

WITH PROCEEDINGS OF THE INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE

# THEORETICAL AND EMPIRICAL SCIENTIFIC RESEARCH: CONCEPT AND TRENDS

JULY 24, 2020 • OXFORD, GBR 😹

# VOLUME 2



ISBN 978-1-5272-5968-3

https://doi.org/10.36074/24.07.2020.v2

UDC 001(08) T 44



Chairman of the Organizing Committee: Holdenblat M. Deputy Chairman of the Organizing Committee: Patel A.

Responsible for the layout: Kazmina N. Responsible designer: Bondarenko I.

T 44 **Theoretical and empirical scientific research: concept and trends**: Collection of scientific papers «ΛΌΓΟΣ» with Proceedings of the International Scientific and Practical Conference (Vol. 2), July 24, 2020. Oxford, United Kingdom: Oxford Sciences Ltd. & European Scientific Platform.

ISBN 978-1-5272-5968-3 DOI 10.36074/24.07.2020.v2

Papers of participants of the International Multidisciplinary Scientific and Practical Conference «Theoretical and empirical scientific research: concept and trends», held in Oxford, July 24, 2020, are presented in the collection of scientific papers.



The conference is included in the catalog of International Scientific Conferences; approved by ResearchBib and UKRISTEI (Certificate № 302 dated 18 May 2020); certified by Euro Science Certification Group (Certificate № 22167 dated 19 June 2020).

Conference proceedings are publicly available under terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).



G Bibliographic descriptions of the conference proceedings are indexed by CrossRef, ORCID, Google Scholar, ResearchGate, OpenAIRE and OUCI.

UDC 001 (08)

© Participants of the conference, 2020 © Oxford Sciences Ltd., 2020 © European Scientific Platform, 2020

ISBN 978-1-5272-5968-3

## SECTION VI. CHEMISTRY

#### DOI 10.36074/24.07.2020.v2.20

### EQUATIONS OF TEMPERATURE DEPENDENCE OF AN ENTHALPY AND AVERAGE HEAT CAPACITY FOR EuCl<sub>3</sub>•6H<sub>2</sub>O

ORCID ID: 0000-0003-0820-9979

#### Anton Kozma

Candidate of Chemical Sciences (Ph. D.), Associate Professor at the Department of Physical and Colloid Chemistry Uzhhorod National University

UKRAINE

In this work for europium chloride hexahydrate EuCl<sub>3</sub>•6H<sub>2</sub>O the equations of dependence of a molar enthalpy  $H_T - H_{_{298,15}}$  and average isobaric molar heat capacity  $\overline{C_n}$  from absolute temperature *T* are offered.

Now in literature [1] there are only of EuCl<sub>3</sub>•6H<sub>2</sub>O in temperature range 298.15–600.00 K given for true isobaric molar heat capacity  $C_p$ , but there are no equations for the description it  $H_T - H_{298.15}$  and  $\overline{C_p}$ . In article [2] it is shown that  $C_p$  and  $\overline{C_p}$  are connected by a ratio:

$$C_{p} = \overline{C_{p}} + \left(T - 298.15\right) \frac{d\overline{C_{p}}}{dT}$$
(1)

It is also  $\overline{C_p}$  possible to define from molar values of enthalpies [2]:

$$\overline{C_p} = (H_T - H_{298.15}) / (T - 298.15)$$
<sup>(2)</sup>

From the publication [3] it is known, that the dependence  $H_T - H_{_{298.15}}$  on absolute temperature *T* can be presented in the form  $H_T - H_{_{298.15}} = aT + bT^2 + cT^{-1} + d$ , where *a*, *b*, *c*, *d* – coefficients. In this work, in view of results [2-4], the corresponding equations for EuCl<sub>3</sub>•6H<sub>2</sub>O are offered:

$$H_{T} - H_{298.15} = 366.909T + 0.007T^{2} + 0.037 \cdot 10^{7}T^{-1} - 111.257 \cdot 10^{3}$$
(3)

$$H_{T} - H_{298,15} = 362T + 7 \cdot 10^{-3} T^{2} + 37 \cdot 10^{4} T^{-1} - 109794$$
(4)

The equation (3) well describes data from the book I. Barin [1] (the maximum deviation does not exceed 0.13 %). To expression (4) we come on the basis of results [4]. Its maximum deviation is slightly higher (-1.36 %), if to compare with [1]. Additional examples are given in the table 1.

