-15-

УДК 546.683.1'814'87'23:544.344.015.3

Козьма А.А., к.х.н., н.с.

ВЗАЄМОДІЯ КОМПОНЕНТІВ У КВАЗІПОТРІЙНІЙ СИСТЕМІ Tl₄SnSe₄–Tl₂Se–Tl₉BiSe₆

НДІ Фізики і хімії твердого тіла, кафедра неорганічної хімії, ДВНЗ «Ужгородський національний університет», 88000, м. Ужгород, вул. Підгірна, 46 e-mail: Anton_Kozma@yahoo.com

Система Tl₄SnSe₄-Tl₂Se-Tl₉BiSe₆ € однією з п'яти вторинних квазіпотрійних систем у загальній Tl₂Se-SnSe₂-Bi₂Se₃ [1]. Фазові рівноваги у решті систем (SnSe₂- $TlBiSe_2 - Bi_2Se_3$ (I), SnSe₂-Tl₂SnSe₃-TlBiSe₂ (II), Tl₂SnSe₃-Tl₄SnSe₄-TlBiSe₂ (III) i Tl₄SnSe₄-Tl₉BiSe₆-TlBiSe₂ (IV)) досліджено та описано у роботах [2-5]. На основі проміжних фаз (індивідуальних сполук, твердих розчинів та евтектичних композицій) вивчених вторинних квазіпотрійних систем одержано низку перспективних термоелектричних матеріалів [6-12].

У даній роботі досліджено фізикохімічну взаємодію компонентів у системі Tl₄SnSe₄–Tl₂Se–Tl₉BiSe₆. Отримані результати можуть бути використані для пошуку та одержання нових термоелектриків.

Аналіз літературних відомостей

Квазіпотрійна система $Tl_4SnSe_4-Tl_2Se-Tl_9BiSe_6$ утворена трьома квазібінарними перерізами $Tl_4SnSe_4-Tl_9BiSe_6$, $Tl_4SnSe_4-Tl_2Se$ і $Tl_2Se-Tl_9BiSe_6$.

Система Tl₄SnSe₄--Tl₉BiSe₆ вперше досліджена в роботі [1]. Згідно з цими даними, вона відноситься до евтектичного типу взаємодії. Координати евтектики: 15 мол. % Tl₉BiSe₆, 687 К.

Системи Tl₄SnSe₄–Tl₂Se i Tl₂Se-Tl₉BiSe₆ є частковими до SnSe₂-Tl₂Se та Tl₂Se-Bi₂Se₃, які неодноразово досліджувались [13-16], але одержані результати виявились суперечливими. За даними роботи [13], сполука Tl₄SnSe₄ перитектично розкладається при 698 К. Згідно з [15], в системі Tl₂Se-SnSe₂ сполука Tl₄SnSe₄ плавиться конгруентно при 718 К, а між Tl₂Se та Tl₄SnSe₄ евтектичне нонваріантне перетворення відбувається при 12.5 мол. % SnSe₂, 633 К. Конгруентний характер плавлення Tl₄SnSe₄ підтверджено також у працях [14, 16]. За даними [14], на частковому перерізі Tl₄SnSe₄—Tl₂Se виявлено гіпотетичну сполуку "Tl₃₀SnSe₁₇", яка плавиться конгруентно при 662.2 К. З боку Tl₂Se евтектика вироджена при 644.2 К, а між «Tl₃₀SnSe₁₇» і Tl₄SnSe₄ евтектична точка має координати 17.5 мол. % SnSe₂, 627 К.

Система Tl₂Se-Tl₉BiSe₆ відноситься до взаємодії [17] евтектичного типу 3 виродженою евтектикою зі сторони Tl₂Se при 660 К. На противагу цим відомостям, між Tl₂Se i Tl₉BiSe₆ утворюється неперервний ряд твердих розчинів [18-20]. Останнє є більш ймовірним, оскільки обидві сполуки кристалізуються в тетрагональній сингонії з близькими значеннями параметрів граток: *а*=0.854 (2), *с*=1.238 (10) нм для Tl₂Se [21] та а=0.8490 (3), с=1.2630 (4) нм для Tl₉BiSe₆ [22].

