-12-

УДК 548.3

Сідей В.І., к.х.н., ст.н.с.

ЩОДО ПОШИРЕННЯ ПОХИБКИ ВИЗНАЧЕННЯ МІЖАТОМНИХ ВІДСТАНЕЙ В МОДЕЛІ ЗВ'ЯЗКОВОЇ ВАЛЕНТНОСТІ

ДВНЗ «Ужгородський національний університет», НДІ фізики і хімії твердого тіла; 88000, м. Ужгород, вул. Підгірна, 46. e-mail: vasylsidey@hotmail.com

Протягом останніх чотирьох десятиріч емпірична модель зв'язкової валентності [M3B; в англомовній літературі – the bond valence model (BVM)], виведена з базових принципів будови іонних кристалічних структур Л. Полінга [1] і розвинута до свого сучасного стану І.Д. Брауном та низкою інших дослідників [2, 3], набула загального визнання серед фахівців у галузі фізики твердого тіла, структурної неорганічної хімії, кристалохімії та мінералогії – як простий і надійний інструмент для (а) методологічно незалежної верифікації структурних моделей і (б) прогнозування міжатомних відстаней у структурах з відомим хімічним складом та відомою (передбачуваною) кристалохімічною топологією.

У рамках МЗВ, *зв'язкова валентність* (ЗВ) визначається як частина "класичної" валентності (в більш сучасному трактуванні: кількість/фракція електронної пари Льюїса), що витрачається на формування кожного конкретного зв'язку між центральним атомом (іоном) *А* координаційної сфери [*AX_n*] та протилежно зарядженим лігандом *X*.

Практичне застосування МЗВ базується на стійкій оберненій нелінійній залежності (кореляції) між величиною ЗВ і довжиною хімічного зв'язку. У сучасній науковій кристалохімічній літературі, кореляція між числовим значенням ЗВ (s_{AX}) [вираженим у валентних одиницях (в.о.)] і довжиною (d_{AX}) хімічного зв'язку А — Х зазвичай описується емпіричною формулою (1), де r_0 та b – емпірично встановлені для конкретної пари іонів А/Х константи (або параметри ЗВ), величини яких залежать лише від природи атомів (іонів) А і X (r₀ відповідає міжатомній відстані з формально одинарним зв'язком). Для окремо взятої пари іонів А/Х, набір числових значень (r_0 ; b) оптимізується таким чином, щоб *всі* суми ЗВ ($\Sigma_n s_{AX}$), розраховані з міжатомних відстаней d_{AX} у вибірці надійно визначених і стійких координаційних сфер [AX_n], були рівними або ж максимально близькими до модуля очікуваного числового значення ступеня окиснення (валентності V_A) атомів A [4-9]. Апроксимовані таким чином емпіричні кореляційні залежності $s_{AX} = f(d_{AX})$ успішно застосовуються для верифікації і прогнозування структур в рамках МЗВ.

$$s_{AX} = \exp\left(\frac{r_0 - d_{AX}}{b}\right) \tag{1}$$

Разом 3 ТИМ, проблема впливу (поширення) експериментальної похибки у встановлених міжатомних відстанях d_{AX} на розраховані величини s_{AX} до початку цього дослідження залишалась поза належною vвагою лослілників. Розв'язання шієї. проблеми допомогло б надійно визначати межі похибки, в яких відхилення сум ЗВ від очікуваних величин можна було б вважати статистично незначущими. З огляду на вищесказане, головною метою цієї роботи розробка математичної стала моделі поширення похибки у міжатомних відстанях на величини ЗВ.

