-35-

УДК 544.344.016:54(56+68)'23

Тищенко П.В., асп.; Олексеюк І.Д., д.х.н., проф.; Іващенко І.А., к.х.н., доц.; Гулай Л.Д., д.х.н., проф.; Козак В.С., асп.; Панкевич В.З., к.ф-м.н., зав. лаб.

ФАЗОВІ РІВНОВАГИ У КВАЗІПОТРІЙНІЙ СИСТЕМІ Cu₂Se – Ga₂Se₃ – In₂Se₃

Східноєвропейський національний університет імені Лесі Українки, 43025 м. Луцьк, просп. Волі, 13; e-mail: inna.ivashchenko05@gmail.com

Система Cu_2Se – Ga_2Se_3 – In_2Se_3 ε перспективною для дослідження, тому що в ній можливе утворення твердих розчинів на основі бінарних та тернарних халькогенідів, які вже мають широке практичне використання, як матеріали для напівпровідникової нелінійної техніки. оптики. сонячної енергетики, тощо. Автори [1] досліджували систему Cu_2Se – Ga_2Se_3 – In_2Se_3 через підвищений інтерес до сполук CuInSe2 та CuGaSe₂ та неперервного ряду твердих розчинів зі структурою халькопіриту (пр. гр. I-42d) на їх основі, які застосовують при виготовленні сонячних елементів, проте у повному концентраційному інтервалі система не досліджувалася, при синтезі зразків сплави охолоджували до кімнатної температури без гартування, проекція поверхні ліквідусу не будувалася, це викликало наш інтерес до цієї системи. Особлива увага буде зосереджена на області CuGaSe₂-Ga₂Se₃-In₂Se₃-CuInSe₂, оскільки саме тут очікуємо утворення великих областей твердих розчинів на основі тернарних фаз та проходження більшості нонваріантних процесів.

Квазібінарна система Cu₂Se–Ga₂Se₃

Фазові рівноваги в квазібінарній системі Cu₂Se-Ga₂Se₃ досліджувались в роботі [2]. В системі встановлено існування двох сполук: CuGaSe₂, CuGa₃Se₅. CuGaSe₂ і CuGa₃Se₅ утворюються за перитектичними реакціями Lp₁ + $\gamma \leftrightarrow \alpha$ -CuGaSe₂ (1303 K) і Lp₂ + $\gamma \leftrightarrow \delta$ -CuGa₃Se₅ (1333 K). Між μ -Cu₂Se і α -CuGaSe₂ відбувається евтектична реакція Le₁ $\leftrightarrow \mu + \alpha$, координати точки евтектики становлять 15 мол.% Ga₂Se₃ і 1235 К. Було встановлено існування γ -фази з невідомою структурою, яка має область гомогенності 56-72 мол.% Ga_2Se_3 . α -CuGaSe₂ кристалізується в структурі халькопіриту, пр. гр. *I*4-2*d*. δ -CuGa₃Se₅ кристалізується в тетрагональній сингонії, пр. гр. *I*4-2*m* [3]. γ -Тверді розчини на основі ВТМ Ga_2Se_3 простягаються до 11 мол.% Cu₂Se, µ-тверді розчини на основі ВТМ Cu₂Se простягаються до 6 мол.% Ga_2Se_3 при 1070 К. Кристалографічні дані для сполук наведені в табл. 1.

Квазібінарна система Cu₂Se–In₂Se₃

У роботі [4] досліджена система Cu₂Se-In₂Se₃. У зоні концентрації від 0-50 мол.% In₂Se₃ було встановлено існування сполуки Cu₃InSe₃, яка плавиться конгруентно при 1207 К і розкладається при 1180 К за евтектоїдним процесом $Cu_3InSe_3 \leftrightarrow \mu + \beta$ (де μ – тверді розчини на основі ВТМ Си₂Se, β – тверді розчини на основі BTM CuInSe₂). Ця фаза утворює дві евтектики з Cu₂Se i CuInSe₂ при 21 мол.% In₂Se₃ (1198 К) і 27 мол.% In₂Se₃ (1204 К). β-тверді розчини на основі ВТ-модифікації CuInSe₂ досягає 6 мол.% (1204 К). При 1051 К вони розкладається за евтектоїдним процесом: β ↔ μ + α (де αтверді розчини на основі HTM CuInSe₂). В підсистемі CuInSe₂-In₂Se₃ встановлено існування потрійних сполук з композиціями Си₇In₁₃Se₂₃ і Си₂In₄Se₇, які утворюються за твердофазними реакціями і розкладаються при температурі вище, ніж температура відпалу. Сполуки CuIn₃Se₅ та CuIn₇Se₁₁ також утворюються твердофазно і стабільні при температурі відпалу. Ще дві сполуки, CuIn₅Se₈ $CuIn_{11}Se_{17}$, утворюються та інконгруентно за реакціями L + β-CuInSe₂ ↔ $CuIn_5Se_8$ (1157 K) ta L + $CuIn_5Se_8 \leftrightarrow$

CuIn₁₁Se₁₇ (1143 К) відповідно і стабільні при температурі відпалу. Між CuIn₁₁Se₁₇ та λ -твердими розчинами на основі 3-ВТМ In₂Se₃ евтектика утворюється з координатами 97 мол.% In₂Se₃ і 1128 К. Кристалографічні дані для сполук наведені в таблиці 1.

Квазібінарна система Ga₂Se₃ – In₂Se₃

За результатами РФА і ДТА побудована діаграма стану системи Ga₂Se₃-In₂Se₃ [5, 6]. В системі зафіксовано існування двох тернарних фаз $(Ga_{0.6}In_{0.4})_2Se_3$ (γ_2) яка утворюється твердофазно та (Ga_{1-x}In_x)₂Se₃, 0,57≤х≤0,88 при 820 К (у1), яка плавиться конгруентно, кристалізується в пр. гр. Рб₁. В системі проходять нонваріантні евтектичні реакції Le₁ \leftrightarrow ϵ + γ_1 і Le₂ \leftrightarrow λ + γ_1 при температурах 1150 К і 1130 К, відповідно, де є – тверді розчини на основі Ga₂Se₃, що кристалізуються в кубічній структурі, пр. гр. *F*-43*m*, λ – тверді розчини на основі 3-ВТМ In₂Se₃. Протяжність є-твердих розчинів становить 17 мол.% In₂Se₃ та η-твердих розчинів – до 5 мол.% Ga₂Se₃ при 820 К, у₂ має область гомогенності від 32 до 42 мол.% In₂Se₃ при 820 К та кристалізується в гексагональній сингонії, пр. гр. Р61.