З наведених даних слідує, що квазіпотрійна система $Tl_4SnSe_4-Tl_2Se-Tl_9BiSe_6$ раніше не досліджувалась. Також є необхідність в уточненні деяких особливостей у взаємодії компонентів на вихідних квазібінарних перерізах $Tl_4SnSe_4-Tl_2Se$ і $Tl_2Se-Tl_9BiSe_6$.

Експериментальна частина

Синтези сплавів здійснювали в декілька етапів. Спочатку одержували бінарні селеніди Tl₂Se, SnSe₂ та Bi₂Se₃, використовуючи елементарні компоненти наступної чистоти: талій марки ТІ-000, станум ОВЧ-000, бісмут Ос.ч. 11-4, селен Ос.ч. 17-3. Розраховані маси реагентів брали з точністю до 2×10⁻⁶ кг на електронних терезах модифікації AD 200. Стехіометричні -16-

кількості простих речовин поміщали у кварцові ампули, які вакуумовали до 0.13 Па відпаювали. Отримані та реакційні контейнери поміщали в електричні печі опору та нагрівали на 50-70 К вище температур плавлення відповідних бінарних сполук (T_{пл}(Tl₂Se)=663 К, T_{пл}(SnSe₂)=948 К, Т_{пл}(Bi₂Se₃)=979 К [23]). Реакційні суміші витримували максимальних при температурах (T_{max}=730-1053 К) протягом 48 годин. Потім, при температурі 423 K, проводили гомогенізуючий відпал тривалістю 3 доби.

Тернарні халькогеніди Tl₄SnSe₄ також проміжні сплави Tl₉BiSe₆, а квазіпотрійної системи Tl₄SnSe₄-Tl₂Se-Tl₉BiSe₆ синтезували із бінарних Tl₂Se, SnSe₂ та Bi₂Se₃ 3a аналогічною методикою. Максимальна температура сплавлення вихідних компонентів складала 1053 K. Гомогенізуючий відпал (при 423 K) злійснювали протягом 72 годин (для 290 тернарних сполук) і годин (для проміжних сплавів).

Ідентифікацію усіх сполук здійснювали за допомогою методів диференційного термічного (ДТА) та рентгенівського фазового (РФА) аналізів.

Дослідження проміжних сплавів, яке дозволило б побудувати відповідну просторову діаграму стану, здійснювали з використанням методів ДТА, РФА та математичного моделювання.

ДТА проводили за стандартною [24, 25]. Подрібнені методикою зразки досліджуваних сплавів масою 1.0-1.5 г завантажували в контейнери Степанова, які вакуумували до 0.13 Па та відпаювали. Зразок та еталон (Al₂O₃) поміщали у гнізда масивного металевого блоку, який розміщувався всередині електричної печі опору. Нагрівання останньої здійснювали за допомогою програмованого нагрівача РИФ-101. Термограми записували на двохкоординатному самописці ПДА-01. Точність реєстрації термічних ефектів становила ± 5 К.

РФА здійснювали по дифракто-грамах, одержаних на дифрактометрі ДРОН-4.07 (СиК α -випромінювання, Ni-фільтр, λ =0.15419 нм; діапазон кутів 2 θ складав 16÷60°) [26]. Індексування отриманих порошкограм індивідуальних сполук та проміжних сплавів проводили за допомогою програми POWDERCELL 2.4 [27].

Вивчення фазових рівноваг здійснювали з використанням симплексного методу. Висо-коточне визначення ходу ліній моноваріантних рівноваг реалізували за допомогою поліноміального аналізу на EOM [28-30].

Обговорення отриманих результатів

<u>Система Tl₄SnSe₄-Tl₂Se.</u> На основі даних ДТА встановлено наступне: сплави складів $Tl_{30}SnSe_{17}$ і Tl_4SnSe_4 на термограмах нагрівання характеризувалися ОЛНИМ ендотермічним ефектом при 638 і 715 К відповідно. Отже, підтверджено індивідуальність та конгруентний характер сполуки Tl₄SnSe₄, плавлення шо узгоджується з висновками роботи [15]. Співставлення дифрактограм (одержаних за допомогою методу РФА) сполук Tl₂Se i Tl_4SnSe_4 i3 аналогічною для сплаву "Tl₃₀SnSe₁₇" (рис. 1) показало, що система основних рефлексів складу Tl₃₀SnSe₁₇ не відрізняється від вихідних Tl₂Se і Tl₄SnSe₄. Таким чином, зазначений сплав не можна вважати новою індивідуальною сполукою. Скоріше за все, цей склад лежить у межах області гомогенності фази на основі Tl₂Se.

