-46-

УДК 546.02:54-19

^{1,2}Мельниченко Н.О., к.х.н., доц.

ТВЕРДІ РОЗЧИНИ НА ОСНОВІ КЛАТРАТУ І ТИПУ Ва₈Ge₄₃[]₃ ([] – ВАКАНСІЯ) З ПЕРЕХІДНИМИ ЕЛЕМЕНТАМИ

¹Академія сухопутних військ імені гетьмана Петра Сагайдачного вул. Гвардійська, 32, 79012, м. Львів, Україна ²Львівський національний університет імені Івана Франка вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: nataliya.melnychenko@univie.ac.at

Нагромадження експериментальних даних про склад, структуру та властивості інтерметалідів дає можливість проводити цілеспрямований пошук та прогнозування нових сполук з наперед заданим комплексом характеристик. Джерелом матеріалів i3 цінними властивостями є сплави на основі перехідних металів з кремнієм та германієм. Особливу увагу у галузі термоелектрики привертають, зокрема, клатратні неорганічні матеріали. Кристалічна решітка цих сполук представляє собою упорядковану систему сфероїдальних кластерів 3 атомів напівпровідникового елемента (Si, Ge) [1, 2], які утворюють каркас. Частина атомів каркасу (Si, Ge) може заміщатися атомами металів, що суттєво змінює властивості кристала. З іншого боку, у середині кластерних сфероїдів може поміщатися атом іншого сорту, який стабілізуючи напівпровідникові підґратки впливає на властивості клатратного кристала. Отже, з'являються два шляхи отримання напівпровідникових клатратів із заданими властивостями: по-перше, підбір інкапсульопо-друге, ваного атома і, легування напівпровідникової ґратки - господаря. Ці два способи можуть комбінуватися, що відкриває широкі можливості для отримання нових матеріалів.

Методика експерименту

Зразки на основі клатрату І типу Ва₈Ge₄₃[]₃ ([] - вакансія) з перехідними металами Mn, Fe, Co, Cu, Pd, Ir, Pt, Au [3-7] були виготовлені методом дугової плавки (втрата ваги менше 0,1%) з вольфрамовим електродом і мідним водо-охолоджуваним подом з використанням як гетеру пористого титану в атмосфері аргону. Мінімальна чистота елементів складала 99,9 % по масі. Сплави гомогенізувались у вакуумованих кварцових ампулах протягом 7 днів за 800°С, після чого загартовувались у холодній воді.

Цим методом неможливо було синтезувати сплави з Cd i Zn (більша частина цих металів випаровується під час плавлення у дуговій пічці). Тому нами була розроблена методика ампульного синтезу [8, 9], яка складалась з двох етапів. На першому етапі методом дугової плавки сплавлялись розраховані кількості Ва і Ge зразків $Ba_8M_xGe_{46-x}$ (M = Zn, Cd). На другому етапі сплави Ва - Ge разом з Zn (Cd) запаювались у вакуумовані кварцові ампули з подальшим поступовим нагріванням ампул до 1000°С. Зразки в ампулах гомогенізувались 2-3 години, поступово охолоджувались ЛО температури 800°С, відпалювались 5-10 днів, після чого загартовувались у холодній воді.

Для синтезу зразків Ba₈Hg_xGe_{46-x-v}[]_x спочатку синтезувався порошок бінарної сполуки Ва₇Нg₃₁ (з чистих металів в ампулі кімнатній температурі), при який V подальшому пресувався з відповідними кількостями суміші «Ва₈Ge₃₈ + Ge». Зразки у вигляді пресованих таблеток поступово нагрівались до 800°C (3i швидкістю 50 °С/добу) і відпалювались протягом 5-7 днів. В результаті синтезу було отримано зразки клатрату І типу з ртуттю.

Для аналізу компонентів складу синтезованих зразків використовувався рентгенівський фазовий та структурний аналізи. Порошкові дифрактограми

одержувалися за допомогою камери Guinier-Huber Image Plate System 3 Cu K_{a1} випромінюванням (8° < 20 < 100°). Точні параметри решітки були розраховані методом найменших квадратів з використанням Ge в внутрішнього стандарту ($a_{\rm Ge}$ = якості 0,5657906 нм). Кількісне та якісне уточнення рентгенівських даних порошкових дифрактограм були виконані за допомогою програми FullProf [10]. Монокристальні дослідження проводились за допомогою гоніометра AXS-CADDS, дифрактометру Nonius Kappa (графітовий монохроматор, Мо К_α випромінювання (λ= 0,071073 нм)) та за допомогою програм DENZO [11], SHELXL-97 [12]. Фазовий та хімічний склади зразків контролювали сканувальними електронними мікроскопами Carl Zeiss DSM 962 та Zeiss Supra 55 VP.

