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Abstract. The article discusses three approaches to reducing runtime of the programs, which are 
solutions of Olympiad tasks on computer science, related to sequences or matrices. The first approach is 
based on the representation of some sequences in matrix form and then the program of calculating the 
members of the sequence will have asymptotics equal to the time complexity of the exponentiation 
algorithm and will be O(log (n)). The second approach is to upgrade the known code to obtain significant 
reduction of the program runtime. This approach is very important to know for scientists who write code 
for scientific researches and are faced with matrix multiplication operations. The third approach is based 
on reducing time complexity by search for regularities; the author's task is presented and this approach is 
used to solve it. 

Introduction 
Sports programming has now become a promising 
intellectual sport. Every year, the number of pupils and 
students interested in Olympiads in computer science, as 
perhaps the most common type of sports programming, 
is growing. There are many Olympiads and other 
competitions held by the largest IT companies. Relevant 
HR specialists from these companies have been 
monitoring the results of various competitions and 
specific participants for many years. The most promising 
and successful participants are offered internships, 
combined with university study and the opportunity to 
gain full-time employment at the company after training. 
Also, many former Olympians are organizing successful 
projects related not only to programming and IT. Due to 
their participation in the Olympics, they were able to 
develop resistance to complex psychological stress. 
After spending so much time training, they have learned 
how to evaluate the likelihood of victory and defeat, 
have mastered existing and developed their own methods 
of dealing with stressful situations, the doubts and 
anxieties experienced by Olympic athletes in varying 
degrees. 

Participation in Olympiads, tournaments and other 
competitions help students to improve their skills [1]. At 
first glance, it seems that to achieve solid results at the 
Olympics, it is enough to study a certain number of 
existing algorithms and theoretical material, and then 
only to successfully use them in competitions, leaving 
others no chance of winning. But it is not. Tasks in 
competitions are usually formulated in such a way that it 
is not enough to guess which algorithm to use to solve it. 
Almost always, in order to obtain a complete solution, it 

is necessary to upgrade the known algorithm, to 
supplement it, to combine several algorithms in one 
program, and to take some steps to reduce the time 
complexity of the solution [2]. 

This paper proposes three ways to reduce the runtime 
for computer science tasks that require the use of 
sequences and / or arrays: 
- performing calculations using a matrix representation 
of sequences; 
- reducing program execution time by using the features 
of the programming language; 
- reducing time complexity by looking for regularities. 

The first two techniques need to be learned to show 
the best results in standard situations. The third approach 
already needs a creative approach, has no general 
recommendations and is often used with the first two 
approaches. 

1 Performing calculations using a 
matrix representation of sequences 
Matrix data representation allows to use such algorithm 
as rapid exponentiation, that will significantly accelerate 
the program’s work to find the desired element. One of 
these sequences that can be written in matrix form is the 
second-order linear recurrent sequences named after 
Edward Luke. These are pairs of sequences {ܷ௡(ܲ, ܳ)} 
and { ௡ܸ(ܲ, ܳ)}, whose recurrence relationship is written 
as follows: 