За результатами аналізу літературних координати даних встановлено, що евтектичної точки у системі Tl₄SnSe₄-Tl₂Se неоднозначні. Для уточнення також координат евтектики синтезовано серію сплавів з відхиленням 1 мол. % в околі наведених у праці [15], які аналізували метолом ДТА. Визначені координати евтектичної точки складають 13 мол. % SnSe₂, 628 К. Таким чином, дані роботи [15] підтвердилися у межах похибки використаного методу.

У квазібінарній <u>системі Tl₂Se–Tl₉BiSe₆</u>, крім вихідних сполук, синтезували три проміжні сплави, які аналізували методами ДТА та РФА (рис. 2). На дифрактограмах досліджених зразків спостерігається одна система рефлексів, що відповідає єдиній фазі на основі вихідних сполук Tl₂Se і Tl₉BiSe₆ та засвідчує утворення неперервного ряду твердих розчинів. Отже, діаграма стану часткової системи Tl₉BiSe₆–Tl₂Se належить до І-го типу за Розебомом [30] (рис. 3). -17-

Рис. 1. Дифрактограми деяких проміжних сплавів перерізу Tl₄SnSe₄-Tl₂Se

системи Сторони квазіпотрійної Tl₄Sn<u>Se₄-Tl₂Se-Tl₉BiSe₆</u> утворюють дві квазібінарні системи евтектичного типу $Tl_2Se-Tl_4SnSe_4$ (координати евтектики 18 мол. % Tl₄SnSe₄, 628 К, що узгоджується з даними [15]) i Tl₄SnSe₄-Tl₉BiSe₆ (коорди-нати евтектики 15 мол. % Tl₉BiSe₆, 687 К [1]), а Tl₂Se-Tl₉BiSe₆, також система яка характеризується утворенням неперервного ряду твердих розчинів без екстремальних точок на кривих ліквідуса та солідуса, що підтверджує результати [18-20].

Для вивчення характеру фізикохімічної взаємодії компонентів У досліджуваній квазіпотрійній системі було синтезовано 35 подвійних і потрійних сплавів, які, за своїм складом, відповідали вузлам симплексної ґратки, а також давали можливість визначити межі протяжності твердих розчинів на основі вихідних компонентів. Побудову проекції поверхні ліквідуса здійснювали з використанням методу "рухомих" симплексних трикутників на ЕОМ. Вихідними даними слугували температури первинної кристалізації досліджених сплавів разом із відомими літературними результатами [1, 15]. В табл. 1 та на рис. 4 наведено матрицю планування на симплексі квазіпотрійної системи Tl₄SnSe₄-Tl₂Se-Tl₉BiSe₆.

Рис. 3. Діаграма стану часткової системи $Il_2Se-Tl_9BiSe_6$: 1 – L; 2 – L + α ; 3 – α

-				-		-			-
Вузол	Склад (мол. %)			тν	Вирод	Склад (мол. %)			тν
	Tl ₄ SnSe ₄	Tl ₂ Se	Tl ₉ BiSe ₆	Ι, Κ	Бузол	Tl ₄ SnSe ₄	Tl ₂ Se	Tl ₉ BiSe ₆	1, K
Y ₁	100.0	0	0	715	Y ₁₁₃	7.5	0	92.5	703
Y ₂	0	100.0	0	659	Y ₁₃₃	42.5	0	57.5	756
Y ₃	0	0	100.0	791	Y ₁₁₂₃	49.5	44.0	6.5	644
Y ₁₂	18.0	82.0	0	628	Y ₁₂₂₃	8.0	67.0	25.0	729
Y ₂₃	0	50.0	50.0	769	Y ₁₂₃₃	68.0	24.5	43.5	722
Y ₁₃	85.0	0	15.0	687	Y ₁₁₁₂₃	66.0	29.0	5.0	679
Y ₁₁₂	41.0	59.0	0	674	Y ₁₂₂₂₃	5.5	77.5	17.0	709
Y ₁₂₂	9.0	91.0	0	644	Y ₁₂₃₃₃	28.0	17.0	55.0	757
Y ₂₂₃	0	75.0	25.0	739	Y ₁₂₃	33.0	46.0	21.0	711
Y ₂₃₃	0	25.0	75.0	776					

Таблиця 1. Реалізація планів методу «рухомих» симплексних трикутників у квазіпотрійній системі Tl₄SnSe₄–Tl₂Se–Tl₉BiSe₆

Рис. 4. Вузли базової симплексної гратки квазіпотрійної системи Tl₄SnSe₄-Tl₂Se-Tl₉BiSe₆

Побудовану проекцію поверхні ліквідусу квазіпотрійної системи Tl_4SnSe_4 - $Tl_2Se-Tl_9BiSe_6$ представлено на рис. 5.