З курсів математичного аналізу відомо, що для функції з однією змінною y = f(x)зміна (похибка) Δy , спричинена невеликою зміною (похибкою) Δx , добре апроксимується формулою (2), де f'(x) - noxidнa функції f(x)(див., наприклад, [10, 11]).

$$\left|\Delta y\right| \approx \left|f'(x)\right| \cdot \left|\Delta x\right| \tag{2}$$

Оскільки абсолютна експериментальна похибка визначення міжатомних відстаней в сучасних кристалографічних дослідженнях складає ~0.01 Å (що у відносному вигляді

зазвичай не перевищує 1%), застосування наближення (2) до кристалохімічних проблем (зокрема, до МЗВ) є прийнятним.

Застосувавши диференціювання (згідно з відомими правилами [10, 11]) до функції $s_{AX} = f(d_{AX})$ (1), одержуємо рівняння (3), яке [із врахуванням (1)] можна далі спростити до рівняння (4).

$$\left|\Delta s_{AX}\right| \approx \left|-\frac{\exp\left(\frac{r_{0}-d_{AX}}{b}\right)}{b}\right| \cdot \left|\Delta d_{AX}\right| \quad (3)$$

$$\left|\Delta s_{AX}\right| \approx \left|s_{AX}\right| \cdot \left|\frac{\Delta d_{AX}}{b}\right| \tag{4}$$

Нарешті, застосувавши елементарні арифметичні перетворення до рівняння (4), одержуємо просте остаточне рівняння (5) для залежності *відносної похибки* величини ЗВ ($|\Delta s_{AX}|/|s_{AX}|$) від похибки у визначенні відстані $|\Delta d_{AX}|$.

$$\left|\frac{\Delta s_{AX}}{s_{AX}}\right| \approx \left|\frac{\Delta d_{AX}}{b}\right| \tag{5}$$

Таким чином, відносна похибка у величині ЗВ апроксимується як відношення абсолютної похибки визначення міжатомної відстані $|\Delta d_{AX}|$ до параметру *b*. Для типової величини $|\Delta d_{AX}| = 0.01$ Å, графік залежності ($|\Delta s_{AX}|/|s_{AX}|$) від параметру *b* (який варіюється в межах 0.2÷0.7 Å [2, 3]) зображено на рис. 1.

Серія тестових розрахунків очікувано підтвердила близькість апроксимованих за формулою (5) і реальних величин відносних похибок ЗВ: для розглядуваних меж *b* і для $|\Delta d_{AX}| = 0.01$ Å, наближені й дійсні величини відносних похибок ЗВ виявились рівними (в межах похибки округлення), як мінімум, до сотих долей.

Аналіз формул (4) і (5) дозволяє зробити два важливі в методологічному сенсі висновки.

По-перше, відносні похибки величин ЗВ (тобто $|\Delta s_{AX}|/|s_{AX}|$), пов'язані з конкретною експериментальною похибкою $|\Delta d_{AX}|$, можуть значно відрізнятись для пар іонів із суттєво різними параметрами *b*. Так, для пари іонів з b = 0.2 Å похибка $|\Delta d_{AX}| = 0.01$ Å призводить до відносної похибки ЗВ у ~5% (тобто $|\Delta s_{AX}|/|s_{AX}| \approx 0.05$), тоді як для пари з b = 0.7 Å така ж похибка $|\Delta d_{AX}|$ дає відносну похибку ЗВ у ~1.4%. Однак, попри відчутну різницю величин $|\Delta s_{AX}|/|s_{AX}|$, в обох згаданих прикладах ці величини слід розглядати як прийнятні й несуттєві.

Рис. 1. Графік залежності відносної похибки величини ЗВ ($|\Delta s_{AX}|/|s_{AX}|$) від параметру *b* для похибки міжатомної відстані $|\Delta d_{AX}| = 0.01$ Å.

По-друге, при розрахунках у рамках МЗВ, для пар іонів, що характеризуються меншими значеннями b, міжатомні відстані слід брати з *підвищеною* прецизійністю, по можливості уникаючи накопичення похибки округлення. Якщо розглядувані міжатомні відстані d_{AX} *різні*, то похибки округлення, в принципі, можуть компенсувати одна одну, не вносячи суттєвої похибки в суму ЗВ. Однак, для *правильних* координаційних сфер $[AX_n]$ з *однаковими* відстанями d_{AX} , невиправдане округлення може призвести до систематичної похибки у визначенні сум ЗВ.

