
* Corresponding author: horoshko_y@ukr.net

Reduction of programs execution time for tasks related to
sequences or matrices

Oleksandr Mitsa1, Yurii Horoshko2,*, and Serhii Vapnichnyi1
1Uzhhorod National University, Uzhhorod, Ukraine
2T.H. Shevchenko National University “Chernihiv Colehium”, Chernihiv, Ukraine

Abstract. The article discusses three approaches to reducing runtime of the programs, which are
solutions of Olympiad tasks on computer science, related to sequences or matrices. The first approach is
based on the representation of some sequences in matrix form and then the program of calculating the
members of the sequence will have asymptotics equal to the time complexity of the exponentiation
algorithm and will be O(log (n)). The second approach is to upgrade the known code to obtain significant
reduction of the program runtime. This approach is very important to know for scientists who write code
for scientific researches and are faced with matrix multiplication operations. The third approach is based
on reducing time complexity by search for regularities; the author's task is presented and this approach is
used to solve it.

Introduction
Sports programming has now become a promising
intellectual sport. Every year, the number of pupils and
students interested in Olympiads in computer science, as
perhaps the most common type of sports programming,
is growing. There are many Olympiads and other
competitions held by the largest IT companies. Relevant
HR specialists from these companies have been
monitoring the results of various competitions and
specific participants for many years. The most promising
and successful participants are offered internships,
combined with university study and the opportunity to
gain full-time employment at the company after training.
Also, many former Olympians are organizing successful
projects related not only to programming and IT. Due to
their participation in the Olympics, they were able to
develop resistance to complex psychological stress.
After spending so much time training, they have learned
how to evaluate the likelihood of victory and defeat,
have mastered existing and developed their own methods
of dealing with stressful situations, the doubts and
anxieties experienced by Olympic athletes in varying
degrees.

Participation in Olympiads, tournaments and other
competitions help students to improve their skills [1]. At
first glance, it seems that to achieve solid results at the
Olympics, it is enough to study a certain number of
existing algorithms and theoretical material, and then
only to successfully use them in competitions, leaving
others no chance of winning. But it is not. Tasks in
competitions are usually formulated in such a way that it
is not enough to guess which algorithm to use to solve it.
Almost always, in order to obtain a complete solution, it

is necessary to upgrade the known algorithm, to
supplement it, to combine several algorithms in one
program, and to take some steps to reduce the time
complexity of the solution [2].

This paper proposes three ways to reduce the runtime
for computer science tasks that require the use of
sequences and / or arrays:
- performing calculations using a matrix representation
of sequences;
- reducing program execution time by using the features
of the programming language;
- reducing time complexity by looking for regularities.

The first two techniques need to be learned to show
the best results in standard situations. The third approach
already needs a creative approach, has no general
recommendations and is often used with the first two
approaches.

1 Performing calculations using a
matrix representation of sequences
Matrix data representation allows to use such algorithm
as rapid exponentiation, that will significantly accelerate
the program’s work to find the desired element. One of
these sequences that can be written in matrix form is the
second-order linear recurrent sequences named after
Edward Luke. These are pairs of sequences {ܷ௡(ܲ, ܳ)}
and { ௡ܸ(ܲ, ܳ)}, whose recurrence relationship is written
as follows:

ܷ଴(ܲ, ܳ) = 0, ଵܷ(ܲ, ܳ) = 1,
 ܷ௡ାଶ(ܲ, ܳ) = ܲ ∗ ܷ௡ାଵ(ܲ, ܳ) − ܳ ∗ ܷ௡(ܲ, ܳ), ݊ ≥ 0

଴ܸ(ܲ, ܳ) = 2, ଵܸ(ܲ, ܳ) = ܲ,
௡ܸାଶ(ܲ, ܳ) = ܲ ∗ ௡ܸାଵ(ܲ, ܳ) − ܳ ∗ ௡ܸ(ܲ, ܳ), ݊ ≥ 0 (1)

 , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4019 (2020) shs 207504019
ICHTML 2020

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/).