Результати та обговорення

У роботах [13, 14]представлено результати розрахунків кристалічної структури бінарного клатрату Ba₈Ge₄₃[]₃. Сполука кристалізується у структурному типі K_4Ge_{23-x} , (просторова група Рт-3n, a =1,06565(2) нм) з наступними координатами: атоми Ва займають дві позиції 2a (0 0 0) та 6d (1/4 1/2 0), які повністю зайняті. Атоми Ge розташовані у трьох позиціях: Gel в 6c (1/4 0 1/2), з зайнятістю 0,488(9) (0,412 цієї позиції складає вакансія ([])); Ge2 в 16i (x x x), де x =0,18364(6) з повною зайнятістю, та Ge3 в 24k ((0 y z) де y = 0,3196(1), z = 0,1213(1) [14]. Заможе деякими даними, позиція 24kрозщеплюватись на дві частково зайняті: Ge31 (0 0,3073(3) 0,1124(3)), зайнятість 0,505(4), та Ge32 (0 0,3332(3) 0,1314(3)), зайнятість 0,495(4). Сумарна зайнятість розщепленої позиції 24k Ge31 + Ge32 = 1,000(4) [13]. При розрахунках кристалічної структури потрійних клатратів І типу ми використовували обидві моделі.

У роботі [15] автори представили результати розрахунків кристалічної структури бінарного клатрату Ва₈Ge₄₃ у впорядкованому варіанті (без вакансій і з повною зайнятістю позицій), збільшивши елементарну комірку вдвічі. У жодному з потрійних клатратів нами не було виявлено додаткових рефлексів, притаманних для цієї надструктури, тому за основу ми використовували дані, представлені у роботах [13, 14].

Аналізуючи дифракційні дані потрійних клатратів, було визначено, що великі атоми Ba1 і Ba2, аналогічно до бінарного клатрату, розташовані в позиціях 2a (0 0 0) і 6c (¼ 0 ½), із зайнятістю 1,00(1). При зміні вмісту третього компоненту у структурі, розподіл електронної густини для позиції 16і (х х х) є незмінним. Отже, ця позиція, аналогічно бінарному клатрату, повністю зайнята атомами Ge1. Число електронів у позиції 6*d* зростає i3 збільшенням вмісту третього компоненту. Тому було прийнято, що атоми перехідних елементів займають саме цю позицію. Наступним питанням було таке: яким чином визначити кількість Ge, вміст атомів перехідного елементу і величину вакансії у положенні 6d. Оскільки неможливо розрахувати вміст трьох змінних у одній позиції, було прийнято рішення зафіксувати вміст перехідного металу згідно із даними мікропробного аналізу. Після чого уточнявся вміст Ge в цій позиції, що автоматично призводить до визначення значення величини вакансії.

У бінарному клатраті $Ba_8Ge_{43}[]_3$ позиція 6d зайнята лише наполовину (~ 50 %) атомами Ge, другу половину складає вакансія. Включення у бінарну структуру $Ba_8Ge_{43}[]_3$ ([] – вакансія) третього компонента (М) може відбуватися за 2 моделями. Модель A: атоми M заміщують атоми Германію у структурі ($Ba_8M_xGe_{43-x}[]_y$, y = 3), тобто у структурі, незалежно від вмісту третього компоненту, у позиції 6d залишається вакансія. Модель B: атоми M спочатку заповнюють вакансії у позиції 6d, після чого заміщують атоми Германію.

Як видно з рисунку 1, у досліджуваних твердих розчинах клатрату І типу з перехідними елементами відбувається одночасне включення атомів М у пустоти і заміщення ними атомів Ge. Отже, експериментальні дані займають проміжне положення між двома можливими моделями.