Система CuInSe₂-CuGaSe₂

Фазова діаграма системи CuInSe₂-CuGaSe₂ наведена в роботі [7]. В даній системі утворюється неперервний ряд твердих розчинів між компонентами. Для кожного потрійного компонента зафіксовані два теплових ефекти, 1318 К і 1361 К для CuGaSe₂, 1083 К і 1259 К для CuInSe₂. Подібні фазові перетворення спостерігаються для всіх твердих розчинів CuGa_xIn_{1-x}Se₂ у повному діапазоні концентрацій. Кристали мають структурний тип халькопіриту і р-тип провідності.

Квазіпотрійна система Cu₂Se-Ga₂Se₃-In₂Se₃

Автори [1] дослідили систему $Cu_2Se - Ga_2Se_3 - In_2Se_3$ через підвищений інтерес до сполук CuInSe_2 та CuGaSe_2 та неперервного ряду твердих розчинів зі структурою халькопіриту (пр. гр. *I*-42*d*) на їх основі, які застосовують при виготовленні сонячних елементів. У повному концентраційному інтервалі система не досліджувалася. Авто-

рами також зафіксоване існування НРТР між сполуками CuGa₃Se₅ і CuIn₃Se₅ зі структурою модифікованого станіту (пр. гр. *I*-42*m*), який простягається в ширину від 16,7 мол.% Cu₂Se до 40,5 мол.% Cu₂Se. Остаточна кристалічна структура не була встановлена. При синтезі зразків сплави охолоджували до кімнатної температури без гартування.

Таблиця 1. Кристалографічні характери-тики поліморфних модифікацій бінарних та тернарних сполук квазіпотрійної системи $Cu_2Se - Ga_2Se_3 - In_2Se_3$ та твердих розчинів на їх основі

Сполука	Інт. існ., К	Пр. гр.	Параметри комірки, нм
μ'-Cu ₂ Se (HTM)	293–404	C2/c	a=0,71379(4), b=1,23823(7), c=2,73904(9), $\beta=94,308^{\circ}$ [2]
μ-Cu ₂ Se (BTM)	404– 1421	F-43m	<i>a</i> =0,584 [2]
γ'-Ga ₂ Se ₃ (HTM)	293– 1003	Сс	a=0,66608(3), b=1,16516(4), c=0,66491(3), $\beta=108,840(5)^{\circ}$ [2]
γ -Ga ₂ Se ₃ (BTM)	1003– 1278	F-43m	<i>a</i> =0,5429(5) [5]
δ-In ₂ Se ₃ (HTM)	293–473	<i>P</i> 6 ₃	<i>a</i> =1,600, <i>c</i> =1,924 [4]
η-In ₂ Se ₃ (1-BTM)	473–923	P6 ₃ /mm c	<i>a</i> =0,696, <i>c</i> =1,912 [5]
χ-In ₂ Se ₃ (2-BTM)	923– 1023	<i>P</i> 6 ₁	<i>a</i> =0,711(2), <i>c</i> =1,934(3) [5]
λ -In ₂ Se ₃ (3-BTM)	1023– 1173	P-3m	<i>a</i> =0,4014(8), <i>c</i> =0,964(1) [6]
$CuGaSe_2(\alpha)$	293– 1303	I-42d	a=0,55963, c=1,10036 [7]
CuGa ₃ Se ₅ (δ)	293– 1333	I-42m	a=0,5508(3), c=1,0972(1) [3]
α-CuInSe ₂ (HTM)	293– 1070	I-42d	a=0,5773(5), c=1,155(1) [7]
β-CuInSe ₂ (BTM)	1070– 1204	_	[7]
CuIn ₃ Se ₅ (δ')	293– 1046	I-42m	a=0,57539(3), c=1,1519(1) [4]
CuIn ₅ Se ₈	293– 1157	R3m	_[4]
CuIn ₇ Se ₁₁	293– 1010	P-3m	a=0,40263(2), c=1.62992(7) [4]

-36-

Експериментальна частина

Зразки синтезували сплавлянням розрахованих і зважених простих речовин Cu – 99.99 wt. %, Ga – 99.999 wt.%, In – 99.999 wt. %, Se – 99.9997 wt. % у вакуумованих до залишкового тиску 0.133 Па і запаяних ампулах. Синтез проводили в печі шахтного типу з системою регулювання і підтримки температури з точністю \pm 5 К. Ампули нагрівали до максимальної температури 1370 К зі швидкістю 10 К/год. При максимальній температурі зразки витримувалися 3 год. Гомогенізаційний відпал проводився при температурі 820 К протягом 300 годин. Після відпалу ампули зі зразками загартовували у 25 %-ому водному розчині NaCl.

Отримані зразки досліджували методами рентгенофазового (РФА) та диференційно-термічного аналізів (ДТА). Дифрактограми зразків отримані з допомогою порошкового дифрактометра ДРОН-4-13 (СиК_а-випромінювання, 10°<20<80°, крок зйомки 0,05°, експозиція в точці – 4 с). Рентгенофазовий аналіз проводився за допомогою пакету програм PowderCell-2, PDWin-2. ДТА проводили з використанням Pt/Pt-Rh термопари на установці, ЩО складається з печі «Термодент» і двохкоординатного самописця Н307-1 ХҮ.

Результати та їх обговорення

Квазіпотрійна система Cu₂Se-Ga₂Se₃-In₂Se₃

Як видно з огляду літературних даних, бінарні сполуки Cu₂Se, Ga₂Se₃, In₂Se₃ плавляться конгруентно і можуть виступати компонентами квазіпотрійної системи.

