмірною фазою при високих гідростатичних тисках $(p_{amm} \le p \le 660 \text{ M}\Pi a).$ Встановлено, що при збільшенні тиску спостерігається зміщення аномалій діелектричної проникності в область вищих температур, зміна температур характерних аномалій має лінійний характер і визначено їх баричні коефіцієнти у досліджуваному інтервалі тисків. Для кристалів TlGaSe, є характерною слабка дисперсія є в області ФП. Додатній знак баричного зсуву температур аномалій є вказує на те, що сегнетоелектричний ФП є типу ладбезлад.

Література

- Seyidov M. H.Yu., Suleymanov R.A., Babaev S.S., Mamedov T.G., and Sharifov G.M. Effect of External Fields on the Memory Effect of the Incommensurate Phase in the Ferroelectric–Semiconductor Tl-GaSe₂ // Physics of the Solid State. – 2008. – V. 50, №1. – P. 108–117.
- Senturk E, Mikailov F.A. Some special dielectric characteristics of TlGaSe₂ layered crystals // Crystal Research and Technology. 2006. V. 41, №11.– P. 1131–1135.
- Mikailov F.A., Basaran E., Tumbek L., Senturk E., Mammadov T.G. Thermal history and dielectric behavior in the incommensurate phase of TlGaSe₂// Journal of Non-Crystalline Solids. – 2005. – V. 351. – P. 2809–2812.
- Senturk E., Tumbek L., Salehli F., Mikailov F.A., Incommensurate phase properties of TlGaSe₂ layered crystals // Crystal Research and Technology. – 2005. – V. 40, №3. – P. 248–252.
- Muller D., Hahn H. Zur structur des TlGaSe₂ // Z. Anorg. Allg. Chem. – 1978. – V. 438, №1. – P. 258–272.
- McMorrow D.F., Cowley R.A., Hatton P.D., Banys J. The structure of the paraelectic and icommesurate phases of TlGaSe₂ // J. Phys.: Cond. Matter. 1990. V.2. P. 3699-3712.
- Henkel W., Hochheimer H.D., Carlone C., Werner A., Ves S. and Schnering H.G. High-pressure Raman study of the ternary chalcogenides TlGaS₂, TlGaSe₂, TlInS₂ and TlInSe₂ // Phys. Rev. B. – 1982. – V. 26, №6. – P. 3211–3221.
- 8. Allakhverdiev K.R., Mamedov T.G., Peresada G.I.,

Ponatovski E.G., Sharifov Ya.N. Phase diagrams of TIInS₂, TIGaS₂, μ TIGaSe₂ layered semiconductors under hydrostatic pressure up to 1.2 GPa // Sov.Phys. Solid State. - 1985. - V. 27, No. - P. 927 - 928.

- Ves S. Effects of hydrostatic pressure on the fundamental absorption edge of TlGaSe₂ // Phys. Rev. B. - 1989. - V. 40, №11. - P. 7892-7897.
- Guranich P., Shusta V., Gerzanich E., Slivka A., Kuritsa I., Gomonnai O. Influence of hydrostatic pressure on dielectric properties of CuInP₂S₆ and

CuInP₂Se₆ layered crystals // J. Phys.: Conf. Ser. -2007. - V. 79. - P. 012009-1-012009-4.

- Byer R.L., Rwundy C.B. Pyroelectric coefficient direct measurement technigue and application sec response time detector // Ferroelectrics. - 1972. -V. 3, №2-4. - P. 333-338.
- Shaulov A., Bell M.I., Smith W.A. Direct measurement of piroelectric figures of merit of proper and improper ferroelectrics // J. Appl. Phys. 1979. V. 50, №7. P. 4913–4919.