ܷ଴(ܲ, ܳ) = 0, ଵܷ(ܲ, ܳ) = 1, 
  ܷ௡ାଶ(ܲ, ܳ) = ܲ ∗ ܷ௡ାଵ(ܲ, ܳ) − ܳ ∗ ܷ௡(ܲ, ܳ), ݊ ≥ 0   

଴ܸ(ܲ, ܳ) = 2, ଵܸ(ܲ, ܳ) = ܲ,   
௡ܸାଶ(ܲ, ܳ) = ܲ ∗ ௡ܸାଵ(ܲ, ܳ) − ܳ ∗ ௡ܸ(ܲ, ܳ), ݊ ≥ 0   (1) 
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Partial variants of Luke’s sequences are well studied 
and have their own names. In particular, the sequence 
{ܷ௡(1,−1)} is better known as the Fibonacci sequence, 
and the sequence {ܷ௡(2,−1)} – as the Pell sequence. 
The Pellet sequence is used to quickly find √2, 
Pythagorean triples, etc. The Pellet sequence numbers 
themselves in the ratio approach the silver intersection, 
similar to the Fibonacci sequence numbers in the ratio 
approach the gold intersection. Another known sequence 
is the sequence {ܷ௡(3, 2)}, which is called the Mersenne 
sequence. It is the numbers of this sequence that are the 
largest known prime numbers. The numbers of this 
sequence can be easily verified using the Luke-Lemmer 
test. They are also used to effectively construct long-
period pseudorandom number generators called the 
Mersenne vortex. 

A slightly less well-known practical application, 
compared to the sequences discussed above, is the 
sequence {ܷ௡(1, −1)}, which is called the Jacobsthal 
sequence. Elements of this sequence are easy to find by 
different schemes. The most known is the recurrence 
ratio: 

௡ܬ = ൝
0,                               ݊ = 0; 
1,                              ݊ = 1;
௡ିଵܬ + ݊        ,௡ିଶܬ2 > 1.

                                  (2) 

One can also use the following recursive records 

 ܬ௡ାଵ = ௡ܬ2 + (−1)௡;                                      (3) 
 

 ܬ௡ାଵ = 2௡ −  ௡.                                              (4)ܬ

There is a known relation of the Jacobsthal sequence 
with the Pascal triangle [3]. It consists in the rule of 
choosing in the line of the Pascal triangle certain 
numbers, the sum of which will be the number of the 
Jacobsthal sequence (Fig. 1). 

 

 

 

Fig. 1. Relation of the Jacobsthal sequence with the Pascal 
triangle. 

This relation can be represented as a formula as 
follows: 

(݊)ܬ = ෍ ,݊)ܥ ݇) = ෍ ,݊)ܥ ݇)
(௡ା௞) ௠௢ௗ ଷୀଶ(௡ା௞) ௠௢ௗ ଷୀଵ

 (5) 

The Jacobsthal sequence is also used in the problem 
of convergence of certain centers of a triangle on the 
Eulerian line of an arbitrary triangle [3]. The various 
relations that arise between Jacobsthal numbers are well 
explored in [4]. Our work below discusses a problem 
which has an effective solution that is based on the use 
of elements of the Jacobsthal sequence. 

Any sequence from the Luke family of sequences is 
easily represented in matrix form. For example, the 
Fibonacci sequence has a known matrix representation 
[5]: 

൬ܨ௡ାଵ ௡ܨ
௡ܨ ௡ିଵܨ

൰ = ቀ1 1
1 0ቁ

௡
,                  (6) 

which can be overwritten as 

൬ ௡ܨ
௡ାଵܨ

൰=ቀ1 1
1 2ቁ ൬

௡ିଶܨ
௡ିଵܨ

൰,                       (7) 

or  

൬ ଶ௡ܨ
ଶ௡ାଵܨ

൰=ቀ1 1
1 2ቁ

௡
ቀ1

1ቁ.                         (8) 

 
Other sequences under consideration are specified 

similarly, and the time complexity of the program of 
finding members of the sequence will be equal to the 
time complexity of the exponentiation algorithm and will 
be О(log(n)).  

The ability to find directly the value of an element of 
the Fibonacci sequence by the formula 

௡ܨ = ቂఝ
೙

√ହ
ቃ or ܨ௡ = ቔఝ

೙

√ହ
+ ଵ

ଶ
ቕ, where φ = ଵା√ହ

ଶ
,         (9) 

faces the problem of cumulative computational error and 
is of little use. On the other hand, some other sequences, 
such as the Jacobsthal sequence, have a convenient 
formula 

௡ܬ =
2௡ − (−1)௡

3
.                          (10) 

Also is known the formula writing to find elements 
of a Fibonacci sequence across a continuum of size n x 
n: 