Ліквідус системи утворений двома поверхнями первинної кристалізації: α– твердого розчину (обмежена лініями G'-e1e2-К'-G') та β-твердого розчину (обмежена H'-e1-e2-H'). Області первинних кристалізацій L+α і L+β обмежуються лінією e1-e2, яка характеризується рівноважним моноваріантним евтектичним процесом (L⇔α+β), що відбувається в інтервалі температур 687-628 К.

Високоточний хід лінії моноваріантної рівноваги (L⇔α+β) визначали за допомогою поліноміального аналізу, результати якого наведено у табл. 2 та на рис. 6. 3 цією метою піддано обробці залежності температур первинних кристалізацій тернарних фаз від концентрації за перетинами а1-а1', а2-а2', а3-а3' (ізоконцентрати при 30, 50 та 70 мол. % Tl₂Se). Функціональна залежність Y=f(X) температури кристалізації (К) від концентрації сплавів (мол. %), в області первинної кристалізації В-фази, описується поліномом 2-го ступеня $Y = a_0 + a_1 X + a_2 X^2$, а в області первинної кристалізації а-фази поліномом 3-го ступеня $Y = a_0 + a_1 X + a_2 X^2 + a_3 X^3$.

Проведені дослідження дозволили вперше побудувати просторову діаграму стану та описати фазові рівноваги у квазіпотрійній системі Tl₄SnSe₄-Tl₂Se-Tl₉BiSe₆ (рис. 7).

У зазначеній квазіпотрійній системі утворюються два граничні тверді розчини: β – на основі тернарної сполуки Tl₄SnSe₄ і α – на основі бінарного талій (I) селеніду та тернарної сполуки Tl₉BiSe₆. Система

-18-

-19-

Tl₄SnSe₄-Tl₂Se-Tl₉BiSe₆ характеризується моноваріантним евтектичним процесом $L \Leftrightarrow \alpha + \beta$. який проходить В інтервалі температур 687-628 К (лінія е1-е2). Ліквідус системи утворений двома поверхнями первинної кристалізації, що обмежені лініями G'ele2K'G' (а-твердого розчину) та H'ele2H' (В-твердого розчину). Обилві поверхні перетинаються вздовж лінії моноваріантної рівноваги е1-е2.

Підліквідусна частина (до солідуса системи) характеризуються трьома областями: співіснування кристалів α -фази та розплаву L (обмежена площинами G'ele2K'G', G'elg2G', K'e2k1K', G'g2k1K'G', g2e1e2k1g2), співіснування кристалів β-фази розплаву L (обмежена H'ele2H'. та H'e2h11H', H'elh7H', H'h7h11H', h7e1e2h11h7), а також співіснування кристалів а-, β-фаз і розплаву L (обмежена g2e1e2k1g2, h7e1e2h11h7, що утворюються переміщенням малих сторін конодного трикутника, i h7h11k1g2h7 – утворюється лінійчатою поверхнею при переміщенні великої сторони конодного трикутника від евтектичної горизонталі h7-g2 квазібінарної системи Tl₄SnSe₄-Tl₉BiSe₆ до евтектичної горизонталі h11-k1 квазібінарного перерізу $Tl_4SnSe_4-Tl_2Se$).

