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Abstract. The exclusive representations of the extended (29-dimensional)
real-number Clifford–Dirac algebra are constructed for the spinor field.
In the canonical Foldy–Wouthuysen representation for a e−e+-dublet
these representations contain physically justified on equal footing and
conserved in time fermion and boson spins, and the canonical equation
of motion for a dublet coincides with the quantum mechanical equa-
tion in the Hilbert space L2(R3) × C4 ≡ H3,4 with definite metrics. In
H3,4 the experimentally observed dublet energy is always positive. The
Fermi and Bose spins define sets of both equal status Fermi and Bose
states, which univocally elucidate the physical content of the Fermi–
Bose (FB)-dualism of the e−e+ microobject. We briefly review the ad
hoc boson object in the same space as partner of the e−e+-dublet and
treat issues, related to its BF-dualism. The mathematical correctness of
the technique is acquired by the application of the simplified variant of
the axiomatic approach (A-approach) to the spinor field.

Keywords. Fermi–Bose duality, CD algebra representations, Real num-
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1. Introduction

This work aims at (i) construction of a physically motivated extension of
the standard 16-dimensional Clifford–Dirac (CD) algebra, generated by 4
primary 4 × 4 Dirac matrices to an extended 29-dimensional CD algebra
over real numbers (ERCD) in the same complex space C4 of 4-component
complex vectors and (ii) application of this extension to the clarification and
realization of the Fermi–Bose (FB) and Bose–Fermi (BF) dualism for physical
objects: ad hoc spinor field ψ of the dublet of particles with SU(2)-spin s = 1

2
and ad hoc boson field with SU(2)-spin s = (1, 0) (tensor-scalar multiplet).
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The subject of FB-dualism of spinor and other fields (including SUSY
partners) has been for a long time treated by many authors. The possibility
of both Fermi- and Bose-quantization of particle fields of different spins was
considered in [1]. In [2,3] (see also references therein) the applicability of both
anticommutative and commutative quantization using the same Fock space
was demonstrated for amplitudes of various fields. Recently various aspects
of FB dualism have been treated in [4,5]. A nonsingular relation between
massless Dirac equation and Maxwell equations for field strengths with gra-
dient currents was considered in many works (see, for example, [6,7] and
references therein). The generalization of this treatment for arbitrary masses
has been started in [8]. However up to date no unambiguous understanding
of concepts, related to various aspects of FB dualism, is demonstrated (cf.
terms “FB-equivalence, FB-duality, FB-transmutations“ etc) [5].

The present contribution treats the question of univocacy of involved
concepts within the frame of FB and BF-dualism of SUSY partners in first line
in terms of the most commonly used in elementary particles theory object—
an ad hoc F-object, namely, the electron-positron (e−e+)-dublet. This uni-
vocacy is achieved in all three known forms, namely: local model of spinor
field ψ (Loc-ψ-model), canonical Foldy–Wouthuysen form (FW-φ-model) and
canonical quantum mechanics (CQM) model for e−e+-dublet. It requires the
account for experimental fact of mirror symmetry of particle and antiparticle
in the e−e+-dublet, which prescribes the unique form of the operator �s of
the dublet spin [see below (51)], which is different from commonly used form
2�s = �Σ (28). The proof of this univocacy uses the extension of the standard
16-dimensional CD-algebra as a real-number algebra in the complex space C4-
codomain of the spinor field ψ—up to 29-dimensional algebra (ERCD ⊃ CD)
in the same C4 space.

The mathematical correctness of the technique is acquired by the appli-
cation of the simplified variant of the axiomatic approach (A-approach) to
the field models (free fields) instead of the customary Wightman A-approach
(considered, for example, in [9]). The simplified A-approach considers as
the state space for a field of a physical object not the space of generalized
Schwartz functions S∗, but the space of test Schwartz functions S. This choice
can be motivated from mathematical and physical point of view as follows:

(i) S is dense in S∗, therefore for practical purposes any generalized func-
tion fG ∈ S∗ can be approximated (with prescribed accuracy) with
elements of some Cauchy sequence in S, convergent to fG ∈ S∗. This
limitation is sufficient for ensuring the experimental verifiability of the
obtained consequences of the A-approach by means of physical devices
with arbitrarily high (but not absolute) precision.

(ii) Functions f ∈ S are infinitely differentiable and rapidly decreasing at
infinity together with their derivatives of any order, and the set of these
functions is invariant with respect to the Fourier transform. Therefore
all calculations are performed within classical calculus without involving
the technique of generalized calculus of functionals in S∗.
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The field models in the simplified A-approach share the principal features of
axiomatic models in field theories: the definiteness of the state space where
solutions to the equations of motions of physical models are constructed, and
definiteness of domains and codomains of all involved operators. It should be
stressed, that this approach treats the Schwartz space S as common domain
and codomain of all used operators in the state space f ∈ S.

We shall use custom relativistic notations, in particular:

M(1, 3) .=
{
x ≡ (xμ) ≡ (x0 = t, �x); �x ≡ (xj) ∈ R3 μ = 0, 3, j = 1, 3

}
. (1)

The set (xμ) .= x contains contravariant (Carthesian) coordinates xμ (setting
h = c = 1) of points of the physical space-time space in arbitrarily fixed (∀)
inertial frame of reference (IFR). The metric tensor in the Minkowski space
M(1,3) is

gμν = gμν = gμ
ν : (gμ

ν ) = diag(1,−1,−1,−1); gμνxν .= xμ , (2)

where (xμ) is a covariant vector in M(1,3).
The relativistic invariance of any field model within SRT assumes

involvement of minimal relativistic groups—eigen orthochronous Lorentz
L↑
+

.= SO(1, 3) and Poincaré groups P ↑
+ ⊃ L↑

+ with the following mathemat-
ical refinement: these groups being a “representation“ of more fundamental
groups—universal covering groups P ⊃ L .= SL(2,C) as real-number topolog-
ical Lie groups. As real parameters of these Lie groups we use the translation
parameters (aμ) ≡ a ∈ M(1, 3) and rotation angles ωμν = −ωνμ in planes μν
of the pseudo-Euclidian space M(1,3). Therefore the P-generators (pμ, jρσ)
(derivatives by real parameters (aμ, ωρσ) of the elements of the topological
group P) are called primary P-generators (see, e.g. [10,11] on the use of such
generators of the symmetry groups). They satisfy the following explicitly
covariant commutative relations:

[pμ, pν ] = 0, [pμ, jρσ] = gμρpσ − gμσpρ, (3a)
[jμν , jρσ] = −g(μρjνσ)

.= −gμρjνσ − gρνjσμ − gνσjμρ − gσμjρν . (3b)

The relations (3b) hold also for the Lorentz spin—the primary genera-
tors sμν of the purely matrix representations of the group L, containing two
independent 3-component sets

{
(sμν) : (sjk) ≡ (sl) .= �s; (s0j)

.= �η ≡ (ηj); j, k, l = 1, 3
}

. (4)

The matrices sjk of the set �s in (4) satisfy the SU(2) algebraic relations

[sjk, sln] = δ(jlskn) ⇐⇒ [sj , sk] = sl ; j, k, l ∈ 123!, (5)

where (123!) denotes cyclic permutation of indices j, k, l).
The set (sμν) is called evidently the Lorentz spin operator, and its subset

�s ≡ (sln) is the SU(2)-spin (let us recall, that SU(2) group is a universal
covering group for the SO(3) group of rotations in the Euclidean space R3 ⊂
M(1, 3)).

In what follows we will use various matrix representations in C4 of alge-
bras of real-number parametric groups L = SL(2,C) � SO(1,3) and SU(2)
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� SO(3) ⊂ SO(1,3). Therefore it is appropriate for our purposes to interpret
the algebras of the said groups as real-number algebras in the complex space
C4 (identical symbols are employed for groups and their algebras). Besides
that, we will use various matrix representations in C4 of algebras of SO(1,N)
⊃ SO(N) groups with N > 3 as real-number parametric Lie groups.