௡ାଵܨ = ݐ݁݀
ተ
ተ

1 1 0  
−1 1 1
0 −1 1

⋯ 0
⋯ 0
⋯ 0

⋮ ⋮ ⋮
⋮ ⋮ ⋮
0 0 0

   ⋯ ⋮
   ⋯ 1
   ⋯ 1

ተ
ተ
.                (11) 
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If the n-th element of the sequence equals to the sum 
of k previous elements 

௡ܣ = ௡ିଵܣ + ௡ିଶܣ + ⋯+  ,௡ି௞            (12)ܣ

then such a sequence is written in the following matrix 
form 

⎝

⎜
⎛

௡ܣ
௡ିଵܣ
௡ିଶܣ
⋮

⎠௡ି௞ାଵܣ

⎟
⎞

=

⎝

⎜
⎛

1
1
0
⋮
0

   1
   0
   1
   ⋮
   0

   1
   0
   0
   ⋮
   0

   ⋯
   ⋯   ⋯
   ⋮

   ⋯

   1
   0
   0
   ⋮
   1

   1
   0
   0
   ⋮
   0⎠

⎟
⎞

௡ି௞



⎝

⎜
⎛

௞ܣ
௞ିଵܣ
௞ିଶܣ
⋮
ଵܣ ⎠

⎟
⎞

. (13) 

The matrix with the help of which the calculations 
will be made will be of dimension k x k.  

Therefore, performing calculations to find members 
of sequences using the matrix form of their 
representation significantly reduces the time complexity 
of the corresponding algorithms. 

2 Reducing program execution time by 
using the features of the programming 
language 
When solving a problem, it is very important to use the 
features of the programming languages in which the 
solution is implemented. In particular, let us take the 
well-known problem of multiplying two matrices. 
Consider two implementations of this operation. 

Table 1. Two implementations of multiplication of two 
matrices. 

Well-known variant 
for (int i = 0; i < n; i++) 
  for (int j = 0; j < n; j++) 
    for (int k = 0; k < n; k++) 
      c[i][j] += a[i][k] * b[k][j]; 
Accelerated variant 
for (int i = 0; i < n; i++) 
  for (int k = 0; k < n; k++) { 
    long long x = a[i][k]; 
    for (int j = 0; j < n; j++) 
      c[i][j] += x * b[k][j]; 
  } 

Table 1 describes the finding of the product of 
matrices C = A  B, all matrices of dimensions n x n. If 
in the well-known variant the second and third cycles are 
swapped and the element of the first matrix is fixed in 
the usual variable, then the multiplication operation rate 
for matrices of dimension 1000 x 1000 will increase 
more than 15 (!) times. As the dimension increases, the 
advantage of the accelerated version will increase 
further. Further improvement steps are possible [6], but 
they will not give such a tangible advantage. 

Scientific problems [7] also require the use of a 
matrix recording form for a particular model. Another 
recommendation is to keep the values that are constantly 
repeated in the calculation in a regular array. In 
particular, the values of trigonometric functions, if there 
is enough memory to store them, should be stored in the 

array, not re-calculated every time. This will 
significantly reduce the running time of the program. 

3 Reducing time complexity by looking 
for regularities.  
Solving regularity search tasks often leads to the 
identification of known sequences. Consider the problem 
proposed by Oleksandr Mitsa at the 13th Open Student 
International Programming Olympiad named after 
S. O. Lebedev and V. M. Glushkov “KPI-OPEN 2018” 
[8]. The title of this task is “Counter Racing”" This task 
combines, under a completely new perspective, two 
tasks that are well known to the general public – the 
Joseph Flavius problem [9] and the task No 2808 taken 
from the well-known E-Olymp site [10], which is 
described as the Choriv counter. 

3.1 The task 
The legendary Shchek and Choriv decided to arrange a 
competition for their counters. 

Shchek counter was created on the base of the story 
of Josephus Flavius, when N people are in a circle and 
every second person is taken out of the circle. The 
remaining person number will be the result of the 
counter. For example, when there are 5 people in a 
circle, people will be taken out in the order of their 
numbers – 2, 4, 1, 5 and the result will be number 3. 