Table 1

Comparison of enthalpies of EuCl<sub>3</sub>•6H<sub>2</sub>O in the range 298.15–600.00 K, received at different approaches

| Т, К   | $H_{T} - H_{298.15}$ , |              |                              | ${H}_{T}-{H}_{298.15}$ , |                             |
|--------|------------------------|--------------|------------------------------|--------------------------|-----------------------------|
|        | kJ/mol                 |              | $\Delta(H_T - H_{298.15})$ , | kJ/mol                   | $\Delta(H_T - H_{298.15}),$ |
|        | data [1]               | by the       | %                            | by the                   | %                           |
|        | uala[1]                | equation (3) |                              | equation (4)             |                             |
| 300.00 | 0.679                  | 0.679        | 0.00                         | 0.670                    | -1.36                       |
| 400.00 | 37.505                 | 37.551       | 0.12                         | 37.051                   | -1.21                       |
| 500.00 | 74.593                 | 74.687       | 0.13                         | 73.696                   | -1.20                       |
| 600.00 | 111.943                | 112.025      | 0.07                         | 110.543                  | -1.25                       |

**Note**. In all considered cases at a temperature of 298.15 K an enthalpy  $H_T - H_{298.15} = 0.000$  kJ/mol.

On the basis of the equations (3) and (4), having applied recommendations from [2, 3] and some results from [4], for EuCl<sub>3</sub>•6H<sub>2</sub>O formulas (5) and (6) describing the temperature course  $\overline{C_{a}}$  is offered:

$$\overline{C_p} = 368.996 + 0.007T - 1240.986T^{-1}$$
(5)

$$\overline{C_{p}} = 364.087 + 0.007T - 1240.986T^{-1}$$
(6)

The maximum difference between the values, received when calculating behind the equations (5) and (6), does not exceed 1.34 %.

In conclusion we will note, that equation (4) and (6), received by means of a method [4], are perhaps less exact. However approach from [4] can be more universal. Likely with its help it is possible to predict heat capacity for many compounds  $LnCl_3•6H_2O$ , where Ln - rare-earth metals.

#### References:

<sup>[1]</sup> Barin, I. (in collab. with Platzki, G.) (3 ed.) (1995). *Thermochemical Data of Pure Substances*. Weinheim: VCH.

<sup>[2]</sup> Tsagareishvili, D. Sh., Gvelesiani, G. G., Orlovsky, V. P. & Belyavskaya, T. V. (1975). Enthalpy and thermal capacity of scandium and europium orthophosphates at high temperatures. *Neorg. Mater.*, 11, 491-493.

<sup>[3]</sup> Tsagareishvili, D. Sh., Gvelisiani, G. G., Orlovsky, V. P., Belyaevskaya, T. V. & Repko, V. P. (1972). Enthalpy and thermal capacity of lanthanum, noedymium and yttrium orthophosphates under high temperatures. *Neorg. Mater.*, 8, 1790-1793.

<sup>[4]</sup> Козьма, А. А. Оцінка ізобарної теплоємності EuCl<sub>3</sub>•6H<sub>2</sub>O при температурах 298–600 К та її порівняння з відомими даними. Proceedings of IX International scientific conference «Relaxed, nonlinear and acoustic optical processes and materials» – RNAOPM'2018, The first Volyn-Pomeranian Interdisciplinary Summer School on «Art-Science Technology» – VPISSAST'2018 (p. 64). 01.06.-05.06.2018, Lutsk–Lake «Svityaz'», Ukraine: Vezha-Druk.