The choice of uniform with ωμν = −ωνμ and ωjl = −ωlj real-number
parameters of the groups SO(1,N) and SO(N), on one hand, ensures the
sorting in their embeddings SO(1,3) ⊂ SO(1,4) ⊂ · · · and SO(3) ⊂ SO(4)
⊂ · · · . On the other hand, this choice leads to uniformity of commutational
relations for the primary generators sμ1μ2 and sj1j2 of the groups SO(1,N)
⊃ SO(N), that is generators of the real-number algebras in C4 of the said
groups, namely:

[sμ1μ3 , sμ2μ4 ] = −g(μ1μ2sμ3μ4)
.= −gμ1μ2sμ3μ4 − gμ2μ3sμ4μ1

−gμ3μ4sμ1μ2 − gμ4μ1sμ2μ3 (6)

[sj1j3 , sj2j4 ]=δ(j1j2sj3j4)
.= δj1j2sj3j4+δj2j3sj4j1 + δj3j4sj1j2+δj4j1sj2j3 (7)

Here parentheses for indices μn and jn denote their cyclic permutations
1234! by numbers n = 1, 4. Therefore we will call such representations of
the SO(1,N) ⊃ SO(N) algebras and their primary generators (generators of
real number algebras) cyclic (ζ-generators, for brevity). These properties of
embedding and ordering are consequences of generic choice of the structure
coefficients of the corresponding Lie algebras. The explicit forms of ζ-relations
in (6), (7) reflect the special choice of coefficients of the Lie groups SO(1,N)
and SO(N), as a consequence of this choice of real number parameters ωμ1μ2

and ωj1j2 of these groups. This choice is convenient, for example, since if there
are no coincident pairs among the sets j1,2 and j3,4, then [sj1j2 , sj3j4 ] = 0.

The relevance of the suggested detailed description of different aspects
of the FB and BF-dualism for free (isolated) objects like e−e+-dublets of spin
s = 1

2 and B-compound field with s = (1, 0) consists in the following. The
detailed study of the model of free (isolated) microobjects (fields or particles)
is important, since the experimental verification of physical quantities for a
microobject including their principal patterns, necessary for the formulation
of the axioms, a part of which ad hoc would yield the definition of the object
itself (axioms of the object definition), can be realized with experimental
measurements of characteristics of the state for such object only in the finite
domains of asymptotically large space-time distances. In that regions both in-
and out- states of a microobject can be fairly treated as free states. Besides
that, all interaction models for microobject fields are built of the models of
their free fields.

Within the frame of the SRT requirements we formulate in Sect. 2 the
basics of the simplified A-approach for the spinor field ψ starting exclusively
from three axioms and valid regardless to the representation of matrices γμ.
It is shown, that such A-approach yields the principal properties of the spinor
field: relativistic invariance (in the form of P ↑

+-invariance) of Dirac equation
and 10 principal conservation laws for the field ψ as direct consequence of
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these axioms. We recall the results of [12], where for the first time the impos-
sibility of interpreting the operator �x ∈ R3 ⊂ M(1, 3) and the set �s = (sln)
of the Lorentz SL(2,C)-spin (sμν) as operators of coordinate and spin of a
e−e+-dublet was pointed out. We show, that the singled-out character of the
time variable t = x0 as opposed to 3-coordinate (xj) ≡ �x does not contradict
the relativistic invariance in any representations of the spinor field including
nonlocal ones.

In Sect. 3 we implement the real-number extension of the 16-dimensional
Clifford–Dirac algebra (CD) towards the extended real-number ERCD �
SO(8) algebra in the Pauli–Dirac (PD) representation, as well as in other used
representations of the Dirac matrices γμ. In Sect. 3.1 we point at the possi-
bility (taking the time variable on a singled-out basis) of choosing the gener-
ators of the standard CD algebra as generators of the representation of the
SO(6) algebra in C4 (similarly to the standard CD algebra � SO(3,3), used
in [14,15]). Starting from the PD-representation of matrices γμ, we will per-
form explicitely in Sect. 3.2 the extension of the standard 16-dimensional CD
� SO(6)-algebra to a 29-dimensional extended (ERCD � SO(8)) algebra.

Using nonsingular operators T of the similarity transformations for alge-
bra SO(8)PD, we derive in Sect. 3.3 two matrix representations of the SO(8)
algebra as a carrier of the internal degrees of freedom for the s = 1

2 -dublet,
where the Foldy–Wouthuysen equation of motion for a e−e+-dublet will
acquire a canonical quantum mechanical (CQM) form. This will construct
a base of the CQM model with definite, L2(R3) × C4 .= H3,4-metric. It is
the H3,4 model, which is able to unequivocally elucidate the FB dualism of
an ad hoc s = 1

2 -dublet in terms of equal status of quantum mechanical sets
{fF }, {fB} ⊂ H3,4 of Fermi fF and Bose fB-states for the same dublet (as
an elementary microobject), defined by Fermi QF and Bose QB stationary
complete sets of observables in H3,4. The exclusive FW representations of the
CQM-model (in particular, the equations of motion and states fF and fB)
can be transformed into corresponding Loc-ψ-model. However the physical
clearness of equal status of F- and B-states for a dublet in this picture would
remain somehow shaded. We will discuss briefly the way of constructing the
quantum model of a FB-dual spinor field in the CQM model, analogously to
the secondary quantization technique in the nonrelativistic quantum theory.
Finally, in Sect. 3.4 we sketch a complementary scheme of the BF-dualism of
an ad hoc Bose multiplet as a SUSY partner of a e−e+-dublet in the same
space S3,4, based on an additional boson representation of the SO(8) algebra.
The states of this object are related by a nonunitary transformation with the
states of an ad hoc fermion object e−e+.

2. Axiomatic Approach to the Spinor Field in the Schwartz
Test Functions Space

The Axiom A1 for the spinor field ψ : M(1, 3) → C4 (C4, topological space
of 4 complex numbers) is cast as the attribution of the field function ψ to
the Schwartz test functions space S4,4, as opposed to common attribution to
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the Schwartz generalized functions space S4,4∗. As will be shown below in
the Loc-ψ-model, the space S4,4 ⊃ C4 is a common domain and codomain
space of all involved operators, which ensures the consistency of the simplified
A-approach for the field ψ in this model.

The Axiom A2 postulates the Dirac equation for a free field in ∀ inertial
frame of reference (IFR):

(iγμ∂μ − m)ψ(x) = 0 ; μ = 0, 3, x ∈ M(1, 3), ψ ∈ S4,4, (8)

where nonsingular 4 × 4 matrices γμ (operators in C4 in ∀ representation)
satisfy the generic relations

γμ : γμγν + γνγμ = 2gμν , gμνγν .= γμ ⇒ γ0 = γ0

= γ−1
0 , γj = −γj = −γ−1

j , (9)

Besides (8), we will use the Schrödinger form of the Dirac equation
(SD-equation):

(∂0 − H ≡ ∂0 − γ0j∂j + iγ0m)ψ(x) = 0; ψ ∈ S4,4, γμν... ≡ γμγν . . . , (10)

where H is the Hamiltonian, composed of primary operators; Eq. (10) can
be derived from (8) via multiplication by the nonsingular operator −iγ0. The
SD-form of the Dirac equation unambiguously determines the Hamiltonian
of the spinor field in ∀ representations of γμ matrices.

Axiom A3 (about P-covariance of the field ψ) is stated as follows: at
P ↑
+ ⊃ L↑

+-transformations in M(1,3),

x → xaω = Λ(ω)x + a � xμ → xμ
aω

.= Λμ
νxν + aμ , (aμ)

≡ a, x, x′
aω ∈ M(1, 3), (Λμ

ν ) ≡ Λ(ω) ∈ L↑
+ , (11)

the field ψ in S4,4 will transform as follows

ψ(x) → ψaω(x) .= F γ(ω)ψ(Λ−1(x − a))
inf
=

(
1 + aμpμ +

1
2
ωμνjμν

)
ψ(x);ψ,ψaω ∈ S4,4, (12)

F γ(ω)
inf
= 1 +

1
2
ωμνsμν ; sμν

.=
1
4
[γμ, γν ]. (13)

The notation
inf
= means infinitesimal neighborhood around the unity

element in a correspondent group.
State now simple consequences of the axioms.
The axioms A1 , A3 define explicit form of operators for principal phys-

ical quantities for the field ψ in S4,4,

pμ =∂μ, jρσ =mρσ+sρσ; mρσ ≡ xρ∂σ − xσ∂ρ, sρσ
.=

1
4
[γρ, γσ], (14)

(here the Lorentz spin sμν (4) defines a purely matrix, spinor
(
1
2 , 0

) ⊕ (
0, 1

2

)

representation F γ(ω) of the group L ⊂ P), that is energy-momentum opera-
tors pμ and 4-angular momentum jρσ as derivatives of ψaω by real parameters
aμ, ωρσ, therefore termed as primary operators (see [10,11] about the appli-
cation of primary generators of real Lie groups).).
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The operators (14) are functions in S4,4 of 14 independent operators
(including the Lorentz spin, defined by (4)):

xμ, pν
.= ∂ν , sρσ =

1
4
[γρ, γσ] : [xμ, pν ] = −gμν , [(xμ, pν), sρσ] = 0 (15)

Any other observables for the field ψ in this model are merely functions
in S4,4 of these operators (15). Therefore, the axioms A1, A3 define all real
algebra AL

S of “observables“ for the field ψ (as operator functions in S4,4, as
common domain and codomain of the algebra AL

S in the Loc-ψ-model).
Next, P-generators (14) (Lie operators because of relations [(∂μ,mρσ),

sαβ ] = 0), satisfy P-relations (3), and commute with the operator of the
Dirac equation (8) [and with Hamiltonian H in (10)]. So, the convergent in
S4,4 operator exp-series

(a, ω) → gγL(a, ω) .= exp(aμ∂μ + 1
2ωρσjρσ) ≡ F γ(ω) exp(aμ∂μ + 1

2ωρσmρσ)
⇒ gγL(a, ω)ψ(x) = F γ(ω)ψ(Λ−1(x − a))

(16)
defines a local representation PγL of the group P [which, according to (14),
is uniquely defined by the Lorentz spin sμν (4)]; this representation is the
invariance group for the Dirac equation (8)=(10), and determines the minimal
relativistic symmetry of the free field ψ within STR requirements.