Таблиця 2. Результати поліноміального аналізу у квазіпотрійній системі Tl₄SnSe₄–Tl₂Se–Tl₉BiSe₆

Переріз a1-a1' (ізоконцентрата при 30.0 мол. % Tl ₂ Se)							
Поле первинної кристалізації β-фази			Поле первинної кристалізації α-фази				
мол. % а1'	Т, К	Параметри поліному	мол. % а1'	Т, К	Параметри поліному		
0	683	$a_0 = 683.08$	19.6	675	$a_0 = 606.29$		
3.9	678	$a_1 = -1.07$	26.1	700	$a_1 = 4.65$		
7.8	670	$a_2 = -7.48 \times 10^{-2}$	46.0	725	$a_2 = -5.52 \times 10^{-2}$		
12.2	659	$r_{xy} = 0.99999$	69.6	750	$a_3 = 2.55 \times 10^{-4}$		
		$S_{xy} = 0.3193$	100.0	774	$r_{xy} = 0.9958$		
					$S_{xy} = 7.1951$		
Координати перетину поліномів: 12.7 мол. % а1'; 657.2 К							
Переріз а2–а2' (ізоконцентрата при 50.0 мол. % Tl ₂ Se)							
Поле пе	Поле первинної кристалізації В-фази			Поле первинної кристалізації α-фази			
мол. % а2'	Т, К	Параметри поліному	мол. % а2'	Т, К	Параметри поліному		
0	664	$a_0 = 663.90$	18.1	650	$a_0 = 574.88$		
3.6	657	$a_1 = -1.69$	25.3	673	$a_1 = 4.96$		
7.2	650	$a_2 = -3.86 \times 10^{-2}$	34.9	698	$a_2 = -4.86 \times 10^{-2}$		
10.8	641	$r_{xy} = 0.9997$	51.8	725	$a_3 = 1.81 \times 10^{-4}$		
		$S_{xy} = 0.4472$	75.9	750	$r_{xy} = 0.9997$		
			100.0	764	$S_{xy} = 1.6827$		
Координати перетину поліномів: 13.8 мол. % а2'; 635.4 К							
Переріз а3–а3' (ізоконцентрата при 70.0 мол. % Tl ₂ Se)							
Поле первинної кристалізації β-фази			Поле первинної кристалізації α–фази				
мол. % аЗ'	Т, К	Параметри поліному	мол. % аЗ'	Т, К	Параметри поліному		
0	640	$a_0 = 640.06$	12.0	634	$a_0 = 601.80$		
4.0	637	$a_1 = -0.66$	18.0	649	$a_1 = 2.99$		
6.0	634	$a_2 = -4.55 \times 10^{-2}$	32.0	675	$a_2 = -2.45 \times 10^{-2}$		
8.0	632	$r_{xy} = 0.9955$	46.0	697	$a_3 = 9.25 \times 10^{-5}$		
		$S_{xy} = 0.5721$	72.0	725	$r_{xy} = 0.9999$		
			100.0	749	$S_{xy} = 0.7145$		
Координати перетину поліномів: 10.1 мол. % аЗ'; 631.2 К							

Примітка:

 α – фаза на основі сполук Tl₂Se та Tl₉BiSe₆;

 β – фаза на основі сполуки Tl₄SnSe₄.

-20-

Рис. 6. Результати поліноміального аналізу залежності температур первинних кристалізацій сплавів від концентрації у квазіпотрійній системі Tl₄SnSe₄-Tl₂Se-Tl₉BiSe₆:

a) a1–a1' (ізоконцентрата при 30 мол. % Tl₂Se),
б) a2–a2' (ізоконцентрата при 50 мол. % Tl₂Se),
в) a3–a3' (ізоконцентрата при 70 мол. % Tl₂Se)

Солідус системи утворений поверхнями закінчення кристалізації α-фази (G'g2k1K'G'), β-фази (H'h7h11H') та евтектичною площиною (h7h11k1g2h7), на якій закінчується сумісна кристалізація обох $φ_{a3}$ (α і β). Нижче температурного інтервалу евтектичного перетворення 687-628 К $(L \Leftrightarrow \alpha + \beta)$ усі сплави перебувають у твердому стані. Оскільки, α-неперервний ряд твердих розчинів на основі сполук Tl₂Se і Tl₉BiSe₆ є

фазою змінного складу, то дану квазіпотрійну систему можна розглядати як псевдодвохкомпонентною. Звідси випливає, що всі сплави, які перебувають поза областями гомогенності вихідних компонентів, характеризуються наявністю у твердому стані тільки двох фаз (α+β).