Choriv’s counter was based on a completely different 
principle. He took the number N and wrote out in a row 
all the numbers from 1 to N. Then he cross out the 
numbers that are in odd positions. Further, he lined them 
up anew, but then crossed out those that are in even 
positions. These actions were repeated until one number 
remained, which would be the result. For example, for 
N=5, the numbers with odd numbers – 1, 3, 5 are first 
crossed out, then from remaining numbers – 2, 4 – the 
number, which is in the even position, is crossed out, 
that is, 4. Therefore, the result will be 2. 

For the full objectivity of determining the winner, it 
was decided to compete counts for each natural value 
from 1 to N. If, as a result, for some value the result of 
the Shchek counter is greater than the result of the 
Choriv counter, the Shchek will receive one point, if 
less, one point will receive Choriv, in case of a draw – 
the current account will not change. 

It is need to determine the game score for a given 
number N. 

Input format 
Enter the number N (1<N<1018). 
Output format 
Display the score of the competition. 

Table 2. Example to the task. 

Standard input Standard output 
10 3 6 
100 48 51 

Note. In the first example, the Shchek counter will 
win only at values 3, 5 and 7, at value 1 it will be a draw 
and in other cases the Choriv counter will win. 
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3.2 Solution of the problem 
We first examine the regularities in the first counter. To 
do this, we use the scheme proposed in [9] and refine it. 
First, let’s consider how one can reduce the dimension of 
the problem twice with an even value of N. 

Table 3. Simulation of Joseph Flavius problem with an even 
value of N. 

1 2 3 4 5 6 7 8 9 10 
1  2  3  4  5  

Table 3 shows that the dimension of the problem has 
decreased by 2 times and the formula for the transition 
from old to new values will look like 

ܶ(ܰ) = 2 ∗ ܶ ቀே
ଶ
ቁ − 1.                     (14) 

For an odd value of N we use the same scheme and 
note that the value 1 in this case will never be a solution 
(Table 4). 

Table 4. Simulation of Joseph Flavius problem with an odd 
value of N. 

1 2 3 4 5 6 7 8 9 10 11 
  1  2  3  4  5 

Again we see that the dimension of the problem has 
decreased by 2 times and it is easy to deduce the formula 
of transition from old to new values, which will look like 

ܶ(ܰ) = 2 ∗ ܶ ቀே
ଶ
ቁ + 1.                   (15) 

To summarize, we give a complete scheme of 
recalculation 

ܶ(ܰ) =

⎩
⎨

⎧
1,                            ݂݅ ܰ = 1;

2 ∗ ܶ ቀே
ଶ
ቁ − 1,            ݂݅ ܰ − ;݊݁ݒ݁

 2 ∗ ܶ ቀே
ଶ
ቁ + 1,         ݂݅ ܰ − .݀݀݋

            (16) 

But even this formula is not enough to solve the 
problem as a whole. Therefore, we write the solutions 
for both counters for values N from 1 to 30 (Table 5). 

Table 5. Tables for preliminary research. 

N 1 2 3 4 
Counter 1 1 1 3 1 
Counter 2 1 2 2 2 
Winner Draw Choriv Shchek Choriv 

N 5 6 7 8 
Counter 1 3 5 7 1 
Counter 2 2 6 6 6 
Winner Shchek Choriv  Shchek Choriv 

N 9 10 11 12 
Counter 1 3 5 7 9 
Counter 2 6 6 6 6 
Winner Choriv Choriv Shchek Shchek 

N 13 14 15 16 
Counter 1 11 13 15 1 

Counter 2 6 6 6 6 
Winner Shchek Shchek Shchek Choriv 

N 17 18 19 20 
Counter 1 3 5 7 9 
Counter 2 6 6 6 6 
Winner Choriv Choriv Shchek Shchek 