mailto:horoshko_y@ukr.net

Partial variants of Luke’s sequences are well studied
and have their own names. In particular, the sequence
{ܷ௡(1,−1)} is better known as the Fibonacci sequence,
and the sequence {ܷ௡(2,−1)} – as the Pell sequence.
The Pellet sequence is used to quickly find √2,
Pythagorean triples, etc. The Pellet sequence numbers
themselves in the ratio approach the silver intersection,
similar to the Fibonacci sequence numbers in the ratio
approach the gold intersection. Another known sequence
is the sequence {ܷ௡(3, 2)}, which is called the Mersenne
sequence. It is the numbers of this sequence that are the
largest known prime numbers. The numbers of this
sequence can be easily verified using the Luke-Lemmer
test. They are also used to effectively construct long-
period pseudorandom number generators called the
Mersenne vortex.

A slightly less well-known practical application,
compared to the sequences discussed above, is the
sequence {ܷ௡(1, −1)}, which is called the Jacobsthal
sequence. Elements of this sequence are easy to find by
different schemes. The most known is the recurrence
ratio:

௡ܬ = ൝
0, ݊ = 0;
1, ݊ = 1;
௡ିଵܬ + ݊ ,௡ିଶܬ2 > 1.

 (2)

One can also use the following recursive records

 ܬ௡ାଵ = ௡ܬ2 + (−1)௡; (3)

 ܬ௡ାଵ = 2௡ − ௡. (4)ܬ

There is a known relation of the Jacobsthal sequence
with the Pascal triangle [3]. It consists in the rule of
choosing in the line of the Pascal triangle certain
numbers, the sum of which will be the number of the
Jacobsthal sequence (Fig. 1).

Fig. 1. Relation of the Jacobsthal sequence with the Pascal
triangle.

This relation can be represented as a formula as
follows:

(݊)ܬ = ෍ ,݊)ܥ ݇) = ෍ ,݊)ܥ ݇)
(௡ା௞) ௠௢ௗ ଷୀଶ(௡ା௞) ௠௢ௗ ଷୀଵ

 (5)

The Jacobsthal sequence is also used in the problem
of convergence of certain centers of a triangle on the
Eulerian line of an arbitrary triangle [3]. The various
relations that arise between Jacobsthal numbers are well
explored in [4]. Our work below discusses a problem
which has an effective solution that is based on the use
of elements of the Jacobsthal sequence.

Any sequence from the Luke family of sequences is
easily represented in matrix form. For example, the
Fibonacci sequence has a known matrix representation
[5]:

൬ܨ௡ାଵ ௡ܨ
௡ܨ ௡ିଵܨ

൰ = ቀ1 1
1 0ቁ

௡
, (6)

which can be overwritten as

൬ ௡ܨ
௡ାଵܨ

൰=ቀ1 1
1 2ቁ ൬

௡ିଶܨ
௡ିଵܨ

൰, (7)

or

൬ ଶ௡ܨ
ଶ௡ାଵܨ

൰=ቀ1 1
1 2ቁ

௡
ቀ1

1ቁ. (8)

Other sequences under consideration are specified

similarly, and the time complexity of the program of
finding members of the sequence will be equal to the
time complexity of the exponentiation algorithm and will
be О(log(n)).

The ability to find directly the value of an element of
the Fibonacci sequence by the formula

௡ܨ = ቂఝ
೙

√ହ
ቃ or ܨ௡ = ቔఝ

೙

√ହ
+ ଵ

ଶ
ቕ, where φ = ଵା√ହ

ଶ
, (9)

faces the problem of cumulative computational error and
is of little use. On the other hand, some other sequences,
such as the Jacobsthal sequence, have a convenient
formula

௡ܬ =
2௡ − (−1)௡

3
. (10)

Also is known the formula writing to find elements
of a Fibonacci sequence across a continuum of size n x
n:

௡ାଵܨ = ݐ݁݀
ተ
ተ

1 1 0
−1 1 1
0 −1 1

⋯ 0
⋯ 0
⋯ 0

⋮ ⋮ ⋮
⋮ ⋮ ⋮
0 0 0

 ⋯ ⋮
 ⋯ 1
 ⋯ 1

ተ
ተ
. (11)

 , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4019 (2020) shs 207504019
ICHTML 2020

2

If the n-th element of the sequence equals to the sum
of k previous elements

௡ܣ = ௡ିଵܣ + ௡ିଶܣ + ⋯+ ,௡ି௞ (12)ܣ

then such a sequence is written in the following matrix
form

⎝

⎜
⎛

௡ܣ
௡ିଵܣ
௡ିଶܣ
⋮

⎠௡ି௞ାଵܣ

⎟
⎞

=

⎝

⎜
⎛

1
1
0
⋮
0

 1
 0
 1
 ⋮
 0

 1
 0
 0
 ⋮
 0

 ⋯
 ⋯ ⋯
 ⋮

 ⋯

 1
 0
 0
 ⋮
 1

 1
 0
 0
 ⋮
 0⎠

⎟
⎞

௡ି௞



⎝

⎜
⎛

௞ܣ
௞ିଵܣ
௞ିଶܣ
⋮
ଵܣ ⎠

⎟
⎞

. (13)

The matrix with the help of which the calculations
will be made will be of dimension k x k.

Therefore, performing calculations to find members
of sequences using the matrix form of their
representation significantly reduces the time complexity
of the corresponding algorithms.

2 Reducing program execution time by
using the features of the programming
language
When solving a problem, it is very important to use the
features of the programming languages in which the
solution is implemented. In particular, let us take the
well-known problem of multiplying two matrices.
Consider two implementations of this operation.

Table 1. Two implementations of multiplication of two
matrices.

Well-known variant
for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 for (int k = 0; k < n; k++)
 c[i][j] += a[i][k] * b[k][j];
Accelerated variant
for (int i = 0; i < n; i++)
 for (int k = 0; k < n; k++) {
 long long x = a[i][k];
 for (int j = 0; j < n; j++)
 c[i][j] += x * b[k][j];
 }

Table 1 describes the finding of the product of
matrices C = A  B, all matrices of dimensions n x n. If
in the well-known variant the second and third cycles are
swapped and the element of the first matrix is fixed in
the usual variable, then the multiplication operation rate
for matrices of dimension 1000 x 1000 will increase
more than 15 (!) times. As the dimension increases, the
advantage of the accelerated version will increase
further. Further improvement steps are possible [6], but
they will not give such a tangible advantage.

Scientific problems [7] also require the use of a
matrix recording form for a particular model. Another
recommendation is to keep the values that are constantly
repeated in the calculation in a regular array. In
particular, the values of trigonometric functions, if there
is enough memory to store them, should be stored in the

array, not re-calculated every time. This will
significantly reduce the running time of the program.

3 Reducing time complexity by looking
for regularities.
Solving regularity search tasks often leads to the
identification of known sequences. Consider the problem
proposed by Oleksandr Mitsa at the 13th Open Student
International Programming Olympiad named after
S. O. Lebedev and V. M. Glushkov “KPI-OPEN 2018”
[8]. The title of this task is “Counter Racing”" This task
combines, under a completely new perspective, two
tasks that are well known to the general public – the
Joseph Flavius problem [9] and the task No 2808 taken
from the well-known E-Olymp site [10], which is
described as the Choriv counter.

3.1 The task
The legendary Shchek and Choriv decided to arrange a
competition for their counters.

Shchek counter was created on the base of the story
of Josephus Flavius, when N people are in a circle and
every second person is taken out of the circle. The
remaining person number will be the result of the
counter. For example, when there are 5 people in a
circle, people will be taken out in the order of their
numbers – 2, 4, 1, 5 and the result will be number 3.

Choriv’s counter was based on a completely different
principle. He took the number N and wrote out in a row
all the numbers from 1 to N. Then he cross out the
numbers that are in odd positions. Further, he lined them
up anew, but then crossed out those that are in even
positions. These actions were repeated until one number
remained, which would be the result. For example, for
N=5, the numbers with odd numbers – 1, 3, 5 are first
crossed out, then from remaining numbers – 2, 4 – the
number, which is in the even position, is crossed out,
that is, 4. Therefore, the result will be 2.