Загалом, враховуючи ефективність та простоту формул (4) і (5), ці формули можуть бути рекомендовані до використання в МЗВ як надійний індикатор впливу похибки (чи невизначеності) міжатомних відстаней на величини ЗВ і сум ЗВ. Якщо відхилення ЗВ і сум ЗВ лежать у межах, що відповідають експериментальній похибці $|\Delta d_{AX}|$, то ці відхилення можна вважати незначущими. У інших випадках відхилення згаданих величин слід вважати значущими й такими, що потребують пояснення чи обгрунтування.

Список використаних джерел

1. Pauling L. *The Nature of the Chemical Bond*. Ithaca: Cornell University Press, 1960. P. 644.

2. Brown I.D. *The Chemical Bond in Inorganic Chemistry: The Bond Valence Model.* New York: Oxford University Press, 2002. P. 288.

3. Brown I.D. Recent developments in the methods and applications of the bond valence model. *Chem. Rev.* 2009, 109(12), 6858–6919. Doi: 10.1021/cr900053k.

4. Brown I.D., Altermatt D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. *Acta Crystallogr.* 1985, B41(4), 244–247. Doi: 10.1107/s0108768185002063.

5. Brese N.E., O'Keeffe M. Bond-valence parameters for solids. *Acta Crystallogr*. 1991, B47(2), 192–197. Doi: 10.1107/s0108768190011041.

6. Sidey V.I., Milyan P.M., Semrad O.O., Solomon A.M. X-ray powder diffraction studies and bond-valence

Стаття надійшла до редакції: 12.10.2019.

analysis of Hg₂Sb₂O₇. *J. Alloys Compd.* 2008, 457(1-2), 480–484. Doi: 10.1016/j.jallcom.2007.03.011.

 Sidey V. On the accurate bond-valence parameters for the Sb³⁺/O²⁻ ion pair. *Acta Crystallogr.* 2010, B66(3), 307–314. Doi: 10.1107/s010876811000892x.
Sidey V., Shteyfan A. Revised bond valence para-

meters for the P^{+5}/S^{-2} ion pair. J. Phys. Chem. Solids. 2017, 103, 73–75. Doi: 10.1016/j.jpcs.2016.12.004.

9. Gagné O.C., Hawthorne F.C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. *Acta Crystallogr.* 2015, B71(5), 562–578. Doi: 10.1107/s2052520615016297.

10. Piskunov N. *Differential and Integral Calculus*. Moscow: Mir Publishers, 1969. P. 895.

11. Larson R. *Calculus: An Applied Approach* (8th ed.). Belmont (CA, USA): Cengage Learning, 2009. P. 928.

ON THE PROPAGATION OF THE INTERATOMIC DISTANCE ERROR IN THE BOND VALENCE MODEL

Sidey V.I.

Research Institute for Physics and Chemistry of Solid State, Uzhhorod National University, Pidgirna Street 46, Uzhgorod, 88000, Ukraine. e-mail: vasylsidey@hotmail.com

In the last four decades, the bond valence model (BVM) [derived from the Pauling rules for ionic crystals and developed to its modern form by I.D. Brown and by several other researchers] has found wide use in solid state physics, structural inorganic chemistry, crystal chemistry and mineralogy – as a convenient and reliable tool (i) for independently validating the structural models of interest and (ii) for predicting the bond lengths in the structures of known chemical composition and presupposed bond-network topology. Within the BVM framework, the bond valence (BV) s_{AX} is defined as the part of the "classical" atomic valence shared with each A-X cation-anion bond in a given $[AX_n]$ coordination sphere. The valence of a bond s_{AX} (measured in valence units, v.u.) is considered to be a unique nonlinear function of the bond length d_{AX} . The most commonly adopted empirical expression for the $d_{AX} - s_{AX}$ relationship is the equation $s_{AX} = \exp[(r_0 - d_{AX})/b]$, where r_0 and b (BV parameters) are the empirically determined constants for a specific A/X ion (atom) pair. However, analysis of the literature on the BVM has revealed the fact that the propagation of the $|\Delta d_{AX}|$ error (uncertainty) on the s_{AX} value(s) has not been properly and rigorously studied; so the main goal of the present work was to develop a calculation scheme for estimating the $|\Delta d_{AX}|$ error (uncertainty) propagation in the BVM.