The axiom A2 , that is the equation (8)=(10) identically leads to the
Klein–Gordon (KG) equation in any representation

(∂0 − H)2 ψ ≡ (
∂2
0 − H2

)
ψ ≡ (

∂2
0 − Δ + m2 ≡ ∂μ∂μ + m2

)
ψ(x) = 0;

ψ = (ψα) ∈ S4,4 (17)

This means, that (i) any component ψα of the field ψ identically satisfies
the Eq. (17), (ii) the Eq. (17) does not impose any additional restrictions on
the spinor field ψ, beyond that, stated in axioms A1–A3, and (iii) the common
statement about the Dirac equation (8)=(10) as a linearization of the KG
operator from (17), is inappropriate. However, from (17) it is evident, that if
m2 > 0 (for arbitrary m ∈ (−∞,+∞)) the field ψ states are non-tachyonic.

Next, Eq. (17) is the 2nd order parabolic (and not elliptic) equation.
Therefore it confirms a mathematical nonequivalence of the time x0 = t and
space (xj) ≡ �x ∈ R3 ⊂ M(1, 3) coordinates. This observation allows to cast
the Axiom A1 as follows: the field ψ by the variable �x belongs to the space
S3,4 .= S(R3) × C4 ⊂ S3,4∗, and the dependence of ψ on time x0 = t is
given parametrically either through a unitary integral operator U(t, t0)

.=
exp[i(t − t0)H] : ψ(t − t0, �x) = U(t, t0)ψ(t, �x) in S3,4 (we set t0 = 0), or via
Eq. (10). It is evident from Eq. (17), that any general solution to the Dirac
equation (8)=(10), related to an arbitrarily fixed stationary complete set
Q = (q̂1, q̂2, . . .) (i.e. a set of all independent mutually commuting operators,
which commute with the Hamiltonian H in (10)), will have the form

ψQ(t, �x) =
∫

d3k

(2π)3/2

(
e−ikxA−(�k) + eikxA+(�k)

)
∈ S4,4; kx ≡ ω

�
t − �k�x, ω

�

≡
√

�k2 + m2, (18)
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where the decomposition of complex 4-component amplitudes A∓(�k) by the
common eigenvectors of the ∀ stationary complete set Q of operators in �k-
representation is unique. Let us note by passing, that the integration in the
solutions like (18) is performed over the 3-dimensional Lebesgue measure
d3k (as it is done in the classical continuum theory, and in the nonrelativistic
quantum mechanics), and the commonly encountering factor 1/ω

�
is assumed

to be absorbed by mere definition of amplitudes A±(�k). This convention
differs from the custom notation, which is the consequence of integration over
the Lebesgue–Stieltjes measure d4kδ(k2−m2). The representation (18) of the
general solution of Dirac equation (8)=(10) stresses the nonequivalence of the
time x0 = t and space 3-coordinate �x ∈ R3 ⊂ M(1, 3), seen from mere form of
the KG equation (17). This does not contradict to the relativistic invariance
of the field model ψ, which is interpreted as the minimal STR requirement
of the invariance of equation (8)=(10) for the field ψ (as the invariance of
the solution set (18) of this equation) with respect to the representation (16)
in S3,4 of the universal covering group P ⊃ L = SL(2, C) of the proper
orthochronous Poincaré group P ↑

+ ⊃ L↑
+ = SO(1, 3). These statements can

be justified, if one notices, that the contraction (pμ, jρσ)Ind of Lie operators
(14) to the set of solutions (18) of equation (10)=(8) has the following form

(pμ, jρσ)Loc|{ψQ}
.= (pμ, jρσ)Ind : pI0 = H ≡ γ0j∂j + iγ0m pj = ∂j ,

jln = mln + sln, (19a)

jI0l = −jIl0
.= t∂l − 1

2
{xl,H} ; {A,B} ≡ AB + BA,

(sln ≡ 1
4
[γl, γn]) ≡ �s. (19b)

A part of these operators (pI
0, j

I
0l), as operators in S3,4 .= S(R3) × C4 ⊂

S3,4∗ are no more Lie operators (they belong to the class of Lie–Backlund
operators) and do not have explicitely covariant form. Besides that, they are
operator functions of 10 primary independent elementary time-independent
operators

xj , pl = ∂l, sρσ : [xj , pl] = −δjl , [(xj , pl), sρσ] = 0, (20)

that is functions of the operators �x, �p (satisfying Heisenberg commutation
rules) and operators sρσ of the Lorentz spin (4), commuting with them. The
operators (20) with common domain and codomain S3,4 ⊂ S4,4 define the
contraction AI

S of the algebra AL
S to S3,4, and the operators (19a, 19b) belong

to this algebra as well. The operators (pμ, jρσ)Ind are determined (in terms of
matrix operators) by the same Lorentz spin (4) and satisfy the commutation
relations for P-generators in the explicitely covariant form (3), and commute
with the Dirac equation (10). Therefore, in terms of the convergent in S3,4

exp-series

gγL(a, ω)|{ψQ}
.= gγI(a, ω)=exp(aμpI

μ+
1
2
ωρσjI

ρσ)
inf
=

(
1 + aμpI

μ +
1
2
ωρσjI

ρσ

)

(21)
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P-generators (19a, 19b) define the so-called induced representation PγI of
the group P in S3,4, which is the invariance group of the Dirac equation
(10)=(8). The general consequence of P-invariance of the equations (8)=(10)
is the existence of 10 common conservation laws for the spinor field ψ (see
Eq.(26) below).

The common physical limitations of the Loc-ψ-model of the spinor field
were discussed for the first time in [1,12,20] (see [13] for more details). We
note here, that the Ind-ψ-form in fact shares the same limitations, as the
commonly used explicitely covariant Loc-ψ-model, treating only Lie opera-
tors in the PL representation. In particular, no one of the set of elementary
operators (15) or (20), besides the 3-momentum operator �p ≡ (pj) = −∇,
would represent experimentally observable elementary physical properties for
the spinor field ψ. Even the spatial part (sln) ⊂ (sμν) of the Lorentz spin sμν ,
that is SU(2)-spin �s from (4), since it does not commute with the Hamilton-
ian H, does not conserve in the Loc-ψ-model of a spinor field (although no
spin-flip processes in free states of spinor fields have been observed so far).

The most important Foldy–Wouthuysen analysis [12] of shortcomings
of the explicitely covariant model of the spinor field (Loc-ψ-model) is the
conclusion about non-reliability of interpretation of operators �x ∈ R3 ⊂
M(1,3) and �s = (sjn) ∼ SU(2) from (4) as operators of the 3-coordinate
and SU(2)-spin of an isolated (free) dublet of particles.

In [1,12,20] a nonlocal canonical model of the free spinor field was
proposed (in what follows - the FW-φ-model). The simplified A-approach
to the said model can be deduced from the statement, that for the field
φ ∈ S3,4 ⊂ S3,4∗ the space S3,4 is a common domain and codomain for all
operators, introduced in [1,12,20]. The objects in FW-φ- and Loc-ψ-models
of the spinor field are mutually related by a pair of nonsingular in S3,4 oper-
ators:

NV ± .= ±iγl∂l + ω̂ + m; ω̂
.=

√
−Δ + m2, N−1 ≡

√
2ω̂(ω̂ + m),

V −V + = I4 ∈ S3,4. (22)

In particular,

V + (∂0 − γ0l∂l + iγ0m)ψ(x) ≡ (∂0 + iγ0ω̂) φ(x) = 0; ψ, φ
.= V +ψ ∈ S4,4;

(23)

V +(pμ, jρσ)IndV − .= (pμ, jρσ)FW ≡ (p̂μ, ĵρσ), (24)

where PFW-generators (as operators in S3,4):

p̂0
.= −iγ0ω̂, p̂l = ∂l, ĵln = mln + sln;mln

.= xl∂n − xn∂l; (25a)

ĵ0l = −ĵl0
.= t∂l + i

γ0
2

{xl, ω̂} + iγ0
sln∂n

ω̂ + m
, (25b)

that is the operators of 3-momentum �p and total angular 3-momentum �j
coincide with those in (19a), and p̂0 with ĵ0l are expressed through γ0 and
SU(2)-part sln of the Lorentz spin sμν (4) (the operators (25a, 25b) do not
depend on the boost components s0j of the Lorentz spin operator sμν (4)).
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The nonsingularity of operators1 V ± (22) results in P-generators (25a, 25b)
satisfying the same relations (3) in an explicitely covariant form and com-
muting with Hamiltonian HFW = −iγ0ω̂ of (23).