Політермічний переріз СиІп₁₁Se₁₇–Ga₂In₈Se₁₅

Переріз досліджений методами ДТА і РФА (Рис.1). Ліквідус перерізу складається з кривих ab – первинної кристалізації у₁-фази на основі Ga₂In₈Se₁₅ та bc – первинної кристалізації СиІп₅Se₈. Нижче ліквідусу знахоляться об'єми трифазних моноваріантних процесів: евтектичного L ↔ γ_1 + CuIn₅Se₈ та перитектичного L + CuIn₅Se₈ ↔ CuIn₁₁Se₁₇, існування якого обумовлене перитектичним характером утворення CuIn₁₁Se₁₇ в системі Cu₂Se – In₂Se₃. Вказані

трифазні об'єми сходяться до площини нонваріантного перитектичного процесу $L_{U5} + CuIn_5Se_8 \leftrightarrow \gamma_1 + CuIn_{11}Se_{17}$ при 983 К. Оскільки даний переріз співпадає із з'єднуючою прямою перитектичної площини, тому нижче 983 К сплави двохфазні (γ_1 + $CuIn_{11}Se_{17}$), оскільки перитектичний процес завершується і зникненням рідини L і кристалів CuIn₅Se₈.

Рис. 1. Політермічний переріз $Ga_2In_8Se_{15}$ – $CuIn_{11}Se_{17}$: 1 – L, 2 – L + γ_1 , 3 – L + $CuIn_5Se_8$, 4 – L + $CuIn_5Se_8$ + $CuIn_{11}Se_{17}$, 5 – $CuIn_5Se_8$ + $CuIn_{11}Se_{17}$, 6 – L + γ_1 + $CuIn_5Se_8$, 7 – γ_1 , 8 – γ_1 + $CuIn_{11}Se_{17}$, 9 – $CuIn_{11}Se_{17}$ (де γ_1 – фаза, що утворюється в системі Ga_2Se_3 – In_2Se_3 на основі $Ga_2In_8Se_{15}$).

Політермічний переріз Ga₂In₈Se₁₅-CuIn₅Se₈

Переріз досліджений методами ДТА і РФА (Рис.2). Ліквідус перерізу складається з кривих ab – первинної кристалізації у₁-фази на основі Ga₂In₈Se₁₅, bc – первинної кристалізації β-твердих розчинів на основі ВТМ CuInSe₂. Нижче ліквідусу знахолиться трифазний об'єм евтектичного моноваріантного процесу L+β+ү1 та моноваріантного перитектичного процесу L+β+CuIn₅Se₈, що перитектичним обумовлене характером утворення CuIn₅Se₈ за реакцією L + $\beta \leftrightarrow$ CuIn₅Se₈ в системі Cu₂Se – In₂Se₃. Дані об'єми до площини нонваріантного сходяться перитектичного процесу $L_{U4} + \beta \leftrightarrow CuIn_5Se_8 +$ γ₁ при 1003 K і на вказаному перерізі він закінчується зникненням і L і β-фази, оскільки переріз співпадає із з'єднуючою -38-

прямою площини нонваріантного перитектичного процесу. При 820 К РФА підтвердив двохфазність зразків перерізу, які містять фази CuIn₅Se₈ та γ_1 .

Рис.2. Політермічний переріз Ga₂In₈Se₁₅–CuIn₅Se₈: $1 - L, 2 - L + \gamma_1, 3 - L + \beta, 4 - L + \gamma_1 + \beta, 5 - L + \beta$ $+ CuIn_5Se_8, 6 - CuIn_5Se_8 + \gamma_1, 7 - CuIn_5Se_8 + \beta$ (де $\gamma_1 - \phi$ аза, що утворюється в системі Ga₂Se₃ – In₂Se₃ на основі Ga₂In₈Se₁₅, β – тверді розчини на основі BTM CuInSe₂).

Політермічний переріз CuIn₅Se₈–CuGaSe₂

Вказаний переріз досліджений методами ДТА і РФА (Рис.3). Ліквідус перерізу складається з кривих ab – первинної кристалізації β-твердих розчинів, bc – атвердих розчинів і cd – ү-твердих розчинів, де β – тверді розчини на основі BTM-CuInSe₂. α – тверді розчини на основі CuGaSe₂*, γ – високотверді розчини основі на температурної фази, що існує в системі Cu₂Se Ga₂Se₃. Частина перерізу перетинає площину нонваріантного перитектичного процесу при 1003 К: $L_{U4} + \beta \leftrightarrow CuIn_5Se_8 + \gamma_1$ (I). До цієї площини сходяться об'єми трифазного перитектичного моноваріантного процесу L + $\beta \leftrightarrow CuIn_5Se_8$ та L $\leftrightarrow \beta + \gamma_1$ процесу. евтектичного моноваріантного Нижче температури 1003 Κ. завдяки проходженню нонваріантного процесу (І) зі зникненням рідини і β-твердих розчинів на двофазні основі BTM-CuInSe₂, сплави CuIn₅Se₈+ γ_1 . Враховуючи фазовий склад зразків, отриманий за результатами РФА при

820 К, результати ДТА та правило фаз Гіббса були побудовані інші фазові поля.

*- літерою α позначені тверді розчини на основі CuGaSe₂, HTM- CuInSe₂ та неперервні ряди твердих розчинів (HPTP) CuGa_{1-x}In_xSe₂, 0≤x≤1, оскільки вони кристалізуються в структурі халькопіриту, пр.гр. *I*-42*d*.

Рис.3. Політермічний переріз CuIn₅Se₈ – CuGaSe₂: 1 – L, 2 – L + γ , 3 – L + α + γ , 4 – α , 5 – L + α , 6 – L + β , 7 – L + α + β , 8 – α + β , 9 – β , 10 – β + γ_1 , 11 – β + γ_1 + α , 12 – L + β + CuIn₅Se₈, 13 – L + β + γ_1 , 14 – γ_1 + α , 15 – γ_1 , 16 – CuIn₅Se₈ + γ_1 , 17 – CuIn₅Se₈, 18 – γ_1 + δ' , 19 – γ_1 + δ' + α , 20 – δ' + α , 21 – δ' , 22 – δ' + CuIn₅Se₈, 23 – δ' + CuIn₅Se₈ + γ_1 , 24 – β + CuIn₅Se₈ (де β – тверді розчини на основі BTM CuInSe₂, α – тверді розчини на основі CuGaSe₂ зі структурою халькопіриту, γ_1 – ϕ аза, що утворюється в системі

 $Ga_2Se_3 - In_2Se_3$ на основі $Ga_2In_8Se_{15}$, $\gamma - високотемпературна фаза, що утворюється в системі <math>Cu_2Se - Ga_2Se_3$, $\delta' - тверді розчини на основі CuIn_3Se_5).$

Політермічний переріз CuGaSe₂-CuInSe₂

За результатами ДТА та РФА був досліджений вказаний переріз (Рис.4). За нашими даними, переріз лише від складу 35 -39-

мол.% CuInSe₂ до 100 мол.% CuInSe₂ є квазібінарною системою, через перитектичний характер утворення CuGaSe₂ за реакцією L + $\gamma \leftrightarrow \alpha$, де α – тверді розчини на основі CuGaSe₂, γ – високотемпературна фаза, що утворюється в системі Cu₂Se – Ga₂Se₃. При складі 30 мол.% CuGaSe₂ – 70 мол.% CuInSe₂ та температурі 1273 К існує перитектична точка p₆, яка лежить на горизонталі перитектичного процесу L_{p6} + $\alpha \leftrightarrow \beta$, де β – тверді розчини на основі BTM CuInSe₂.