Вихідний склад сплавів	Прийнятий склад після мікроаналізу і розрахунку структури	Параметри комірки, <i>а</i> , нм	Ge2 в 16 <i>i</i> (<i>x x x</i>)	Ge3 в 24k (0 y z)	Літер.
Ba ₈ Ge ₄₃	$Ba_8Ge_{43}[]_3$	1,06565(2)			13,14
Ba ₈ Mn ₂ Ge ₄₄	$Ba_8Mn_{1,0}Ge_{42,5}[]_{2,5}$	1,06662(6)			3, наші дані
Ba ₈ Fe ₂ Ge ₄₄	Ba ₈ Fe _{0,5} Ge _{42,75} [] _{2,75}	1,06672(3)			3, наші дані
Ba ₈ Co ₃ Ge ₄₃	Ba ₈ Co _{2,6} Ge _{41,7} [] _{1,7}	1,06785(5)			3, наші дані
Ba ₈ Ni ₆ Ge ₄₂	$Ba_8Ni_{3,5}Ge_{42,1}[]_{0,4}$	1,0680(1)			16
Ba ₈ Cu ₆ Ge ₄₀	$Ba_8Cu_{6,0}Ge_{40,0}[]_{0,0}^{-1}$	1,06903(2)	0,18315(2)	0,11961(3); 0,31477(3)	4, наші дані
Ba ₈ Zn ₈ Ge ₃₈	$Ba_8Zn_{7,7}Ge_{38,3}[]_{0,0}^{-1}$	1,07678(2)	0,18376(2)	0,11756(3); 0,30927(3)	8, наші дані
Ba ₈ Pd ₄ Ge ₄₂	$Ba_8Pd_{3,8}Ge_{42,2}[]_{0,0}^{1}$	1,0774(2)	0,18344(3)	0,11969(5); 0,3122(1)	5, наші дані
Ba ₈ Ag ₅ Ge ₄₁	$Ba_8Ag_{4,8}Ge_{41,2}[]_{0,0}^{1}$	1,0843(1)	0,1826(6)	0,1160(7); 0,3074(3)	17, наші дані
Ba ₈ Cd ₈ Ge ₃₈	$Ba_8Cd_{7,6}Ge_{38,4}[]_{0,0}^{-1}$	1,09499(3)	0,18355(1)	0,11523(7); 0,30343(8)	9, наші дані
Ba ₈ Ir ₂ Ge ₄₄	$Ba_8Ir_{0,4}Ge_{43,0}[]_{2,6}$	1,06702(3)			18, наші дані
Ba ₈ Pt _{3,5} Ge _{42,5}	$Ba_8Pt_{3,3}Ge_{41,6}[]_{1,1}$	1,07470(2)	0,18300(8)	0,1212(1); 0,3135(1)	6, наші дані
Ba ₈ Au ₆ Ge ₄₀	$Ba_8Au_6Ge_{40,0}[]_{0,0}$	1,7979(1)	0,1828(2)	0,1171(3); 0,3092(3)	7, наші дані
Ba ₈ Hg ₈ Ge ₃₈	Ba ₈ Hg ₇ Ge ₃₉ [] _{0,0}	1,0947(4)			наші дані

Таблиця 1. Кристалографічні характеристики твердих розчинів на основі клатрату і типу Ва₈Ge₄₃[]₃ для складів з максимальним вмістом перехідного елементу.

Розрахунок структури методом монокристалу

Рис. 1. Зміна величини вакансії в залежності від вмісту третього компоненту у структурі $Ba_8M_xGe_{46-x-v}[]_v$.

час розрахунків кристалічної Піл структури клатратів і методом монокристалу, і методом порошку, ми отримали великі значення анізотропії електронної густини у двох випадках: Ва2 у положенні 6с (що зумовлено великим розміром атомів) та атомів Ge3 у положенні 24k (особливо для зразків з невеликим вмістом перехідного елементу). Електронна густина станів позиції 24к приймає форму еліпсоїда, який значно витягнутий вздовж напряму Ge1 – Ge3. При розрахунках кристалічної структури зразків за моделлю з розщепленням позиції на дві частково зайняті (зайн. Ge31 + зайн. Ge32 = 1,0) фактор розбіжності і залишкові

концентрації електронів досліджуваних клатратів зменшуються на кілька відсотків. Експериментально було доведено, що при збільшенні вмісту перехідного елементу у структурі клатрату І типу дві розщепленні позиції сходяться в одну. Узагальнюючі дані дослідження структур потрійних клатратів, для складів з максимальним вмістом перехідного елементу представлені у табл. 1.

Досліджуючи тверді розчини $Ba_8M_xGe_{46-x-y}[]_y$ з перехідними елементами, та аналізуючи літературні дані, було встановлено, що при збільшенні порядкового номеру елементу у періоді збільшується його розчинність у клатраті І типу (рис. 2).

Рис. 2. Області гомогенності твердих розчинів Ва₈М_xGe_{46-x}.

-49-

Список використаних джерел

1. Nolas G.S., Weakley T.J., Cohn J.L., Sharma R. Structural properties and thermal Conductivity of crystalline Ge clathrates // Phys. Rev. B. -2000. - V. 61. - P. 3845.

2. Fukuoka H., Kiyoto J., Yamanaka S. Superconductivity of metal deficient silicon clathrate compounds, $Ba_{8-x}Si_{46}$ (0< x < or = 1.4). // J. Phys. Chem. Solids. – 2004. – V. 65 (2-3). – P. 333-336.

3. Grytsiv A., Melnychenko–Koblyuk N., Nasir N. et al. Formation of clathrates Ba–M–Ge (M = Mn, Fe, Co) // Intern. J. Mat. Res. – 2009. – V. 100 (2). – P. 189-202.