Since the three P-representations, that is local PγL (16), induced PγI

(21) and PFW-representation of P are invariance groups of the Dirac equa-
tion in their respective forms, general statements follow: 10 principal integral
physical quantities Pμ, Jρσ:

(Pμ, Jρσ) .=
∫

d3xψ+(t, �x)iγ0(pμ, jρσ)ψ(t, �x)

=
∫

d3xφ+(t, �x)i(p̂μ, ĵρσ)φ(t, �x) = const(t) . (26)

conserve in time in any inertial reference frame and for all states ψ as solutions
to (8)=(10) or φ = V +ψ as solutions to the FW equation (23).

Following advantage of the FW-φ-model is to be noted: not only the
generators PFW (25a, 25b), but the whole algebra AFW

S is constructed from
Heisenberg operators �x, �p = −∇, and conserved in time SU(2)-spin �s in (19b).
This construction is consistent with the principle of inheritability with nonrel-
ativistic quantum mechanics and ensures, that all experimentally observable
quantities for this field are functions of experimentally observable Heisenberg
operators and SU(2)-spin:

�x, �p,�s : [xj , pl] = δjl, [(�x, �p), �s] = 0, (27)

where in PD-representation of matrices γμ

�s ≡ (sj) .=
1
2

(γ23, γ31, γ12) = − i

2
�Σ

PD≡ 1
2

∣
∣
∣
∣
−i�σ 0
0 −i�σ

∣
∣
∣
∣ . (28)

These simplest 9 operators (27) generate the whole real-number algebra
AFW

S of observables in FW-φ-model of the spinor field. An analogy with
the nonrelativistic quantum mechanics here should be mentioned, where the
algebra of observables is defined by the Heisenberg operators �x, �p = −∇ in
Hilbert space L2(R3) of states f ∈ L2(R3) of a “point mass”).

For the problem of determining the (experimentally observed) average
values of operators of physical quantities or probability distribution ampli-
tudes over the stationary complete sets Q̂ of experimentally observed physical
characteristics of a dublet there is no need to transform the operators from
algebra AFW

S in FW-φ-model into algebra AL
S of the Loc-ψ-model of a spinor

field. The monograph [16] describes a technique for finding different “nonge-
ometric” and “geometric” hidden symmetries of the Dirac equation (comple-
mentary to the P-symmetry) in the FW-representation, which are generated
by various operators, commuting with the Hamiltonian HFW = −iγ0ω̂ of Eq.
(23) for s = 1

2 dublet.

1 FW-transformation (22) is the similarity transformation for the standard CD alge-

bra in SO(6)PD-form (see below Sect. 3), that is V ±A0V ∓ ≡ A±
0 generates SO(6)± =

V ±SO(6)PDV ∓. Matrices γ±
j as operators in S4,4 are functions of not only γj = γPD

j , but

also differential ∂j and pseudodifferential ω̂ operators in S4,4. Here these realizations of

CD algebra are not used.
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From the explicit form (25a, 25b) of PFW-generators it is seen, that their
principal Casimir operators are pμpμ = −m2 < 0 and �s2 = − 3

4 · 14 ⇒ s = 1
2 ,

which means, that the symmetry, generated by operators (25a, 25b), is a
Fermi-type PF-symmetry). Therefore the revealing of the FB-dualism of a
spinor field in the present work will be performed in the FW-φ-model of the
spinor field, starting from the real number algebra AFW

S and extending it
to cover the boson SU(2)-spin. This extension of AFW

S is performed in the
following section through the extension of its matrix subalgebra, that is of
the standard CD-algebra, treated as a real-number algebra in the complex
space C4 ⊂ S3,4.

In conclusion we point out at two essential physical limitations of the
FW-φ-models, namely: the average of the spinor field energy for the FW-φ-
model (similarly to Loc-ψ-model):

P0[φ] .=
∫

d3xφ+(x)γ0ω̂φ(x) ≡
∫

d3xψ̄(x)iHψ(x)>
<0 (29)

in ∀-representation of matrices γμ, does not have generally a definite sign. On
the other hand, in the PD representation the SU(2)-spin (28) of the e−e+-
dublet does not reflect the experimentally stated fact, that the particle and
the antiparticle in a dublet are mutually mirror reflected not only by the
charge sign g = iγ0, but also by chirality. It will be shown below, that in
certain exclusive representations of matrices γμ the FW-φ-model will acquire
the features of a quantum mechanical model without these two shortcomings.

3. Real-Number Extension of the Clifford–Dirac Algebra and
its Application

3.1. Choice of Appropriate Generators of a Standard CD-Algebra

The constitutive relations (9) for matrices γμ (μ = 0, 3) (as nonsingular
operators in C4 ⊂ S3,4, complemented with the matrix γ4 .= γ0123 in their ∀
representation will identically yield the equations (μ = 0, 4):

4∏

0

γμ = −14 ⇒
4∏

1

γj = −γ0; γ234 = −γ01, γ123 = γ04,

γ034 = −γ12, γ012 = γ34, γ0234 = γ1, γ0123 = γ4, (123!), (30)

with arbitrary cyclic permutation 123! of spatial indices 1,2,3 (the equalities
(30) hold for both contra- and covariant γμ, γμ Dirac matrices). It is seen
from these equalities, that any product γμν...

.= γμ · γν . . . can be expressed
through the matrices γμ and their binary products γμν .

Introduce the following notations for two different sets of generators of
SO(1,5) and SO(6):

SO(1, 5)

�
{

sμ1μ2(μ1,2=0, 5) : 2sμ5=−2s5μ
.= γμ, 2sμν

.=
1
2
[γμ, γν ];μ=0, 4)

}
,

(31)
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Table 1. Matrices 2sj1j2 ≡ −2sj2j1 (j1,2 = 1, 6) of CD-
algebra SO(6)

SO(6) �
{

sj1j2(j1,2 = 1, 6) : 2sj6
.= −2s6j

.= γj , 2s56
.= −2s65

.= −iγ0;

2sjl
.=

1
2
[γj , γl]; j, l = 1, 4

}
. (32)

Using the relations (9)μ→μ=0,4, it is straightforward to show, that non-
singular sets sμ1μ2 (31) and sj1j2 (32) of matrices in C4 satisfy the relations (6)
and respectively (7), that is the said sets are ζ-generators of representations
of these algebras in C4. This means, that these representations are isomor-
phous to the standard 16-dimensional CD-algebra in C4 (cf. [15], where the
algebra SO(3,3) was used as isomorphous to the CD-algebra).

For our purposes, taking into account the concept of single-out t0 vari-
able it is convenient to use the SO(6) form of CD algebra.

As it is seen from Table 1, the standard CD-algebra in SO(6)-form
contains all matrices, used for construction of both Dirac equations (10=8),
and operators V ± (22), relating Loc-ψ- and FW-φ-forms of a spinor field.
The real-number algebra SO(6) contains matrices for constructing the 4-
component Dirac equation in both forms in a 5-dimensional space, that is
for the Minkowski space M(1,4), however, this goes beyond the scope of the
present paper. It is convenient to associate the CD � SO(6)-algebra with
FW-φ-form of the spinor field: indeed, this SO(6)-algebra contains the SU(2)-
spin �s (28), and the whole subalgebra � {γ12, γ13, γ23, γ14, γ24, γ34} ⊂ SO(6),
and its element 2s56

.= −iγ0 is the Casimir operator of the SO(4)-algebra,
thus determining the Hamiltonian HFW = −iγ0ω̂.

The standard CD � SO(6)-algebra as a carrier of the internal degrees
of freedom for the particle-antiparticle dublet (including purely matrix SO(4)
⊃ SU(2)-symmetries of the FW-φ-field), is the subalgebra of the real algebra
AFW

S , therefore the SO(6)-algebra should be interpreted as well as a real
purely matrix algebra in the complex space C4 ⊂ S3,4.