For the full objectivity of determining the winner, it
was decided to compete counts for each natural value
from 1 to N. If, as a result, for some value the result of
the Shchek counter is greater than the result of the
Choriv counter, the Shchek will receive one point, if
less, one point will receive Choriv, in case of a draw –
the current account will not change.

It is need to determine the game score for a given
number N.

Input format
Enter the number N (1<N<1018).
Output format
Display the score of the competition.

Table 2. Example to the task.

Standard input Standard output
10 3 6
100 48 51

Note. In the first example, the Shchek counter will
win only at values 3, 5 and 7, at value 1 it will be a draw
and in other cases the Choriv counter will win.

 , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4019 (2020) shs 207504019
ICHTML 2020

3

3.2 Solution of the problem
We first examine the regularities in the first counter. To
do this, we use the scheme proposed in [9] and refine it.
First, let’s consider how one can reduce the dimension of
the problem twice with an even value of N.

Table 3. Simulation of Joseph Flavius problem with an even
value of N.

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5

Table 3 shows that the dimension of the problem has
decreased by 2 times and the formula for the transition
from old to new values will look like

ܶ(ܰ) = 2 ∗ ܶ ቀே
ଶ
ቁ − 1. (14)

For an odd value of N we use the same scheme and
note that the value 1 in this case will never be a solution
(Table 4).

Table 4. Simulation of Joseph Flavius problem with an odd
value of N.

1 2 3 4 5 6 7 8 9 10 11
 1 2 3 4 5

Again we see that the dimension of the problem has
decreased by 2 times and it is easy to deduce the formula
of transition from old to new values, which will look like

ܶ(ܰ) = 2 ∗ ܶ ቀே
ଶ
ቁ + 1. (15)

To summarize, we give a complete scheme of
recalculation

ܶ(ܰ) =

⎩
⎨

⎧
1, ݂݅ ܰ = 1;

2 ∗ ܶ ቀே
ଶ
ቁ − 1, ݂݅ ܰ − ;݊݁ݒ݁

 2 ∗ ܶ ቀே
ଶ
ቁ + 1, ݂݅ ܰ − .݀݀݋

 (16)

But even this formula is not enough to solve the
problem as a whole. Therefore, we write the solutions
for both counters for values N from 1 to 30 (Table 5).

Table 5. Tables for preliminary research.

N 1 2 3 4
Counter 1 1 1 3 1
Counter 2 1 2 2 2
Winner Draw Choriv Shchek Choriv

N 5 6 7 8
Counter 1 3 5 7 1
Counter 2 2 6 6 6
Winner Shchek Choriv Shchek Choriv

N 9 10 11 12
Counter 1 3 5 7 9
Counter 2 6 6 6 6
Winner Choriv Choriv Shchek Shchek

N 13 14 15 16
Counter 1 11 13 15 1

Counter 2 6 6 6 6
Winner Shchek Shchek Shchek Choriv

N 17 18 19 20
Counter 1 3 5 7 9
Counter 2 6 6 6 6
Winner Choriv Choriv Shchek Shchek

N 21 22 23 24
Counter 1 11 13 15 17
Counter 2 6 22 22 22
Winner Shchek Choriv Choriv Choriv

N 25 26 27 28
Counter 1 19 21 23 25
Counter 2 22 22 22 22
Winner Choriv Choriv Shchek Shchek

N 29 30 31 32
Counter 1 27 29 31 1
Counter 2 22 22 22 22
Winner Shchek Shchek Shchek Choriv

From Table 5, one can make the following
observation: in the first counter, for N, which is a degree
of two, always the answer is 1, and for the following N
the answer is incremented by 2. That is, if the closest to
N degree of two is equal 2k, then the answer is easily
determined by formula

ܶ(ܰ) = 1 + 2(ܰ − 2௞) (17)

Also note that the number of values of the degree of
two for the input values from 1 to 1018 is only 60.

Let us proceed to the analysis of the second counter.
Table 5 shows that the number of answers is negligible.
Moreover, it can be seen that for 1 the answer will be 1,
then from 2 to 5 the answer will be 2, and from 22 and to
the next value to be investigated - the answer will be 22.