Рис. 4. Політермічний переріз CuGaSe₂–CuInSe₂: $1 - L, 2 - L + \gamma, 3 - L + \gamma + \alpha, 4 - L + \alpha, 5 - L + \beta,$ $6 - \beta, 7 - \alpha + \beta, 8 - \alpha$ (де β – тверді розчини на основі BTM CuInSe₂, α – тверді розчини CuGa_{1-x}In_xSe₂ зі структурою халькопіриту, γ – високотемпературна фаза, що утворюється в системі Cu₂Se – Ga₂Se₃).

Оскільки CuGaSe₂ та HTM CuInSe₂ ізоструктурні (пр. гр. *I*-42*d*), то між собою вони утворюють HPTP CuGa_{1-x}In_xSe₂, $0 \le x \le$ 1 при 820 К, що підтверджене результатами РФА. Ці HPTP ми позначимо через α , отже тверді розчини на основі CuGaSe₂ мають однакове позначення, оскільки це одна і та ж структура халькопіриту, але лише нижче 1080 К тверді розчини α мають характер неперервних і можуть бути записані формулою CuGa_{1-x}In_xSe₂, $0 \le x \le 1$.

Саме існуванням двох твердих розчинів на основі BTM CuInSe₂ (β) зі структурою сфалериту і HTM CuInSe₂ (α) зі структурою халькопіриту і обумовлене проходження нонваріантного перитектичного процесу в системі CuGaSe₂ – CuInSe₂. Протяжність α -твердих розчинів при температурі першого процесу 0-50 мол.% CuInSe₂, а β -твердих розчинів 0-42 мол.% CuGaSe₂.

Квазібінарний переріз CuInSe₂–Ga₂In₈Se₁₅

Квазібінарний переріз $CuInSe_2 - Ga_2In_8Se_{15}$ досліджена методами ДТА і РФА (Рис.5).

Ліквідус складається з кривих ае₇ – первинної кристалізації β-твердих розчинів на основі BTM- CuInSe₂, e₇b – первинної -40-

кристалізації γ_1 -фази, що утворюється в системі Ga₂Se₃ – In₂Se₃ на основі Ga₂In₈Se₁₅. При складі 22 мол.% CuInSe₂ – 78 мол.% Ga₂In₈Se₁₅ та температурі 1020 К існує евтектична точка e₇, яка лежить на горизонталі евтектичного процесу Le₇ $\leftrightarrow \beta$ + γ_1 . При 990 К відбувається твердофазний нонваріантний евтектоїдний процес: $\beta \leftrightarrow \alpha$ + δ' + γ_1 , де α – тверді розчини на основі CuGaSe₂, який проходить із зникненням βтвердих розчинів, тому нижче площини процесу зразки трифазні α + δ' + γ_1 .

Політермічний переріз CuIn₃Se₅-CuGa₃Se₅

Методами ДТА та ΡΦΑ були досліджені зразки вказаного перерізу та за результатами побудований політермічний переріз (Рис.6). Ліквідус перерізу складається з кривих ab – первинної кристалізації βтвердих розчинів на основі BTM CuInSe₂, bc первинної кристалізації α-твердих розчинів на основі CuGaSe₂, cd – первинної кристалізації б-твердих розчинів на основі CuGa₃Se₅ та кривої de – первинної кристалізації фази у, що існує в системі Cu₂Se - Ga₂Se₃ при високій температурі. Переріз перетинає три площини $L_{U1} + \gamma \leftrightarrow \alpha + \delta$, $L_{U2} + \delta$ $\delta \leftrightarrow \alpha + \varepsilon$, $L_{U7} + \alpha \leftrightarrow \beta + \varepsilon$ нонваріантних перитектичних процесів при температурах 1123 К, 1098 К, 1073 К, відповідно, за участю рідини. Також переріз перетинає дві площини твердофазних нонваріантних перитектоїдних процесів: $\alpha + \varepsilon \leftrightarrow \beta + \delta$ (I) при 1023 K, де ε – тверді розчини на основі ВТМ Ga₂Se₃, та Cu₂In₄Se₇ + CuIn₅Se₈ ↔ $\delta' + \beta$ (II) при 1011 K, де δ' – тверді розчини на основі CuIn₃Se₅. Процес (I) в зразку 30 мол.% CuIn₃Se₅ - 70 мол.% CuGa₃Se₅ проходить із зникненням і αі є-твердих розчинів, тому нижче площини процесу зразки двохфазні в + б. Зліва від нонваріантний цього складу процес завершується із зникненням α-твердих розчинів, справа i3 зникненням є-твердих розчинів і зразки містять кристали фаз β, α, δ. Існування процесу (II) на досліджуваному перерізі обумовлено проходженням нонваріантного евтектичного процесу $\beta \leftrightarrow Cu_2In_4Se_7 + CuIn_5Se_8$, що протікає в системі Cu₂Se – In₂Se₃ при 1120 К та твердофазним характером утворення CuIn₃Se₅ за реакцією Cu₂In₄Se₇ + CuIn₅Se₈ \leftrightarrow CuIn₃Se₅ при 1046 К в системі Cu₂Se – In₂Se₃.

Взаємодія (II) проходить із зникненням кристалів CuIn₅Se₈ і Cu₂In₄Se₇, тому сплави нижче площини процесу двофазні $\beta + \delta'$.