Note A Likewise the FW-φ-model, the CD � SO(6) algebra (as opposed
to the CD � SO(1,5)-algebra) explicitely stresses the concept of single-out
time variable. Thats why its primary generators are not 4 matrices γμ (μ =
0, 3), but 4 matrices γj , which in the ∀ representation satisfy the generic
relations

γj(j = 1, 4) : γjγl + γlγj = −2δjl ⇒ γ−1
j = −γj = γj . (33)
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Taken as a set together with matrix i
∏4

1 γj ≡ −iγ0
.= 2s56, matrices γj =

2sj6 satisfy the “extended” relations (33)j → j = 1, 5. As it can be seen from
Table 1, the matrices γj

.= 2sj6 (j = 1, 5) of the last column of the table
determine all remaining unit vectors—paired products γjl = 2sjl of CD �
SO(6) algebra.

3.2. Extension of standard CD � SO(6)-algebra to ERCD � SO(8)

For the construction of representations, overcoming the mentioned problems
of the FW-φ model, we first emphasize several concepts to be used. In partic-
ular, we single out the time variable [in SD (10) and FW-φ (46) equations],
therefore initial matrices for the standard CD � SO(6) algebra are chosen
as γj (33). Then, we take into account the concept of physical meaning of
real number algebras of observables in field models, and the indispensabil-
ity of the extension of the standard CD algebra as carrier of the internal
degrees of freedom. Such an algebra, included into the algebra of observables
of the FW-φ model will contain as initial independent operators over the set
{φ} ∈ S3,4 not only 4 initial independent matrices γj(j = 1, 4), but also the
operator of the complex conjugation Ĉ and the “imaginary unit” i =

√−1.
They, being operators in C4, have a trivial form Ĉ

.= c14, î
.= i14 only in the

standard Pauli–Dirac representation. These additional operators are known
since long ago in the theory of the spinor field; thus Ĉ was first used in
[18,19], and î is known as the Heaviside–Larmor–Rainic operator [26]. The
use of Ĉ = c14, î =

√−1 = i14 (in PD representation of γj matrices) gives
a possibility of performing a simple and unambiguous technique of extension
of the 16-dimensional CD� SO(6) algebra to the 29-dimensional “extended”
algebra ERCD � SO(8) in the PD representation, and then—in an arbitrar-
ily fixed representation of the generating matrices (cf. first versions of this
extension technique for ERCD construction in [23,27], presented there in an
unreasonably complicated manner).

Let us amend the initial independent Dirac matrices γj with two addi-
tional matrices (which are independent in the real number algebra), defined
as follows:

γ5 .= γ13Ĉ, γ6 .= iγ5 = −γ5i. (34)

It is straightforward to check, that 7 independent matrices γj , j = 1, 6
and γ7 .=

∏6
j=1 ≡ −iγ0 anticommute, and their squares equal −1. (Let us

note, that the matrices γ4 and γ5 in the notations of the present paper should
not be confused with definitions of γ4, γ5, commonly used in the field theory
but having a different meaning). Likewise 5 matrices γj , j = 1, 4 and −iγ0

generate the unit vectors of the 16-dimensional CD� SO(6) algebra (cf. Table

2), now 7 matrices γ
j

(j
�

= 1, 7) generate the unit vectors of 29-dimensional

ERCD � SO(8) algebra (see below the Table 2) in the PD representation
of γj matrices and operators Ĉ = c14, î = i14 (in other representations
the operators Ĉ and î generally will not have the same form as in the PD
representation), by the following formulas
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Table 2. Indices of matrices 2sj1j2 = −2sj2j1 (j1,2 = 1, 8)
as generators of 29-dimensional ERCD � SO(8) algebra

SO(8) �
{

2sj1j2 : 2sj8
.= −2s8j

.= γj , 2sjl
.=

1
2

[
γj , γl

]
; j = 1, 7

}
(35)

This technique can be performed in the explicitely covariant form in the
spaces M(1, N≤6) with the use of 7 independent matrices

γμ(μ = 0, 6) : γμ = γ0,3, γ4 .= γ0123, γ5 .= γ13Ĉ, γ6 .= iγ5 . (36)

Initial matrices here are 6 matrices γ0,3 and γ5,6. They satisfy the “extended”
anticommutation relations and define the generators sμ1μ2 (μ1,2 = 0, 7) of the
ERCD � SO(1,7)PD algebra as follows:

SO(1, 7) PLC=
{

sμ1μ2 : 2sμ7
.= −2s7μ

.= γμ, sμν =
1
2

[γμ, γν ] (μ, ν = 0, 6)
}

.

(37)
Evidently, the 29-dimensional algebra SO(8) in C4 has more wide impli-

cations, compared to the standard algebra CD � SO(6). In particular, seven
4 × 4-matrices—operators γj in C4 anticommute, defining all remaining
generators of SO(8), i.e. paired products γjl. They generate 4-component
Dirac equations in Minkowski spaces M(1, N≤ 6), belonging to SN,4 .=
S(M(1,N))×C4 in both Loc-ψ and FW-φ forms. In the last case the equa-
tion in M(1,6) acquires the following form

(∂0 − γ7ω̂) φ(x) ≡ (∂0 + iγ0ω̂) φ(x) = 0 , x ∈ M(1, 6) , φ(x) ∈ S6,4 . (38)

The FW operator

NV + .= i (γa∂a+γ4∂4+γ5∂5+γ6∂6)+ω̂+m; ω̂≡
√

−Δ + ∂2
4+∂2

5+∂2
6+m2

(39)

transforms the Eq. (38) into Loc-ψ-form in S6,4:
(
∂0 + γ0j∂j + iγ0m

)
ψ(x) = 0

γ7→
(
iγμ∂μ − m

)
ψ(x) = 0 ; ψ(x) ∈ S6,4 ,

j = 1, 6, μ = 0, 6. (40)

It is worth noting that for each N = 3, 6 the Dirac equation in SN,4 is
invariant with respect to P(1, N ≤ 6) representation of the Poincaré group
in SN,4 of respective dimension and form. But the most descriptive is the
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extended purely matrix symmetry—the invariance of each of N = 3, 6 FW-φ-
forms of Eq. (38) with respect to the same 16-dimensional subalgebra SO(6)I

of the SO(8) algebra, which is defined by the unit vectors from the columns
of Table 2 up to the column 2sj6 (j = 1, 5). It is evident from the fact, that
the matrix γ7 = −iγ0 (that is the matrix part of each of the Hamiltonians
HFW

N≤6 = −iω̂γ0) is the Casimir operator for the whole subalgebra SO(6)I ⊂
SO(8).

We note by passing, that nontrivial reductions of Eqs. (38), (40) (defined
with equalities x6, x5, x4 = const respectively) would lead to corresponding
equations in flat spaces M(1,N=5,4,3). Meanwhile the nontrivial reductions
(setting in the general solution of the Eq. (40) k6, k5, k4 = const for the
canonically conjugated momenta) would lead to corresponding Loc-ψ Dirac
equations in M(1,N=5,4,3). In particular, the nontrivial reduction (projec-
tion) of the Eq. (40) onto the real number Minkowski space M(1,3) will
ensure the experimental verifiability of the consequences of the spinor field
model, which satisfies the 4-parametric Dirac equation

(∂0 + γ0a∂a + γ04im2 + γ24Cm3 + iγ24Cm4 + iγ0m1) ψ(x) = 0 , ψ ∈ S3,4 .
(41)

This equation for m2
1+m2

2−m2
3−m2

4 > 0 is a 4-parametric Dirac equation
in M(1,3) for a non-tachyonic field ψ ∈ S3,4. The detailed treatment of Dirac
equations in M(1,N≤ 6) however is not covered by this work.