N 21 22 23 24 
Counter 1 11 13 15 17 
Counter 2 6 22 22 22 
Winner Shchek Choriv Choriv Choriv 

N 25 26 27 28 
Counter 1 19 21 23 25 
Counter 2 22 22 22 22 
Winner Choriv Choriv Shchek Shchek 

N 29 30 31 32 
Counter 1 27 29 31 1 
Counter 2 22 22 22 22 
Winner Shchek Shchek Shchek Choriv 

From Table 5, one can make the following 
observation: in the first counter, for N, which is a degree 
of two, always the answer is 1, and for the following N 
the answer is incremented by 2. That is, if the closest to 
N degree of two is equal 2k, then the answer is easily 
determined by formula 

ܶ(ܰ) = 1 + 2(ܰ − 2௞)                 (17) 

Also note that the number of values of the degree of 
two for the input values from 1 to 1018 is only 60. 

Let us proceed to the analysis of the second counter. 
Table 5 shows that the number of answers is negligible. 
Moreover, it can be seen that for 1 the answer will be 1, 
then from 2 to 5 the answer will be 2, and from 22 and to 
the next value to be investigated - the answer will be 22. 

Let’s simulate this task and write down the values of 
the answers that occur in it. These will be the following 
values 

1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, 349526, 
1398102, 5592406, 22369622,… 

With these values in front of you, it is easy to 
determine the scheme of their calculation 

P(k) = 4*P(k-1) - 2, where P(1) = 1.         (18) 

It is also understood that in the interval               
[P(k), P(k+1)-1] the answer will be P(k). Moreover, 
there will be very few such values. So, in the interval 
from 1 to 1018 there will be only 31 of them. 

Thus, one of the schemes of the solution could be the 
following. At each interval from the number N = 2k+1 to 
N = 2k+1 we see how many numbers of the sequence 2 it 
contains, and accordingly we consider this when forming 
the account together with the sequence 1. Of course, the 
last interval will go only to the number N. 

The described option will have the following solution 
in C++ programming language: 

#include <iostream> 
 
using namespace std; 
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int main() { 
  long long N; 
  cin >> N; 
  long long p = 1, q = 2, Choriv = 0; 
  while (2 * p + 1 <= N) { 
    p = 2 * p + 1; 
    if (p > 4 * q - 2) { 
      long long pp = p; 
      while (pp > 4 * q - 3) 
        pp = (pp - 1) / 2; 
      pp = 2 * (4 * q - 3 - pp) - 1; 
      if (pp > q) 
        Choriv += (pp - q) / 2 + 1; 
      q = 4 * q - 2; 
    } 
    Choriv += (p - q) / 2 + 1; 
  } 
  if (N >= 4 * q - 2) { 
    long long pp = p; 
    while (pp > 4 * q - 3) 
      pp = (pp - 1) / 2; 
    pp = 2 * (4 * q - 3 - pp) - 1; 
    if (pp > q) 
      Choriv += (pp - q) / 2 + 1; 
    q = 4 * q - 2; 
  } 
  p = 2 * (N - p) - 1; 
  if (p > q) Choriv += (p - q) / 2 + 1; 
  cout << Choriv << " " <<  
          N - Choriv - 1 << endl; 
  return 0; 
} 

But if to continue the research, one can get a simpler 
way of solving the problem under consideration. 

Note that in this game only when N = 1, both players 
will draw. With all other values, N wins either the first or 
the second. So let's translate the game results to 0-1 
form. Write the sequence in which the i-th element is 1 if 
the second player wins and 0 - otherwise, starting with 
the game for N = 2: 

1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 
1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, ... 

Then we write down the quantities of consecutive 
numbers: 

1, 1, 1, 1, 1, 1, 3, 5, 3, 3, 5, 5, 11, 21, 11, 11, 21, 21, ... 