При 820 К утворюються граничні тверді розчини δ' на основі CuIn₃Se₅ та δ – на основі CuGa₃Se₅. Перші мають тетрагональну структуру і кристалізуються в пр. гр. І-42т, параметри комірки змінюються практично лінійно від *a* = 0,57540(1) нм, *c* = 1,1520(2) нм для $CuIn_3Se_5$ до a = 0,56207(9) нм, *с* = 1,1286(6) нм для складу 48 мол.% СиІп₃Se₅ – 52 мол.% СиGa₃Se₅ (рис. 8). бтверді розчини кристалізуються в тетрагональній сингонії, пр. гр. І-42т. Параметри комірки змінюються практично лінійно від *a* = 0,55092(3) нм, *c* = 1,0973(2) нм для CuGa₃Se₅ до *a* = 0,56040(7) нм, *c* = 1,1179(9) нм для складу 28 мол.% CuIn₃Se₅ - 72 мол.% CuGa₃Se₅ (рис. 8). Ці тверді розчини також є твердими розчинами заміщення $Ga^{3+} \leftrightarrow In^{3+}$.

Політермічний переріз CuGaSe₂–Ga₆In₄Se₁₅

За результатами ДТА та РФА був досліджений і побудований вказаний переріз (Рис.7). Він перетинає чотири нонваріантні площини за участю рідини: $L_{U1} + \gamma \leftrightarrow \alpha + \delta$ (1123 K), $L_{U2} + \delta \leftrightarrow \alpha + \epsilon$ (1098 K), $L_{U7} + \alpha \leftrightarrow$ $\beta + \varepsilon$ (1073 K), $L_{U3} + \varepsilon \leftrightarrow \beta + \gamma_1$ (1043 K). Переріз також перетинає три нонваріантні площини, де відбуваються процеси в підсолідусній області, при 1026 К, $\varepsilon + \gamma_1 \leftrightarrow \beta$ + у₂, пов'язаний з твердофазним характером утворення сполуки γ₂ в системі Ga₂Se₃-In₂Se₃, де ε – тверді розчини на основі BTM Ga₂Se₃, β – тверді розчини на основі BTM CuInSe₂, γ_1 – фаза на основі складу $Ga_2In_8Se_{15}$, $\gamma_2 - \phi$ аза на основі складу Ga₆In₄Se₁₅. В зразках даного перерізу зникають кристали сполуки у1 і нижче площини даного процесу зразки трифазні, $\beta + \gamma_2 + \varepsilon$, поле 23 на політермічному перерізі. Цей трифазний об'єм сходиться до площини твердофазного перитектоїдного процесу: $\beta + \varepsilon \leftrightarrow \alpha + \gamma_2$ при 1001 К, існування якого пов'язане з поліморфним перетворенням в сполуці CuInSe₂ ($\beta \leftrightarrow \alpha$) при 1080 K. Нижче площини цього процесу сплави трифазні і містять кристали є, α і γ_2 фаз, поле 25. Цей об'єм сходиться ще до одного підсолідусного процесу $\alpha + \varepsilon \leftrightarrow \delta + \gamma_2$ при 970 К, який в зразках перерізу відбувається по-різному. В частині зникають кристали є-41-

фази і нижче площини процесу вони трифазні, містять α , δ і γ_2 фази (поле 26). В інших зразках зникають кристали α -фази, утворюючи трифазні зразки ε + δ + γ_2 , поле 27. В зразках, що лежать на з'єднуючій прямій нонваріантний процес α + ε \leftrightarrow δ + γ_2 при

Рис. 6. Політермічний переріз CuIn₃Se₅–CuGa₃Se₅: 1 – L, 2 – L + γ , 3 – L + γ + δ , 4 – γ + δ , 5 – L + β , 6 – L + α + β , 7 – L + α , 8 – L + δ , 9 – L + δ + α , 10 – δ + α , 11 – δ + α + ε , 12 – α + ε , 13 – L + α + ε , 14 – β + α + ε , 15 – L + β + ε , 16 – β + ε , 17 – β , 18 – Cu₂In₄Se₇ + + β , 19 – β + Cu₂In₄Se₇ + CuIn₅Se₈, 20 – Cu₂In₄Se₇ + CuIn₅Se₈, 21 – Cu₂In₄Se₇ + CuIn₅Se₈ + δ ', 22 –

 $\begin{array}{l} CuIn_{5}Se_{8}+\delta',\ 23-\beta+\delta',\ 24-\delta',\ 25-\beta+\delta,\ 26-\beta+\\ \delta+\delta',\ 27-\alpha+\gamma+\delta,\ 28-\delta,\ 29-\delta+\delta',\ 30-\epsilon+\beta+\\ \delta,\ 31-\alpha+\beta+\delta\ (дe\ \beta-\text{тверді}\ розчини\ на\ основі\\ BTM\ CuInSe_{2},\ \alpha-\text{тверді}\ розчини\ на\ основi \end{array}$

СиGaSe₂, γ – високотемпературна фаза, що утворюється в системі Cu₂Se – Ga₂Se₃, δ – тверді розчини на основі CuGa₃Se₅, δ' – тверді розчини на основі CuIn₃Se₅, ε – тверді розчини на основі BTM Ga₂Se₃). 970 К завершується і зникненням α - і єкристалів, тому нижче площини зразки двохфазні δ + γ_2 (поле 28), що було підтверджено РФА зразків. Фазовий склад усіх інших зразків при 820 К встановлено також за результатами РФА.

Рис. 7. Політермічний переріз CuGaSe₂– Ga₆In₄Se₁₅: 1 – L, 2 – L + γ , 3 – L + γ + α , 4 – L + γ + δ , 5 – L + δ , 6 – L + δ + ϵ , 7 – L + ϵ , 8 – ϵ , 9 – ϵ + γ_1 , 10 – L + ϵ + γ_1 , 11 – L + β + ϵ , 12 – L + α + ϵ , 13 – L + α + δ , 14 – γ + α + δ , 15 – γ + α , 16 – α , 17 – α + δ , 18 – α + δ + ϵ , 19 – α + ϵ , 20 – α + β + ϵ , 21 – β + ϵ , 22 – β + γ_1 + ϵ , 23 – β + γ_2 + ϵ , 24 – ϵ + γ_1 + γ_2 , 25 – ϵ + α + γ_2 , 26 – δ + γ_2 + α , 27 – δ + γ_2 + ϵ , 28 – δ + γ_2 , 29 – δ , 30 – ϵ + γ_2 , 31 – γ_2 (де β – тверді розчини на основі ВТМ CuInSe₂, α – тверді розчини CuGaSe₂ зі структурою халькопіриту, γ_1 – фаза, що утворюється в системі Ga₂Se₃ – In₂Se₃ на основі Ga₂In₈Se₁₅, γ_2 – фаза, що утворюється в системі Ga₂Se₃ – In₂Se₃ на основі

Ga₆In₄Se₁₅, γ – високотемпературна фаза, що утворюється в системі Cu₂Se – Ga₂Se₃, δ – тверді розчини на основі CuGa₃Se₅, ε – тверді розчини на основі BTM Ga₂Se₃).