Let’s simulate this task and write down the values of
the answers that occur in it. These will be the following
values

1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, 349526,
1398102, 5592406, 22369622,…

With these values in front of you, it is easy to
determine the scheme of their calculation

P(k) = 4*P(k-1) - 2, where P(1) = 1. (18)

It is also understood that in the interval
[P(k), P(k+1)-1] the answer will be P(k). Moreover,
there will be very few such values. So, in the interval
from 1 to 1018 there will be only 31 of them.

Thus, one of the schemes of the solution could be the
following. At each interval from the number N = 2k+1 to
N = 2k+1 we see how many numbers of the sequence 2 it
contains, and accordingly we consider this when forming
the account together with the sequence 1. Of course, the
last interval will go only to the number N.

The described option will have the following solution
in C++ programming language:

#include <iostream>

using namespace std;

 , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4019 (2020) shs 207504019
ICHTML 2020

4

int main() {
 long long N;
 cin >> N;
 long long p = 1, q = 2, Choriv = 0;
 while (2 * p + 1 <= N) {
 p = 2 * p + 1;
 if (p > 4 * q - 2) {
 long long pp = p;
 while (pp > 4 * q - 3)
 pp = (pp - 1) / 2;
 pp = 2 * (4 * q - 3 - pp) - 1;
 if (pp > q)
 Choriv += (pp - q) / 2 + 1;
 q = 4 * q - 2;
 }
 Choriv += (p - q) / 2 + 1;
 }
 if (N >= 4 * q - 2) {
 long long pp = p;
 while (pp > 4 * q - 3)
 pp = (pp - 1) / 2;
 pp = 2 * (4 * q - 3 - pp) - 1;
 if (pp > q)
 Choriv += (pp - q) / 2 + 1;
 q = 4 * q - 2;
 }
 p = 2 * (N - p) - 1;
 if (p > q) Choriv += (p - q) / 2 + 1;
 cout << Choriv << " " <<
 N - Choriv - 1 << endl;
 return 0;
}

But if to continue the research, one can get a simpler
way of solving the problem under consideration.

Note that in this game only when N = 1, both players
will draw. With all other values, N wins either the first or
the second. So let's translate the game results to 0-1
form. Write the sequence in which the i-th element is 1 if
the second player wins and 0 - otherwise, starting with
the game for N = 2:

1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1,
1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, ...

Then we write down the quantities of consecutive
numbers:

1, 1, 1, 1, 1, 1, 3, 5, 3, 3, 5, 5, 11, 21, 11, 11, 21, 21, ...

The next step is to divide this sequence into blocks of
6 elements and notice that each block consists of two
sequential Jacobshtal numbers

1, 1, 3, 5, 11, 21, 43, 86, 171, ...

That is, the new scheme for solving this problem will
be as follows. Each time, by choosing two values of the
Jacobshtal sequence, we will form a current account. Of
course, in forming the final account we will use only
those values in the last six, which are limited by the
number of lots N.

For example, we calculate the score for the number
of lots N = 40. Note that this will require the use of the
first two sixths and part of the first value of the third
sixth. The score after 31 games will be described by
summing the elements of the first two sixes. To count
the number of games won by the first player, we count
the items in even positions 1 + 1 + 1 + 5 + 3 + 5 = 16,
and to count the number of games won by the second
player, we count the items in odd positions 1 + 1 + 1 + 3
+ 3 + 5 = 14. Then we consider that the third six starts
with 11 second player victories, of which we need to
count 9. That is, the final score will be 16:23 in favor of
the second player.