Using the well established calculus-based approach for estimating the error propagation, the following formula has been derived for the relative error $|\Delta s_{AX}|/|s_{AX}|$ introduced by the small $|\Delta d_{AX}|$ error: $|\Delta s_{AX}|/|s_{AX}| \approx |\Delta d_{AX}|/|b|$. This formula indicates the critical dependence of $|\Delta s_{AX}|/|s_{AX}|$ on the particular *b* value relevant to a specific *A*/*X* ion (atom) pair. Given the range of 0.2÷0.7 Å for the observed *b* values, the relative error $|\Delta s_{AX}|/|s_{AX}|$ corresponding to the typical experimental $|\Delta d_{AX}|$ error of 0.01 Å is expected to vary from 0.05 to 0.014. Hence, any conclusion about the significance of the observed discrepancy between the calculated and expected s_{AX} values can be made only after

evaluating the $|\Delta s_{AX}|/|s_{AX}|$ value corresponding to a given *b* parameter and to the error $|\Delta d_{AX}| = 0.01$ Å. Additionally, dealing with the ion pairs characterized by relatively small *b* parameters, a higher precision of the d_{AX} values is required in order to avoid introducing of serious round-off errors.

Keywords: crystal structures; bond valence model; error analysis.

References

1. Pauling L. The Nature of the Chemical Bond. Ithaca: Cornell University Press, 1960. P. 644.

2. Brown I.D. *The Chemical Bond in Inorganic Chemistry: The Bond Valence Model.* New York: Oxford University Press, 2002. P. 288.

3. Brown I.D. Recent developments in the methods and applications of the bond valence model. *Chem. Rev.* 2009, 109(12), 6858–6919. Doi: 10.1021/cr900053k.

4. Brown I.D., Altermatt D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. *Acta Crystallogr.* 1985, B41(4), 244–247. Doi: 10.1107/S0108768185002063.

5. Brese N.E., O'Keeffe M. Bond-valence parameters for solids. *Acta Crystallogr.* 1991, B47(2), 192–197. Doi: 10.1107/S0108768190011041.

6. Sidey V.I., Milyan P.M., Semrad O.O., Solomon A.M. X-ray powder diffraction studies and bond-valence analysis of Hg₂Sb₂O₇. *J. Alloys Compd.* 2008, 457(1-2), 480–484. Doi: 10.1016/j.jallcom.2007.03.011.

7. Sidey V. On the accurate bond-valence parameters for the Sb³⁺/O²⁻ ion pair. *Acta Crystallogr.* 2010, B66(3), 307-314. Doi: 10.1107/s010876811000892x.

8. Sidey V., Shteyfan A. Revised bond valence parameters for the P^{+5}/S^{-2} ion pair. J. Phys. Chem. Solids. 2017, 103, 73–75. Doi: 10.1016/j.jpcs.2016.12.004.

9. Gagné O.C., Hawthorne F.C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. *Acta Crystallogr.* 2015, B71(5), 562–578. Doi: 10.1107/S2052520615016297.

10. Piskunov N. Differential and Integral Calculus. Moscow: Mir Publishers, 1969. P. 895.

11. Larson R. Calculus: An Applied Approach (8th ed.). Belmont (CA, USA): Cengage Learning, 2009. P. 928.