Виходячи з результатів РФА 100 зразків (Рис.9) був побудований ізотермічний переріз системи при 820 К (Рис.10). Він характеризується утворенням однієї області НРТР (α), зі структурою халькопіриту, пр. гр. *I*-42*d*, які можна подати формулою CuGa₁₋ $_x$ In $_x$ Se₂, де $0 \le x \le 1$ при 820 К. Вони витягнуті вздовж ізоконцентрати 50 мол.% Си₂Se. Вони мають певну ширину - до 8 мол.% Cu₂Se. Параметри елементарної комірки змінюються від a = 0,5601(2) нм, c = 1,1001(6) нм для CuGaSe₂ до *a* = 0,5774(1) нм, *c* = 1,1558(3) нм для CuInSe₂ в межах α-твердих розчинів, які є твердими розчинами заміщення $Ga^{3+} \leftrightarrow In^{3+}$. Якщо більший In³⁺ (r=0,076 нм) замінює менший Ga³⁺ (r=0,062 нм), то відбувається збільшення параметрів *а* і *с* та V_{ел.ком}. При 820 К утворюються граничні тверді розчини б' на основі CuIn₃Se₅ та δ – на основі CuGa₃Se₅. Перші мають тетрагональну структуру і кристалізуються в пр. гр. І-42*m*, параметри комірки змінюються практично лінійно від a = 0,57540(1) нм, c = 1,1520(2) нм для CuIn₃Se₅ до a = 0,56207(9) нм, c = 1,1286(6)нм для складу 48 мол.% CuIn₃Se₅ – 52 мол.% CuGa₃Se₅ (Рис.8). δ-тверді розчини кристалізуються в тетрагональній сингонії, пр. гр. І-42т. Параметри комірки змінюються практично лінійно від a = 0,55092(3) нм, c =1,0973(2) нм для CuGa₃Se₅ до *a* = 0,56040(7) нм, c = 1,1179(9) нм для складу 28 мол.% CuIn₃Se₅ – 72 мол.% CuGa₃Se₅ (Рис.8). Ці тверді розчини також є твердими розчинами заміщення $Ga^{3+} \leftrightarrow In^{3+}$. На зміну параметрів елементарної комірки впливають ті ж фактори, що і для α-твердих розчинів. Крім наведених вище система характеризується утворенням є-твердих розчинів на основі ВТМ Ga₂Se₃ з кубічною структурою, пр. гр. Період *F*-43*m*. елементарної комірки змінюється від a = 0,5430(2) нм для Ga₂Se₃ до a = 0,5512(3) нм для зразка 4 мол.% Cu₂Se – 83 мол.% Ga₂Se₃ – 13 мол.% In₂Se₃. Також існують у2 і у1 фази, області існування яких поширюються у квазіпотрійну систему на 1-2 мол.% і витягнуті вздовж системи Ga₂Se₃ – In₂Se₃ (γ_1 – до 10 мол.% In₂Se₃, γ_2 – до 30 мол.% In₂Se₃). На основі ВТМ Cu₂Se, $CuIn_5Se_8$, $CuIn_7Se_{11}$, $CuIn_{11}Se_{17}$, 1-BTM In_2Se_3 існують незначні області гомогенності. Вказані однофазні області розділені дво- і трифазними рівновагами (Рис.10).

Рис. 8. Зміна періодів та об'ємів елементарної комірки для зразків перерізу CuIn₃Se₅– CuGa₃Se₅.

Проекція поверхні ліквідусу квазіпотрійної системи Cu₂Se-Ga₂Se₃-In₂Se₃

Проекція поверхні ліквідусу квазіпотрійної системи Cu₂Se – Ga₂Se₃ – In₂Se₃ побудована за літературними і власними результатами досліджень семи політермічних перерізів та окремих зразків для уточнення нонваріантних точок в підсистемі Cu₂Se – CuGaSe₂ – CuInSe₂ (Рис.11). Пунктирними лініями показані досліджені перерізи. Проекція ліквідусу складається з полів первинної кристалізації ц-твердих розчинів на основі ВТМ Си₂Se, Си₃InSe₃, α-твердих розчинів зі структурою халькопіриту, які утворюються між CuGaSe₂ та HTM CuInSe₂, β-твердих розчинів на основі BTM CuInSe₂, γтернарної високотемпературної фази, яка утворюється в системі Cu₂Se – Ga₂Se₃, бтвердих розчинів на основі CuGa₃Se₅, єтвердих розчинів на основі ВТМ Ga₂Se₃, λтвердих розчинів на основі 3-ВТМ In_2Se_3 , фази γ_1 на основі складу $Ga_2In_8Se_{15}$, сполук CuIn₅Se₈, CuIn₁₁Se₁₇. Ці поля розділені 21 моноваріантною кривою та 22 нонваріантними точками, які лежать на відповідних площинах нонваріантних чотирифазних процесів, наведених в таблиці 2, згідно з якою в системі Cu₂Se – Ga₂Se₃ – In₂Se₃ проходять 7 нонваріантних перитектичних процесів, на площинах яких лежать перехідні точки U₁, U₂, U₃, U₄, U₅, U₆, U₇ та два евтектичні

нонваріантні процеси, на площинах яких лежать евтектичні точки E_1 та E_2 . В системі існує один квазібінарний переріз CuInSe₂ – Ga₂In₈Se₁₅ (γ_1). Сполуки CuGaSe₂ (α), CuGa₃Se₅ (δ), CuIn₅Se₈, CuIn₁₁Se₁₇ мають перитектичний характер утворення. Сполуки CuIn₃Se₅, CuIn₇Se₁₁, Ga₆In₄Se₁₅ мають твердофазним характером утворення, тому не мають первинної кристалізації на проекції поверхні ліквідусу.