In the PD representation the initial independent matrices γj , satisfying
(33), have the following 2 × 2-block form:

γa .=
∣
∣
∣
∣

0 σa

−σa 0

∣
∣
∣
∣ (a = 1, 2, 3), γ4 .=

∣
∣
∣
∣
0 −i
−i 0

∣
∣
∣
∣ ⇒

4∏

1

γj ≡ −γ0 .=
∣
∣
∣
∣
−1 0
0 1

∣
∣
∣
∣ ,

(42)
where 2 × 2 Pauli matrices:

σ1 =
∣
∣
∣
∣
0 1
1 0

∣
∣
∣
∣ , σ2=

∣
∣
∣
∣
0 −i
i 0

∣
∣
∣
∣ , σ3=

∣
∣
∣
∣
1 0
0 −1

∣
∣
∣
∣ ⇒ σaσb

= δab + iεabcσ
c (ε123 = +1) . (43)

The extended ERCD algebra contains a subalgebra SO(6)PD ⊂ SO(8)PD,
which is different from the SO(6) algebra in Table 1. It is a more wide invari-
ance algebra of the FW equation (23), compared to the formerly known SO(4)
algebra as a subalgebra of the “unextended” SO(6) (see Table 1), which is
an analog of the invariance algebra for the Hydrogen atom, introduced in the
Fock’s paper. The carriers of the internal degrees of freedom of a e−e+-dublet
in the algebra A

FW

S are now represented by the subalgebra SO(6) ⊂ SO(8) as
invariance algebra of the FW equation (23). This subalgebra contains three
samples of the conserved in time SU(2)-spins, which in the PD representation
have the form �s (28),

�s′ .=
1
2

(γ54, γ46, γ65)
PD≡ 1

2

(
−γ02Ĉ, iγ02Ĉ − i

)
⇒ s =

1
2

; �s + �s′ .= �s. (44)

It is straightforward to verify, that the components of each pair of the
SU(2)-spin set �s (28), �s′, �s (44) mutually commute (it is evident from the
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ζ-relations (7): if indices do not coincide, then [sj1j2 , sj3j4 ] = 0). However,
contrary to �s′2 = �s2 ≡ − 1

2 ( 12 + 1)14 ⇒ s = 1
2 , the operator �s2 is nondiagonal

in the PD representation.
Besides that it is necessary to stress, that the explicit form of the main

spin �s (28) in the PD representation does not reflect the experimental com-
prehension of the e−e+-dublet as a pair of mirror reflected particles by both
the charge and spirality. In this sense such a form of the spin �s (28) is non-
physical for the description of the e−e+-dublet. Therefore the problem is to
find such representations of the ERCD � SO(8) algebra, which overcome the
remaining two shortcomings of the FW-φ model in the PD representation,
namely, indefinite sign of the energy P0[φ] and lack of mirror symmetry of
the spin (28).

3.3. Constructing Exclusive Representations of Matrix Algebra in A
FW

S ⊃
SO(8)

For the search of the ERCD representations without mentioned shortcom-
ings of the FW-φ model we construct firstly the ERCD � SO(8) algebra
in ∀ representation, starting from the introduced technique of constructing
the ERCD � SO(8)PD algebra in the PD representation. This construction
requires introducing the following
Definition. A nonsingular in C4 operator T of the transformation of the set
A0

.= {Ĉ, î =
√−1, γj , j = 1, 7} in the PD representation (defining the

whole algebra SO(8)PD) is called the similarity transformation of the alge-
bra SO(8)PD, if T preserves following commutation and anticommutation
relations:

[Ĉ, γ1,3,5]=[i, γj ]={Ĉ, (̂i, γ2, γ4, γ6)}=0 ; {γj , γl}=−δjl (j, l = 1, 7) (45)

for corresponding operators from the set TA0T
−1 = A′

0.
This definition ensures that the extension CD′ � ERCD′ in ∀ represen-

tation of the set A′
0 is performed by the same technique, as introduced above

for the extension of CDPD ⇒ ERCDPD � SO(8)PD. It can be verified, that
not every similarity transformation for the subalgebra SO(N < 8)PD will be
the similarity transformation for the whole algebra SO(8)PD, which justifies
the viability of introducing this definition.

3.3.1. Quantum Mechanical PD Representation of SO(8) Algebra. Let us
construct the simplest exclusive representation of the SO(8) algebra, different
from the PD representation. It is evident, that in the FW-φPD equation (23)
the field φ(x) is the direct sum of the 2-component quantum mechanical wave
function of the electron fe−(x) and the function f∗

e+ , complex conjugated to
the wave function fe+ of the positron. This means, that the nonsingular
operator

∣
∣
∣
∣
12 0
0 c12

∣
∣
∣
∣ ≡

∣
∣
∣
∣
1 0
0 c2

∣
∣
∣
∣

.= v0 = v−1
0 ≡ C+ − γ0C−;C± = Ĉ ± 14 (46)
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transforms the FW-φ-equation (23) for a e−e+-dublet into a
4-component quantum mechanical equation

v0
(
∂0 + iγ0ω̂

)
φPD(x) ≡ (∂0 + iω̂) f(x) = 0; v0φPD(x) ≡ φex(x) .= f(x)

≡
∣
∣
∣
∣
fe−

fe+

∣
∣
∣
∣ ∈ S3,4. (47)

This simplest nonsingular operator v0 (46) is the similarity transforma-
tion operator for the whole algebra SO(8)PD, which can be checked directly.
In particular, it transforms the set APD .=

{
Ĉ, î, γj(j = 1, 7)

}
into the set

AQPD .= v0A
PDv0 ≡ {Ǒ}, whose elements Ǒ are expressed through PD oper-

ators as follows:

Č ≡ Ĉ, ǐ ≡ iγ0, γ̌1,3 ≡ γ1Ĉ, γ3Ĉ; γ̌2,4 ≡ γ02Ĉ, γ04Ĉ;

γ̌5 .= γ̌13Ĉ ≡ γ13Ĉ, γ̌6 .= ǐγ̌5 ≡ −γ24Ĉ, γ̌7 .= −ǐγ̌0 (48)

(we recall that the unlabeled operators Ĉ, î, γμ refer to the PD representa-
tion). Seven matrices γ̌j in (48) can be used to write down all generators of
the algebra SO(8) .= v0SO(8)PD

v0 by formulas in (35). The representation
SO(8)QPD of the algebra is called fermionic quantum mechanical Pauli-Dirac
representation (or QPD) for evident reasons.

In the SO(8)QPD representation of the ERCD algebra the Hermitian
Hamiltonian of the equation for f(x) (47) is expressed through γ̌7: iHFW

ex
.=

iγ̌7ω̂ ≡ ω̂. Thats why the Eq. (47) is the quantum mechanical equation with
only positive energy solutions. The spinor field of the FW-φ model φex = f
in the space S3,4 ⊂ S3,4∗ is extended to the four component wave function
field f in the quantum mechanical Hilbert space H3,4 = L2(R3)×C4, defined
via the same Lebesgue measures d3x in �x- or d3p in �p representations, which
are used in the nonrelativistic quantum mechanics. The metrics in the set
{f(x)} ⊂ S3,4 of the solutions to (47) is positively defined and hence the
experimentally measured energy of the dublet in ∀f(x) will be positive as
well:

||f ||2 =
∫

d3xf†(x)f(x) ≥ 0 , P0[f ] .=
∫

d3xf†(x)ω̂f(x) ≥ 0 . (49)

More, the object of the Eq. (47) is defined in the extended Hilbert space

f ∈ S3,4 ⊂ H3,4 .= L2(R3) × C4 ⊂ S3,4∗ . (50)

This set of three spaces in (50), named rigged quantum mechanical
Hilbert space, revokes interest by the fact, that the space S3,4 in the set
(50) is a kernel space. The latter means, that S3,4 is dense in both quan-
tum mechanical H3,4, and generalized Schwartz function spaces S3,4∗ (by
corresponding topologies in these spaces). Such refinement of the A1 axiom
means, that in the canonical quantum mechanics (CQM) for the e−e+-dublet
any (generalized) state from the standard quantum mechanical H3,4 or S3,4∗

space can be approximated (to any pre-specified degree of precision) with a
Cauchy sequence, completely pertaining to the test Schwartz function space
S3,4.
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Next, in the ERCDex=SO(8)QPD algebra a purely matrix invariance
algebra of the Eq. (47) for e−e+ is a subalgebra SO(6)QPD and the main
SU(2)-spin for the e−e+-dublet has the form

�̌s
.=

1
2

(γ̌23, γ̌31, γ̌12)≡ 1
2

(γ023, γ31, γ012)≡ −i

2

∣
∣
∣
∣
�σ 0
0 −c2�σc2

∣
∣
∣
∣ ≡ v0�sv0 . (51)

This (quantum mechanical) form of the spin for a e−e+-dublet has a
physical meaning, since it describes the mutual mirror reflection of the dublet
particles by the charge sign and spirality. It is interesting to note that not only
the main spin (51), but also two complimentary independent SU(2)-spins

�̌s′ .=
1
2

(γ̌54, γ̌46, γ̌65) ≡ 1
2

(γ2,−iγ02,−iγ0) ,�̌s
.= �̌s + �̌s′ (52)

for the e−e+-dublet in the QPD representation do not contain the Ĉ operator.
The componentwise commutativity of the SU(2) spins �s (51) and �s′

(52) implies, that the components of the sum �̌s = �̌s + �̌s′ in (52) and of the
main spin �̌s also mutually commute, so [�̌s2, �̌s

2
] = 0. However, in contrast to

�̌s2, the square �̌s
2

of the independent spin is non-diagonal. By direct solving
the Sturm–Liouville problem for �̌s

2
it can be shown, that the spin number

s = (1, 0) (it will be evident from Sect. 3.3.2 below in a novel exclusive
representation of the SO(8) algebra). So, the time-conserved spin �̌s = �̌s + �̌s′,
as independent from the main spin �̌s (51) carrier of the internal degrees
of freedom, describes the bosonic compound states with s = (1, 0) (that is
tensor-scalar states) of an object f of the Eq. (47) (that is of e−e+-dublet)
on equal footing with the spin �̌s (51) describing fermionic states with s = 1

2D
dublet e−e+.