Рис. 7. Просторова діаграма стану квазіпотрійної системи Tl₄SnSe₄-Tl₂Se-Tl₉BiSe₆

Квазіпотрійна система Tl₄SnSe₄-Tl₂Se-Tl₉BiSe₆ характеризується такими рівноважними процесами:

1) нонваріантний процес плавлення Tl_4SnSe_4 (точка H') – Tl_4SnSe_4 (sol) \Leftrightarrow Tl_4SnSe_4 (liq) (715 K);

2) нонваріантний процес плавлення Tl_2Se (точка K') – Tl_2Se (sol) \Leftrightarrow Tl_2Se (liq) (661 K);

3) нонваріантний процес плавлення Tl_9BiSe_6 (точка G') – Tl_9BiSe_6 (sol) \Leftrightarrow Tl_9BiSe_6 (liq) (791 K);

4) подвійний нонваріантний евтектичний процес (точка e1) – $L \Leftrightarrow \alpha + \beta$ (687 K);

5) подвійний нонваріантний евтектичний процес (точка e^2) – L $\Leftrightarrow \alpha + \beta$ (628 K);

6) моноваріантний евтектичний процес (лінія $e_{1-e_{2}}$) – L $\Leftrightarrow \alpha+\beta$ (інтервал температур 687–628 К).

Усі три–, дво– та однофазні об'єми, які присутні на просторовій діаграмі стану системи $Tl_4SnSe_4-Tl_2Se-Tl_9BiSe_6$, наведені в табл. 3.

Область	Об'єм	Область	Об'єм	Область	Об'єм
lpha (Tl ₂ Se+ +Tl ₉ BiSe ₆)	G'g2k1K'G' G'g2g5GG' K'k1k2KK' g2k1k2g5g2	β (Tl ₄ SnSe ₄)	H'h7h8HH' H'h11h12HH' H'h7h11H' h7h11h12h8h7	L+α	G'ele2K'G' G'elg2G' K'e2k1K' G'g2k1K'G' g2ele2k1g2
L+β	H'e1e2H' H'e2h11H' H'e1h7H' H'h7h11H' h7e1e2h11h7	L+α+β	g2e1e2k1g2 h7e1e2h11h7 h7h11k1g2h7	α+β	h7e1e2h11h7 h7h11h12h8h7 k1k2g5g2k1 h7g2g5h8h7 h11k1k2h12h11

Таблиця 3. Характеристика об'ємів існування одно-, дво- та трифазних областей у вторинній квазіпотрійній системі Tl₄SnSe₄–Tl₂Se–Tl₉BiSe₆

Висновки

Уточнено характер фізико-хімічної взаємодії в часткових системах Tl₄SnSe₄- Tl_2Se і $Tl_2Se-Tl_9BiSe_6$, які є базовими квазібінарними перерізами для квазіпотрійної системи Tl₄SnSe₄-Tl₂Se-Tl₉BiSe₆. Підтверджено деякі літературні відомості, згідно з якими переріз Tl₄SnSe₄-Tl₂Se відноситься до евтектичного типу взаємодії, а в системі Tl₂Se-Tl₉BiSe₆ утворюється неперервний ряд твердих розчинів І типу за Розебомом. Уперше досліджено взаємодію компонентів у квазіпотрійній системі Tl₄SnSe₄–Tl₂Se– Tl₉BiSe₆, побудовано відповідну просторову діаграму стану. Встановлено, що у даній системі в інтервалі температур 687-628 К відбувається моноваріантний евтектичний процес, а на основі фази (Tl₂Se+Tl₉BiSe₆) формуються тверді розчини значної протяжності. Отримані результати можуть слугувати надійною основою для пошуку та одержання нових термоелектричних матеріалів серед проміжних фаз вивченої квазіпотрійної системи.

Список використаних джерел

1. Козьма А.А., Переш Є.Ю., Барчій І.Є., Цигика В.В. Фазові рівноваги на квазібінарних перерізах квазіпотрійної системи Tl₂Se–SnSe₂–Bi₂Se₃ // Укр. хім. журн. – 2010. – т. 76, № 4. – С. 80-84.

2. Козьма А.А., Барчій І.Є., Переш Є.Ю., Цигика В.В. Фізико-хімічна взаємодія у квазіпотрійній системі SnSe₂–TlBiSe₂–Bi₂Se₃ // Наук. вісник Ужгородського у-ту. Сер. «Хімія». – 2009. – Вип. 21. – С. 6-12.

3. Козьма А.А., Барчій І.Є. Переш Є.Ю., Соломон А.М., Цигика В.В. Система SnSe₂-

Tl₂SnSe₃-TlBiSe₂ // Укр. хім. журн. – 2010. – т. 76, № 12. – С. 76-80.