Таблиця	ı 2 .	Нонва	ріантні	пр	оцеси у	у к	вазіпот	рійній	сист	гемі	Cu ₂ Se	-Ga ₂	Se ₃ –	In_2Se_3

Нонв. точка	Нонваріантний процес	Т, К	Нонв. точка	Нонваріантний процес	Т, К
e ₁	$L \leftrightarrow \mu + \alpha$	1235	p ₅	$L + CuIn_5Se_8 \leftrightarrow CuIn_{11}Se_{17}$	1143
e_2	$L \leftrightarrow \mu + Cu_3 InSe_3$	1190	p_6	$L + \alpha \leftrightarrow \beta$	1273
e ₃	$L \leftrightarrow Cu_3InSe_3 + \beta$	1204	U_1	$L + \gamma \leftrightarrow \alpha + \delta$	1123
e_4	$L \leftrightarrow CuIn_{11}Se_{17} + \lambda$	1128	U_2	$L + \delta \leftrightarrow \alpha + \epsilon$	1098
e ₅	$L \leftrightarrow \gamma_1 + \lambda$	1130	U_3	$L + \varepsilon \leftrightarrow \beta + \gamma_1$	1043
e ₆	$L \leftrightarrow \epsilon + \gamma_1$	1150	U_4	$L + \beta \leftrightarrow \gamma_1 + CuIn_5Se_8$	1003
e ₇	$L \leftrightarrow \beta + \gamma_1$	1020	U_5	$L + CuIn_5Se_8 \leftrightarrow \gamma_1 + CuIn_{11}Se_{17}$	983
p_1	$L + \gamma \leftrightarrow \alpha$	1303	U_6	$L + \alpha \leftrightarrow \beta + Cu_3InSe_3$	1180
\mathbf{p}_2	$L + \gamma \leftrightarrow \delta$	1333	U_7	$L + \alpha \leftrightarrow \beta + \epsilon$	1073
p ₃	$L + \delta \leftrightarrow \epsilon$	1323	E_1	$L \leftrightarrow \alpha + \mu + Cu_3 InSe_3$	1160
p ₄	$L + \beta \leftrightarrow CuIn_5Se_8$	1157	E_2	$L \leftrightarrow \gamma_1 + CuIn_{11}Se_{17} + \lambda$	933

Рис. 9. Хімічний і фазовий склад зразків системи Cu₂Se – Ga₂Se₃ – In₂Se₃ при 820 К.

-43-

-44-

Рис. 11. Проекція поверхні ліквідусу квазіпотрійної системи Cu₂Se – Ga₂Se₃ – In₂Se₃.

Висновки

Взаємодія між компонентами в системі $Cu_2Se - Ga_2Se_3 - In_2Se_3$ досліджена методами прямого синтезу, рентгенофазового і диференційно-термічного аналізів. Вперше побудовано сім політермічних перерізів, один ізотермічний переріз при 820 К, проекцію поверхні ліквідусу на концентраційний трикутник. Встановлені області існування при 820 К твердих розчинів на основі CuGa₃Se₅ (28 мол.% CuIn₃Se₅) пр. гр. *I*-42*m*, на основі CuIn₃Se₅ (52 мол.% CuGa₃Se₅) пр. гр. І-42т. Методом РФА встановлено зміну параметрів комірки в них та механізм утворення твердих розчинів заміщення $\ln^{3+} \leftrightarrow$ Ga^{3+} . Встановлені області первинної кристалізації фаз, характер, температури та координати нон- і моноваріантних рівноваг.

Список використаних джерел

1. Souilah M., Lafond A., Guillot-Deudon C., Harel S., Evain M. Structural investigation of the Cu₂Se–In₂Se₃–Ga₂Se₃ phase diagram, X-ray photoemission and optical properties of the Cu_{1-z}(In_{0.5}Ga_{0.5})_{1+z/3}Se₂ compounds. *Journal of Solid State Chemistry*. 2010, 183, 2274–2280. Doi: 10.1016/j.jssc.2010.08.014.

2. Olekseyuk I.D., Kadykalo E.M., Strok O.M., Zmiy O.F. Phase Diagram of the Cu₂Se-Ga₂Se₃ System. *Volyn State Univ. Bull.* 2001, 41(6), 22–26.

3. Ueda K., Maeda T., Wada T. Crystallographic and optical properties of $CuGa_3S_5$, $CuGa_3Se_5$ and $CuIn_3(S,Se)_5$ and $CuGa_3(S,Se)_5$ systems. *Thin Solid Films*, 2017, 1–34. Doi: 10.1016/j.tsf.2017.01.036.

4. Zmiy O.F., Mishchenko I.A., Olekseyuk I.D. Phase equilibria in the quasi-ternary system Cu₂Se–CdSe–In₂Se₃. *Journal of Alloys and Compounds*, 2003, 1–9. Doi: 10.1016/j.jallcom.2003.08.011.

5. Олексеюк І.Д., Іващенко І.А., Гулай Л.Д., Данилюк І.В. Система Ga₂Se₃–In₂Se₃. Науковий вісник Волинського національного університету імені Лесі Українки. Хімічні науки. 2010, 16, 42– 50.

6. Ivashchenko I.A., Danyliuk I.V., Olekseyuk I.D., Halyan V.V. Phase equilibria in the quasi-ternary system Ag₂Se–Ga₂Se₃–In₂Se₃ and physical properties of (Ga_{0,6}In_{0,4})₂Se₃, (Ga_{0,594}In_{0,396}Er_{0,01})₂Se₃ single crystals. *J. Solid State Chem.* 2014, 210, 102–110. Doi: 10.1016/j.jssc.2013.11.004.

7. Marushko L.P., Romanyuk Y.E., Piskach L.V., Parasyuk O.V., Olekseyuk I.D., Volkov S.V., Pekhnyo V.I. The CuInSe₂–CuGaSe₂–2CdSe system and crystal growth of the γ -solid solutions. *Journal of Alloys and Compounds*. 2010, 505, 101–107. Doi: 10.1016/j.jallcom.2010.06.053.

Стаття надійшла до редакції: 25.05.2019.

PHASE EQUILIBRIA IN THE Cu₂Se – Ga₂Se₃ – In₂Se₃ QUASI-TERNARY SYSTEM

Tyshchenko P.V., Olekseyuk I.D., Ivashchenko I.A., Gulay L.D., Kozak V.S., Pankevich V.Z.