Further, two time-conserving spins, the F-spin �̌s in (51) and B-spin
�̌s in (52) define two sets of independent quantum mechanical P-generators
(
p̌μ, ǰρσ

)F,B
in S3,4 ⊂ H3,4, having the following form:

p̌0 = −iω̂, p̌l = ∂l, ǰF,B
ln = mln + sF,B

ln ; mln ≡ xl∂n − xn∂l, (53a)

ǰF,B
0l = −ǰF,B

l0 = t∂l +
i

2
{xl, ω̂} +

sF,B
ln ∂n

ω̂ + m
(53b)

(we omit the labels F, B at the generators where they are identical for Fermi
and Bose cases). These P̌F,B-generators satisfy P-relations (3a, 3b) and com-
mute with operators of the quantum mechanical equation (47). Therefore
they define (by an exp-series, convergent in S3,4) two independent quantum
mechanical PF,B-representations of the group P in the state space S3,4 ∈ H3,4

for the dublet.
Let QF and QB are two stationary complete sets in the algebra of

observables A
ex

S ⊃ SO(8)QPD, such that the internal degrees of freedom of
the dublet are represented by the F-spin �̌sF .= �̌s (51) and, respectively, B-
spin �̌sB .= �̌s in (52). These QF,B sets define unambiguously (due to absence
of degeneration for eigenvectors and common spectra of any full set, see, e.g.,
[9]) general solutions of the Eq. (47) in H3,4 as
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fF (x) =
∫

d3k

(2π)3/2
e−iωt + i�k�xaFα(�k)eF

α (�k), fB(x)

=
∫

d3k

(2π)3/2
e−iωt + i�k�xbBβ(�k)eB

β (�k);ω ≡
√

�k2 + m2, (54)

where eF
α (�k), ěB

β (�k) are 4-component unit vectors of the sets QF,B in the �k

representation, and aFα(�k), bBβ(�k) are probability distribution amplitudes
by the momentum �k and quantum numbers α and β of the internal F- and
B degrees of freedom. These two types of quantum mechanical states sets
{fF } and {fB} (54) are of equal importance for the understanding of the
e−e+ dublet on the base of experimental measurements of two types of ampli-
tude probability distributions (boson and fermion amplitudes) of full sets of
eigenvalues for the dublet.

The interpretation of these statements is given at the end of Sect. 3.3.2,
which positively answers a question about the possibility of other exclusive
representations of the SO(8) algebra, where the FW-φ equation (23) has
quantum mechanical form (47). Following fact is evident from this point:
the interpretation of s = 1

2D “particle-antiparticle“ dublets (based on the
Bargmnan–Wigner classification [22]) solely as elementary relativistic fermi-
ons, is incomplete.

3.3.2. Quantum mechanical FTS representation of SO(8) algebra. Now we
use the unitary operator in H3,4

U =
1√
2

∣
∣
∣
∣
∣
∣
∣
∣

1 0 −1 0
i 0 i 0
0 −1 0 1
0 −1 0 −1

∣
∣
∣
∣
∣
∣
∣
∣

⇒ U† =
1√
2

∣
∣
∣
∣
∣
∣
∣
∣

1 −i 0 0
0 0 −1 −1

−1 −i 0 0
0 0 1 −1

∣
∣
∣
∣
∣
∣
∣
∣

. (55)

This operator does not affect the quantum mechanical equation in (47)

(∂0 + iω)f(x) U→ (∂0 + iω)f
�
(x) = 0, f

�
= Uf ∈ S3,4. (56)

As the similarity transformation operator for the whole algebra SO
(8)QPD, the operator (56) transforms the quantum mechanical set AQPD .=
{Č, ǐ, γ̌j , (j = 1, 7)} into the set AFTS .= UAQPDU† ≡ {O

�
}, whose elements

O
�

have the form:

C
�

=

∣
∣
∣∣
∣
∣
∣
∣

c 0 0 0
0 −c 0 0
0 0 c 0
0 0 0 c

∣
∣
∣∣
∣
∣
∣
∣

, i
�

=

∣
∣
∣∣
∣
∣
∣
∣

0 1 0 0
−1 0 0 0
0 0 0 i
0 0 i 0

∣
∣
∣∣
∣
∣
∣
∣

, γ
�
1

=

∣
∣
∣∣
∣
∣
∣
∣

0 0 0 c
0 0 −ic 0
0 ic 0 0

−c 0 0 0

∣
∣
∣∣
∣
∣
∣
∣

,

(57)

γ
�
2

=

∣
∣
∣
∣
∣
∣
∣
∣

0 0 ic 0
0 0 0 c

−ic 0 0 0
0 −c 0 0

∣
∣
∣
∣
∣
∣
∣
∣

, γ
�
3

=

∣
∣
∣
∣
∣
∣
∣
∣

0 −ic 0 0
ic 0 0 0
0 0 0 c
0 0 −c 0

∣
∣
∣
∣
∣
∣
∣
∣

, γ
�
4

=

∣
∣
∣
∣
∣
∣
∣
∣

0 −c 0 0
c 0 0 0
0 0 0 ic
0 0 −ic 0

∣
∣
∣
∣
∣
∣
∣
∣

(58)
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γ
�
5

≡γ
�
31

C
�

=

∣
∣
∣
∣
∣
∣
∣
∣

0 0 c 0
0 0 0 ic

−c 0 0 0
0 −ic 0 0

∣
∣
∣
∣
∣
∣
∣
∣

, γ
�
6

≡ iγ
�

5

=

∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 ic
0 0 −c 0
0 c 0 0

−ic 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣

,

γ
�
7

.
= −iγ

�
0

≡ −i · 14 (59)

Starting from the column 2s
�

j8

.= γj of the Table 2, it is straightforward

to derive explicit forms of all remaining generators 2s
�

jl

.= γ
�

jl

and their

subsets in this representation. The expression 2s
�
78

γ
�
7

.= −i14 ⇒ HFW
FTS =

−iω̂ reflects the fact, that the equation of motion for a e−e+dublet in the
FTS representation has the form (56), i.e. that of the quantum mechanical
Schroedinger–Foldy equation (47).

Further, the quantum mechanical spins of the QPD representation have
in the FTS representation the following form:

�s ≡
(

s
ln

)
.
=

1

2

(
γ
�
23

, γ
�
31

, γ
�
12

)
:

γ
�
23

=

∣
∣
∣
∣∣
∣
∣
∣

0 0 0 i
0 0 −1 0
0 1 0 0
i 0 0 0

∣
∣
∣
∣∣
∣
∣
∣

, γ
�
31

=

∣
∣
∣
∣∣
∣
∣
∣

0 0 1 0
0 0 0 i

−1 0 0 0
0 i 0 0

∣
∣
∣
∣∣
∣
∣
∣

, γ
�
12

=

∣
∣
∣
∣∣
∣
∣
∣

0 −1 0 0
1 0 0 0
0 0 0 i
0 0 i 0

∣
∣
∣
∣∣
∣
∣
∣

⇒ �s2 ≡ −1

2

(
1

2
+ 1

)
· 14 ⇒ s =

1

2
. (60)

�s
�

′ .=
1
2

(
γ54
��

, γ46
��

, γ65
��

)
≡ C�s

�
C,�s′

�

2 = �s
�

2 ⇒ s =
1
2

; (61)

�s
�

+ �s′
�

.= �sTS ≡
∣
∣
∣
∣
�sζ 0
0 0

∣
∣
∣
∣ ⇒ (

�sTS
)2

= −
∣
∣
∣
∣
1(1 + 1) · 13 0

0 0

∣
∣
∣
∣ ⇒ s = (1, 0). (62)

The explicit form of the Casimir operator in (62) is seen from the obser-
vation, that both �s

�
(60) and �s

�

′ (61) contain a 3 × 3 block—SU(2)-spin

�sζ ≡
(
sj

ζ

)
: s1ζ =

∣
∣
∣
∣
∣
∣

0 0 0
0 0 −1
0 1 0

∣
∣
∣
∣
∣
∣
, s2ζ =

∣
∣
∣
∣
∣
∣

0 0 −1
0 0 0
1 0 0

∣
∣
∣
∣
∣
∣
, s3ζ =

∣
∣
∣
∣
∣
∣

0 −1 0
1 0 0
0 0 0

∣
∣
∣
∣
∣
∣
⇒ �s2ζ

= −1(1 + 1) · 13 ⇒ s = 1 . (63)

This SU(2)-spin is the spin operator of a complex antisymmetric self-
dual tensor field in an exclusive cyclic representation: it satisfies the SU(2)-

relations (5), but in addition all its components are cyclic, namely:
(
sj

ζ

)k

l
=

−εjkl (where εjkl is the Levi–Civita tensor, ε123 = +1). This clarifies the
exclusive nature of the operator T

�
in (64) and the term “tensor-scalar spin”

�s
�

TS (62).
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Note B The similarity transformation for the SO(8)FTS-algebra at the
transition to the commonly used PD representation is given by the operator

T
�

−1 .= v0U
† =

1√
2

∣
∣
∣
∣
∣
∣
∣
∣

1 −i 0 0
0 0 −1 −1

−c ic 0 0
0 0 c −c

∣
∣
∣
∣
∣
∣
∣
∣

⇒ T
�

=
1√
2

∣
∣
∣
∣
∣
∣
∣
∣

1 0 −c 0
i 0 ic 0
0 −1 0 c
0 −1 0 −c

∣
∣
∣
∣
∣
∣
∣
∣

.