4. Melnychenko–Koblyuk N., Grytsiv A., Rogl P. et al. The clathrate $Ba_8Cu_xGe_{46-x-y}[]_y$: Phase equilibria and crystal structure. // J. Solid State Chem. – 2009. – V. 182 (7). – P. 1754-1760.

5. Melnychenko–Koblyuk N., Grytsiv A., Rogl P. et al. Clathrate formation in the Ba–Pd–Ge system: Phase equilibria, crystal structure, and physical properties // Phys. Rev. B – Cond. Mat. – 2007. – V. 76 (14). – P. 144118-(1-11).

6. Melnychenko–Koblyuk N., Grytsiv A., Rogl P. et al. Structure and physical properties of type–I clathrate solid solution $Ba_8Pt_xGe_{46-x-y}[]_y$ ([] – vacancy) // Phys. Rev. B – Cond. Mat. – 2007. – V. 76 (19). – P. 195124-(1-7).

7. Zeiringer I., Melnychenko–Koblyuk N., Grytsiv A. et al. Phase Equilibria, Crystal Chemistry and Physical Properties of Au–Ba–Ge Clathrates // J. Phase Equilibria & Diffusion. – 2011. – V. 32 (2). – P. 115-127.

8. Melnychenko–Koblyuk N., Grytsiv A., Fornasari L. et al. Ternary clathrates Ba–Zn–Ge: Phase equilibria, crystal chemistry and physical properties // J. Phys. Cond. Mat. – 2007. – V. 19 (21). – P. 216223-(1-26).

9. Melnychenko–Koblyuk N., Grytsiv A., Berger S. et al. Ternary clathrates Ba–Cd–Ge: Phase equilibria, crystal chemistry and physical properties // J. Phys. Cond. Mat. – 2007. – V. 19 (4). – P. 046203-(1-23).

10. Roisnel T., Rodriguez–Carvajal J. WinPlot: A Windows tool for Powder Diff. Pattern Analysis // Mat. Sci. Forum. – 2001. – V. 118. – P. 378–381.

11. Nonius Kappa CCD Program Paskage COLLECT, DENZO, SCALEPACK, SORTAV (The Netherlands: Nonius Delft). – 1998.

12. Sheldrick G.M. SHELXL–97, Program for Crystal Structure Refinement. (Germany: University of Gottingen), Windows version by McArdle, Natl. Univ. Ireland, Galway). – 1997.

13. Carrillo-Cabrera W., Curda J., von Schnering H.G. et al. Crystal Structure of the Defect Clathrate – I, Ba_8Ge_{43} // Z. Kristal. – New Cryst. Structur. – 2000. – V. 215. – P. 321-322.

14. Fukuoka H., Kiyoto J., Yamanaka S. Superconductivity and crystal structure of the solid solutions of $Ba_{8-x}Si_{46}$ // J. Solid State Chem. – 2003. – V. 175(2). – P. 237-244.

15. Carrillo-Cabrera W., Budnyk S., Prots Y. et al. Ba_8Ge_{43} revisited: a 2aSuperstructure of the Clathrate – I Type with Full Vacancy Ordering // Z. Anorg. Allg. Chem. -2004. -V. 630. - P. 2267-2276.

16. Nguyen L.T.K., Aydemir U., Baitinger M. et al. Atomic ordering and thermoelectric properties of the n–type clathrate $Ba_8Ni_{3.5}Ge_{42.1}\square_{0.4}$ // J. Electron. Mat.

- 2010. - V. 39(9). - P. 1386-1389.

17. Zeiringer I., Chen M, Bednar I. et al. Phase equilibria, crystal chemistry, electronic structure and physical properties of Ag–Ba–Ge clathrates. // Acta Mat. – 2011. – V. 59. – P. 2368-2384.

18. Falmbigl M., Grytsiv A., Rogl P., Giester G. Clathrate formation in the systems Ba–Ir–Ge and Ba– {Rh, Ir}–Si: Crystal chemistry and phase relations // Intermetal. – 2013. – V. 36. – P. 61-72.

Стаття надійшла до редакції: 23.10.2013

SOLID SOLUTION BASED CLATHRATE Ba₈Ge₄₃[]₃ ([] - VACANCY) WITH TRANSITION ELEMENTS

Melnychenko N.

In the paper present results of analysis formation of solid solution based clathrate type I $Ba_8Ge_{43}[\]_3([\] - vacancy)$ with transition elements. Presented by features of the crystal structure of samples from the region of existence solid solutions $Ba_8M_xGe_{46-x-y}[\]_y$ (M - transition elements, [] vacancy). The analysis and comparison of literature data.