Lesya Ukrainka Eastern European National University, 43025 Lutsk, prosp. Voli, 13, e-mail: inna.ivashchenko05@gmail.com

Isothermal section of the quasi-ternary system $Cu_2Se - Ga_2Se_3 - In_2Se_3$ at 820 K has been built according to the X-ray analysis results of 100 samples. The system is characterized by the formation of the region of α -solid solutions with the chalcopyrite structure, S.G. I-42d. δ '-Solid solutions based on $CuIn_3Se_5$ and δ -solid solutions based on $CuGa_3Se_5$ are formed at 820 K. The first one have tetragonal structure and crystallize in S.G. I-42m with changing of the cell parameters from a = 0.57540(1) nm, c = 1.1520(2) nm for $CuIn_3Se_5$ to a = 0.56207(9) nm, c = 1.1286(6) nm for the composition 48 mol.% $CuIn_3Se_5 - 52$ mol.% $CuGa_3Se_5$. δ -Solid solutions crystallize in tetragonal system, S.G. I-42m. The cell parameters change from a = 0.55092(3) nm, c = 1.0973(2) nm for $CuGa_3Se_5$ to a = 0.56040(7) nm, c = 1.1179(9) nm for the composition 28 mol.% $CuIn_3Se_5 - 72$ mol.% $CuGa_3Se_5$. The mechanism of the formation of solid solutions, namely the substitution In3+ \leftrightarrow Ga3+, -46-

was established. In addition to these solid solutions, the system is characterized by the formation of ε -solid solutions based on HTM Ga₂Se₃ with cubic structure, S.G. F-43m. The unit cell parameters vary from a = 0.5430(2) nm for Ga₂Se₃ to a = 0.5512(3) nm for the sample 4 mol.% Cu₂Se – 83 mol.% Ga₂Se₃ – 13 mol.% In₂Se₃. There are also γ_2 and γ_1 phases, which areas of existence extend into the quasiternary system till 1-2 mol.% and streach along the Ga₂Se₃ – In₂Se₃ system (γ_1 – up to 10 mol.% In₂Se₃, γ_2 – up to 30 mol.% In₂Se₃). There are small regions of homogeneity based on HTM Cu₂Se, CuIn₅Se₈, CuIn₇Se₁₁, CuIn₁₁Se₁₇, 1-HTM In₂Se₃. These one-phase regions are separated by two- and three-phase equilibria.

The liquidus surface projection has been built based on the results of investigations of the quasibinary CuInSe₂ – Ga₂In₈Se₁₅ system and 6 polythermal sections. The liquidus surface projection of the Cu₂Se – Ga₂Se₃ – In₂Se₃ system consists of 11 fields of the primary crystallization: μ -solid solutions based on HTM-Cu2Se, Cu₃InSe₃ compound, α -solid solutions with the chalcopyrite structure, β -solid solutions based on HTM-CuInSe₂, quaternary high-temperature γ -phase formed in the Cu₂Se – Ga₂Se₃ system, δ -solid solutions based on CuGa₃Se₅, ϵ -solid solutions based on HTM-Ga₂Se₃, γ_1 -phase based on the Ga_{0.4}In_{1.6}Se₃ composition, compounds CuIn₅Se₈ and CuIn₁₁Se₁₇, and 3-HTM In₂Se₃. These fields are separated by 21 monovariant curves and 22 nonvariant points which lie on the corresponding planes of nonvariant four-phase processes. There is one quasibinary section CuInSe₂ – Ga₂In₈Se₁₅ (γ_1) in the system. The compounds CuGaSe₂, CuGa₃Se₅, CuIn₅Se₈, CuIn₁₁Se₁₇ have a peritectic type of formation. The CuIn₃Se₅, CuIn₇Se₁₁, Ga₆In₄Se₁₅ compounds have a solid-phase type of formation, therefore, they do not have areas of primary crystallization on the liquidus surface projection.

Keywords: $Cu_2Se-Ga_2Se_3-In_2Se_3$, phase eguilibrium, isothermal section, solid solutions, liquidus surface projection.

References

1. Souilah M., Lafond A., Guillot-Deudon C., Harel S., Evain M. Structural investigation of the $Cu_2Se-In_2Se_3-Ga_2Se_3$ phase diagram, X-ray photoemission and optical properties of the $Cu_{1-z}(In_{0.5}Ga_{0.5})_{1+z/3}Se_2$ compounds. *Journal of Solid State Chemistry*. 2010, 183, 2274–2280. Doi: 10.1016/j.jssc.2010.08.014.

2. Olekseyuk I.D., Kadykalo E.M., Strok O.M., Zmiy O.F. Phase Diagram of the Cu₂Se-Ga₂Se₃ System. *Volyn State Univ. Bull.* 2001, 41(6), 22–26.

3. Ueda K., Maeda T., Wada T. Crystallographic and optical properties of CuGa₃S₅, CuGa₃Se₅ and CuIn₃(S,Se)₅ and CuGa₃(S,Se)₅ systems. *Thin Solid Films*, 2017, 1–34. Doi: 10.1016/j.tsf.2017.01.036.

4. Zmiy O.F., Mishchenko I.A., Olekseyuk I.D. Phase equilibria in the quasi-ternary system Cu₂Se–CdSe–In₂Se₃. *Journal of Alloys and Compounds*, 2003, 1–9. Doi:10.1016/j.jallcom.2003.08.011.

5. Olekseyuk I.D., Ivaschenko I.A., Gulay L.D., Danyliuk I.V. Systema Ga₂Se₃–In₂Se₃. *Naukoviy visnik Volyns'kogo nacional'nogo universitetu imeni Lesi Ukrainki. Himichni nauki.* 2010, 16, 42–50 (in Ukr.).

6. Ivashchenko I.A., Danyliuk I.V., IOlekseyuk.D., Halyan V.V. Phase equilibria in the quasi-ternary system Ag₂Se–Ga₂Se₃–In₂Se₃ and physical properties of $(Ga_{0,6}In_{0,4})_2Se_3$, $(Ga_{0,594}In_{0,396}Er_{0,01})_2Se_3$ single crystals. *J. Solid State Chem.* 2014, 210, 102–110. Doi: 10.1016/j.jssc.2013.11.004.

7. Marushko L.P., Romanyuk Y.E., Piskach L.V., Parasyuk O.V., Olekseyuk I.D., Volkov S.V., Pekhnyo V.I. The CuInSe₂–CuGaSe₂–2CdSe system and crystal growth of the γ -solid solutions. *Journal of Alloys and Compounds*. 2010, 505, 101–107. Doi: 10.1016/j.jallcom.2010.06.053.