The described solution in C++ programming
language will be quite simple and compact:

#include <iostream>

using namespace std;

long long J[61], N, Choriv, Shchek, rem;

void Score (long long &X, long long Y) {
 if (rem > Y) {
 X += Y; rem -= Y;
 }
 else {
 X += rem; rem = 0;
 }
}

int main() {
 cin >> N;
 int i = 1;
 J[1] = 1; J[2] = 1;
 while(Shchek+Choriv+3*(J[i]+J[i+1])<N) {
 Shchek += 2 * J[i] + J[i + 1];
 Choriv += J[i] + 2 * J[i + 1];
 i += 2;
 J[i] = J[i - 1] + 2 * J[i - 2];
 J[i + 1] = J[i] + 2 * J[i - 1];
 }
 rem = N - 1 - Shchek - Choriv;
 Score(Shchek, J[i]);
 Score(Choriv, J[i + 1]);
 Score(Shchek, J[i]);
 Score(Choriv, J[i]);
 Score(Shchek, J[i + 1]);
 Score(Choriv, J[i + 1]);
 cout << Choriv << " " << Shchek;
 return 0;
}

It should be noted that in this task the number of
involved Jakobshtal numbers does not exceed 60. The
Score procedure allows to realize an ending of the task
when the last block is not fully used.

Thus, the considered problem (of increased
complexity) used in the international competition is a
combination of two well-known tasks under a
completely new perspective that has not been used
before. Two variants of its solution are presented. In a
more flexible and efficient way, it was enough to find
the regularity given by the elements of the Jacobsthal
sequence.

 , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4019 (2020) shs 207504019
ICHTML 2020

5

Conclusions
This paper discusses three approaches to reducing
solution execution times for computer science tasks that
require some knowledge of sequences and / or arrays to
solve them. The first approach is to write the sequence in
the matrix form and then use the rapid matrix
exponentiation. This allows to quickly identify a
particular element of a sequence. The second approach is
essentially to improve the code of the program, which is
considered traditional, and can significantly speed up the
program, significantly (for matrices 1000 by 1000 more
than 15 times) reducing the time of finding matrices
using a fairly simple method. This approach is tested for
C++, the most popular sports programming language. It
is effective in solving sports programming tasks, because
in this area, rapid methods of matrix multiplication are
rarely used due to the excessive size of their code. It is
also very important to know for scientists who write
code for scientific researches and are faced with matrix
multiplication operations. To demonstrate the third
approach, we present a rather complex authorial task and
show that its solution can be based on finding members
of the well-known Jacobsthal sequence. The approaches
presented in the paper can be used both individually and
in combination.

The work will be interesting to pupils, students and
teachers interested in programming, especially sports,
and for scientists who write code for scientific
researches.

References
1. S.S. Zhukovsky, Methodical Aspects of Preparing

Gifted Schoolchildren for Informatics Olympiads.
Problems of modern pedagogical education 47(V),
62–69 (2015)

2. Y.V. Horoshko, O.V. Mitsa, V.I. Melnyk,
Information Technologies and Learning Tools 71(3),
40–52 (2019)

3. P. Barry, Irish Mathematical Society Bulletin 51,
45–57 (2003)

4. Z. Čerin, Journal of Integer Sequences 10(07.2), 5
(2003)

5. D.E. Knuth, The Art of Computer Programming,
Volumes 1-4A Boxed Set, 3rd edn (Addison-Wesley,
Reading, 2011)

6. I. Ermolaev, Umnozhenie matritc: effektivnaia
realizatciia shag za shagom (Matrix multiplication:
effective implementation step by step) (2019),
https://habr.com/ru/post/359272/. Accessed 21 Mar
2019

7. P.I. Stetsyuk, Ellipsoid methods and r-algorithms
(Evrika, Chisinau, 2014).

8. 13th Open International Student Programming
Olympiad “KPI-OPEN 2018” named after S.O.
Lebediev and V.M. Glushkov “KPI-OPEN 2018”
(2018), http://kpi-open.org/. Accessed 28 Nov 2019

9. R.L. Graham, D.E. Knuth, O. Patashnik, Concrete
Mathematics, 2nd edn (Addison-Wesley, Reading,
1994)

10. Internet portal of organizational and methodological
support of distance Olympiads on programming for
gifted youth of educational institutions of Ukraine
E-Olimp (2019), https://www.e-
olymp.com/uk/problems/2808. Accessed 28 Nov
2019

 , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4019 (2020) shs 207504019
ICHTML 2020

6

https://habr.com/ru/post/359272/.
http://kpi-open.org/.
https://www.e-