4. Kozma A.A., Barchij I.E., Peresh E.Yu. Phase relation in the $Tl_2SnSe_3-Tl_4SnSe_4-TlBiSe_2$ quasiternary system // Chem. Met. Alloys. - 2011. - V. 4, No 1-2. - P. 94-97.

5. Барчій І.Є., Козьма А.А. Фазові рівноваги у квазіпотрійній системі Tl₄SnSe₄–TlBiSe₂–Tl₉BiSe₆ // Укр. хім. журн. – 2011. – т. 77, № 7. – С. 32-37.

6. Козьма А.А., Барчій І.Є., Переш Є.Ю., Цигика В.В., Беца В.В., Соломон А.М., Сабов М.Ю. Одержання та термоелектричні властивості полікристалічних сполук TlBiSe₂ і Tl₉BiSe₆ // Наук. вісник Ужгородського у-ту. Сер. «Хімія». – 2010. – Вип. 23. – С. 22-25.

7. Козьма А.А., Переш Є.Ю., Барчій І.Є., Сабов М.Ю., Беца В.В., Цигика В.В. Термоелектричні властивості евтектичних сплавів систем TlBiSe₂–SnSe₂ (Tl₂SnSe₃, Tl₄SnSe₄) і Tl₄SnSe₄–Tl₉BiSe₆ // Укр. хім. журн. – 2011. – т. 77, № 9. – С. 23-26.

8. Пат. 94673 Україна, МПК H01L 35/14. Термоелектричний матеріал Козьма А.А., / Переш Є.Ю., Барчій І.Є., Сабов М.Ю., Цигика В.В., Беца В.В., Галаговець І.В.; заявник і патентовласник ДВНЗ «УжНУ». – № а 201004972; заявл. 26.04.2010; опубл. 25.05.2011, Бюл. №10. 9. Пат. 96535 Україна, МПК H01L 35/14. Термоелектричний матеріал на основі твердого системі Tl₄SnSe₄-Tl₉BiSe₆ розчину в Козьма А.А., Барчій І.Є., Переш Є.Ю., Сабов М.Ю., Беца В.В., Цигика В.В.; заявник і патентовласник ДВНЗ «УжНУ». – № а 201012680; заявл. 26.10.2010; опубл. 10.11.2011, Бюл. №21. Україна, МПК Н01L 35/00, 10. Пат. 98367 C01G 15/00, C01G 29/00, C01B 19/00, C01G 19/00. Термоелектричний матеріал на основі евтектичного композиту системи Tl₄SnSe₄-ТІ₉ВіSe₆ / Козьма А.А., Барчій І.Є., Переш Є.Ю., Сабов М.Ю., Беца В.В., Цигика В.В., Галаговець І.В.; заявник і патентовласник ДВНЗ

-21-

«УжНУ». – № а 201008952; заявл. 19.07.2010; опубл. 10.05.2012, Бюл. №9.

11. Пат. 98368 Україна, МПК H01L 35/00, C01G 29/00, C01B 19/00, C01G 19/00. Термоелектричний матеріал основі на евтектичного композиту системи SnSe2-Bi2Se3 / Барчій І.Є., Переш Є.Ю., Козьма А.А., Сабов М.Ю., Беца В.В., Цигика В.В.; заявник і патентовласник ДВНЗ «УжНУ». – № а 201008963; заявл. 19.07.2010; опубл. 10.05.2012, Бюл. №9.

12. Пат. 79434 Україна, МПК С01В 19/00, С21D 35/16. 1/60, H01L Спосіб підвищення термоелектричної ефективності матеріалу на основі сполуки нонаталій (I) гексаселенобісмутиту Tl₉BiSe₆ / Козьма А.А., Барчій І.Є., Переш Є.Ю.; заявник 1 патентовласник ДВНЗ «УжНУ». - № и 201211073; заявл. 24.09.2012; опубл. 25.04.2013, Бюл. №8.

13. Houenou P., Eholie R. Étude du système $SnSe_2$ -Tl₂Se // C. R. Acad. Sci. Paris C. – 1976. – V. 283, No 16. – P. 731-733.

14. Mucha I., Wiglusz K., Sztuba Z., Gaweł W. Solidliquid equilibria in the quasi-binary thallium (I) selenide–tin (IV) selenide system // Calphad. – 2009. – V. 33, N_{2} 3. – P. 545-549.