The next step is to divide this sequence into blocks of 
6 elements and notice that each block consists of two 
sequential Jacobshtal numbers 

1, 1, 3, 5, 11, 21, 43, 86, 171, ... 

That is, the new scheme for solving this problem will 
be as follows. Each time, by choosing two values of the 
Jacobshtal sequence, we will form a current account. Of 
course, in forming the final account we will use only 
those values in the last six, which are limited by the 
number of lots N. 

For example, we calculate the score for the number 
of lots N = 40. Note that this will require the use of the 
first two sixths and part of the first value of the third 
sixth. The score after 31 games will be described by 
summing the elements of the first two sixes. To count 
the number of games won by the first player, we count 
the items in even positions 1 + 1 + 1 + 5 + 3 + 5 = 16, 
and to count the number of games won by the second 
player, we count the items in odd positions 1 + 1 + 1 + 3 
+ 3 + 5 = 14. Then we consider that the third six starts 
with 11 second player victories, of which we need to 
count 9. That is, the final score will be 16:23 in favor of 
the second player. 

The described solution in C++ programming 
language will be quite simple and compact: 

#include <iostream> 
 
using namespace std; 
 
long long J[61], N, Choriv, Shchek, rem; 
 
void Score (long long &X, long long Y) { 
  if (rem > Y) {  
    X += Y; rem -= Y; 
  } 
  else {  
    X += rem; rem = 0; 
  } 
} 
 
int main() { 
  cin >> N; 
  int i = 1; 
  J[1] = 1; J[2] = 1; 
  while(Shchek+Choriv+3*(J[i]+J[i+1])<N) { 
    Shchek += 2 * J[i] + J[i + 1]; 
    Choriv += J[i] + 2 * J[i + 1]; 
    i += 2; 
    J[i] = J[i - 1] + 2 * J[i - 2]; 
    J[i + 1] = J[i] + 2 * J[i - 1]; 
  } 
  rem = N - 1 - Shchek - Choriv; 
  Score(Shchek, J[i]); 
  Score(Choriv, J[i + 1]); 
  Score(Shchek, J[i]); 
  Score(Choriv, J[i]); 
  Score(Shchek, J[i + 1]); 
  Score(Choriv, J[i + 1]); 
  cout << Choriv << " " << Shchek; 
  return 0; 
} 

It should be noted that in this task the number of 
involved Jakobshtal numbers does not exceed 60. The 
Score procedure allows to realize an ending of the task 
when the last block is not fully used. 

Thus, the considered problem (of increased 
complexity) used in the international competition is a 
combination of two well-known tasks under a 
completely new perspective that has not been used 
before. Two variants of its solution are presented. In a 
more flexible and efficient way, it was enough to find 
the regularity given by the elements of the Jacobsthal 
sequence. 
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Conclusions 
This paper discusses three approaches to reducing 
solution execution times for computer science tasks that 
require some knowledge of sequences and / or arrays to 
solve them. The first approach is to write the sequence in 
the matrix form and then use the rapid matrix 
exponentiation. This allows to quickly identify a 
particular element of a sequence. The second approach is 
essentially to improve the code of the program, which is 
considered traditional, and can significantly speed up the 
program, significantly (for matrices 1000 by 1000 more 
than 15 times) reducing the time of finding matrices 
using a fairly simple method. This approach is tested for 
C++, the most popular sports programming language. It 
is effective in solving sports programming tasks, because 
in this area, rapid methods of matrix multiplication are 
rarely used due to the excessive size of their code. It is 
also very important to know for scientists who write 
code for scientific researches and are faced with matrix 
multiplication operations. To demonstrate the third 
approach, we present a rather complex authorial task and 
show that its solution can be based on finding members 
of the well-known Jacobsthal sequence. The approaches 
presented in the paper can be used both individually and 
in combination. 

The work will be interesting to pupils, students and 
teachers interested in programming, especially sports, 
and for scientists who write code for scientific 
researches. 
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