15. Лазарев В.Б., Переш Е.Ю., Староста В.И., Мудрый В.В. Фазовые равновесия и свойства соединений в системах $Tl_2S(Se)$ – $SnS_2(Se_2)$ // Журн. неорг. химии. – 1985. – т. 30, № 6. – С. 1502-1506.

16. Бордовский Г.А., Марченко А.В., Теруков Е.И. и др. Свойства и структура стекол $(As_2Se_3)_{1-z}(SnSe_2)_{z-x}(Tl_2Se)_x$ и $(As_2Se_3)_{1-z}(SnSe)_{z-x}(Tl_2Se)_x$ // Физика и техника полупроводников. – 2008. – т. 42, № 11. – С. 1353-1356.

17. Збигли К.Р., Раевский С.Д. Диаграмма состояния системы Tl₂Se-Bi₂Se₃ // Изв. АН СССР. Неорг. матер. – 1984. – т. 20, № 2. – С. 211-214.

18. Бабанлы М.Б., Вейсова С.М., Гусейнов З.А., Джафаров Я.И. Квазитройная система $Tl_2Se-Sb_2Se_3-Bi_2Se_3$ // Журн. неорг. химии. – 2002. – т. 47, № 6. – С. 1020-1025.

19. Бабанлы М.Б., Поповкин Б.А., Замани И.С., Гусейнова Р.Р. Фазовые равновесия в системе Tl– Bi–Se // Журн. неорг. химии. – 2003. – т. 48, № 12. – С. 2091-2096.

20. Бабанлы Н.Б., Алиев И.И., Бабанлы М.Б. Квазитройная система Ag₂Se–Tl₂Se–Bi₂Se₃ // Журн. неорг. химии. – 2009. – т. 54, № 9. – С. 1553-1560.

21. Ман Л.И., Пармон В.С., Иманов Р.М. Авилов А.С. Электронографическое определение структуры тетрагональной фазы Tl₅Se₃ // Кристаллография. – 1980. – т. 25, № 5. – С. 1070-1072.

22. Ворошилов Ю.В., Гурзан М.И., Киш З.З., Лада Л.В. Фазовые равновесия в системе Tl–Pb–Te и кристаллическая структура соединений $Tl_4B^{IV}X_3$ и $Tl_9B^VX_6$ // Изв. АН СССР. Неорг. матер. – 1988. – т. 24, № 8. – С. 1479-1484.

23. Диаграммы состояния двойных металлических систем: Справочник: в 3 Т. / Под общ. ред. Н.П. Лякишева. – М.: Машиностроение, 1986 – Т.1. – 991 с., Т.3: кн. 2. – 2000. – 448 с.

24. Берг Л.Г. Введение в термографию. – М.: Наука, 1969. – 395 с.

25. Егунов В.П. Введение в термический аналіз. – Самара: СамВен, 1996. – 270 с.

26. Ковба Л.М. Рентгенография в неорганической химии. – М.: Изд-во МГУ, 1991. – 256 с.

27. Nolze G., Kraus W. POWDERCELL 2.0 for Windows // Powder Diffr. – 1998. – V. 13, $N_{\rm P}$ 4. – P. 255-259.

28. Уфимцев В.Б., Лобанов А.А. Гетерогенные равновесия в технологии полупроводниковых материалов. – М.: Металлургия, 1981. – 216 с.

29. Барчій І.Є. Математичне моделювання фазових рівноваг у квазітернарній системі $Tl_2S-Tl_2Se-Tl_5Se_2I$ // Укр. хім. журн. – 2001. – т. 67, № 11. – С. 18-23.

30. Барчій І.С., Переш Є.Ю., Різак В.М., Худолій В.О. Гетерогенні рівноваги. – Ужгород: ВАТ Видавництво Закарпаття, 2003. – 212 с.

Стаття надійшла до редакції: 11.10.2013

INTERACTION OF COMPONENTS IN THE QUASITERNARY SYSTEM Tl₄SnSe₄-Tl₂Se-Tl₉BiSe₆

Kozma A.A.

The manuscript contains the result of the phase equilibria investigations in the quasiternary system $Tl_4SnSe_4-Tl_2Se-Tl_9BiSe_6$: three dimensional phase diagram and the liquidus projection were constructed, at first. Is established, that in this system takes place monovariant eutectic equilibrium in temperature range 687–628 K.