(64)

It is straightforward to verify:

T
�

−1

(
AFTS .=

{
C
�
, i, γ

�

j , (j = 1, 7)
})

T
�

≡ APD .=
{

Ĉ, î, γj , (j = 1, 7)
}

,

(65)
where, in particular, γ5 = γ13Ĉ and γ6 = iγ5, hat is they coincide with
definitions (34) in the PD representation. This proves the uniqueness of the
extension procedure CD � ERCDPD from Sect. 3.2 in the PD representation.
Indeed, any other choice of the explicit form of the 3 × 3-spin with �sζ with
s = 1 in �sTS (62), different from the exclusively cyclic form (63) under the
transformation T

�

−1γ
�

5,6T
�

would give for γ5 and γ6 the results, contradicting

the definition (34).
To the end of this chapter let us emphasize, that the P-generators

(pμ, jρσ)F,B and the sets {fF , fB} of F- and B-solutions to the quantum
mechanical equation (47) in QPD- and FTS representations are related by
a unitary operator U (55) (which does not alter the equation (47)=(56) for
the e−e+ object). The FTS images of QPD expressions (53) and (54) alter
only explicit forms of spin matrices s

�

F,B = U�̌sF,BU† and 4-component unit
vectors

(
eFα(�k), ěBβ (�k)

)QPD

→
(

e
�

F

α
(�k), eBβ (�k)

)FTS
.= U

(
eFα(�k), ěBβ (�k)

)QPD

, (66)

but the experimentally measured quantum mechanical amplitudes aFα(�k)
and bBβ(�k) remain the same. This means, that the physical interpretation
(end of Sect. 3.3.1) of the results (53) and (54) about the status of PF,B

representations and sets of {fF , fB}-solutions to the SF equation (47) for the
e−e+-dublet in QPD and FTS representations (as in any other representation,
derived by means of a unitary similarity transformation operator) remains
the same. Hence, the Bargmann and Wigner’s classification [22] stating the
“fermion nature of the e−e+-dublet” can be replaced by the statement, that
the said dublet as an elementary relativistic object in any exclusive FW-
φex = f -models is a FB-dual object, described by corresponding F- and B-
spins, which define the equally important 4-component sets {fF } and {fB}
of the solutions to the SF equation (47).

Note C All statements about FB-dual properties of the e−e+-dublet
and their physical interpretation from two FW-φex = φQPD,FTS-models of the
spinor field can be cast via an appropriate nonsingular FW-operator (23) in
these two representations as Loc-ψex-models of the spinor field. However these
statements, formulated in the language of Loc-ψex-models, have a rather



I. Yu. Krivsky et al. Adv. Appl. Clifford Algebras

complicated form, and, even presented in such a form, would not yield any
additional physical and mathematical knowledge about the FB-dual ψex field.
Therefore we do not write such transformations here.

The same refers to the theory of the FB-dual quantum (quantized)
spinor field ψex, which is constructed in the Loc-ψ-model version on the base
of the anticommutative quantization of the field ψ(x). We sketch briefly the
construction algorithm of the theory of the quantum FB-dual spinor field,
using the quantum mechanical model (FW-φex-model) for the e−e+-dublet.

There is no need to apply the Grassmanian coordinates for constructing
the quantum FB and BF-dual fields in the forms Loc-ψ and FW-φ: the “sec-
ond quantization”, either by Fermi, or by Bose, is performed by constructing
the Fock space HF over the “one-particle” H3,4-space and transition in the
space HF from the configuration representation for a system of n identical
Fermi or Bose states towards the representation of occupation numbers for
these states, in the comprehensive analogy with the custom “second quan-
tization” technique of the nonrelativistic quantum mechanics for a system
of identical elementary objects. The operator amplitudes of the quantum
mechanical F-solutions to equation (47)=(56) will satisfy the systems of anti-
commuting relations (ACR), whilst the operator B-amplitudes of solutions to
SF equation (47)=(56)—the CCR-relations. N-particle F-states will fill the
antisymmetric part of HF , and symmetric states will fill the symmetric part
of HF .

In brief, this “quantization” is performed as follows. The sets {aFα,
a∗

Fα′} and {bBβ , b∗
Bβ′} of stationary quantum mechanical probability ampli-

tudes (as functions of �k) for the sets {fQF ≡ fF } and {fQB ≡ fB} of
solutions to SF equation (47) play part of the generalized field coordinates in
the Hamilton approach for a quantum spinor field. Passing to the occupation
number representation N(�k1, �k2 . . .) these sets of amplitudes will transform
to corresponding operator functions â, â† and b̂, b̂†, which in the space HF

satisfy ACR and CCR-relations respectively:

{âFα(�k), â∗
Fα′(�k)′}=δαα′δ(�k −�k′);

[
b̂Bβ(�k), b̂∗

Bβ′(�k)′
]
=δββ′δ(�k −�k′) (67)

(all remaining â or â†-pairs anticommute, mixed pairs commute). There is
a single vacuum in HF (as a state with N ≡ 0); 0 �= N -“particle” F-states
fill the antisymmetric sectors in HF , and 0 �= N -“particle” B-states fill the
symmetric sectors in HF .

The possibility for both ACR-, and CCR-quantization of spinor and
other fields has been for the first time set forth in Garbaczewski’s articles
(see, for example, [2,3] and references therein). We have presented above
the outline of the “secondary” F- and B-quantization to stress the following:
only applying the group analysis (at least for P↑

+-group) of the spinor field
theory, involving the extended 29-dimensional algebra ERCD � SO(8) and
its exclusive quantum mechanical representations, and taking into account
the role of the stationary complete sets of operators in H3,4, it is possible
to elucidate unambiguously the sense of FB-dualism for particle-antiparticle
dublets and to perform the construction of the quantum spinor field model for
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such objects, in complete analogy to the “secondary quantization” technique
of the nonrelativistic quantum mechanics.

3.4. Brief Analysis of SUSY Partner for e−e+-Dublet

Now let us introduce and analyze briefly an another, namely, B-representation
of the ERCD � SO(8)-algebra, denoted in what follows as BTS and related
with an ad hoc Bose-multiplet as partner of a e−e+-dublet in the same
4-component state space S3,4. The principal physical quantities in the
SO(8)BTS-representation are three sets of SU(2)-spins, and the canonical
equation of motion for a B-object. They can be obtained from the corre-
sponding elements of the algebra of the SO(8)FTS-representation and from
the quantum mechanical equation (56) with use of the simplest nonunitary
operator:

v1
.=

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 c

∣
∣
∣
∣
∣
∣
∣
∣

≡ diag(1, 1, 1, c) ⇒ v−1
1 = v1. (68)

From the explicit form of SO(8) SU(2)-spins �s
�

(60), �s′
�

(61) and �s
�
+ �s′

�
=

�sTS (62) by direct calculations we obtain their v1-transformed images:

�̃s
.=

1
2

(γ̃23, γ̃31, γ̃12) : γ̃23 =

∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 ic
0 0 −1 0
0 1 0 0

−ic 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣

, γ̃31 =

∣
∣
∣
∣
∣
∣
∣
∣

0 0 1 0
0 0 0 ic

−1 0 0 0
0 −ic 0 0

∣
∣
∣
∣
∣
∣
∣
∣

,

γ̃12 =

∣
∣
∣
∣
∣
∣
∣
∣

0 −1 0 0
1 0 0 0
0 0 0 ic
0 0 −ic 0

∣
∣
∣
∣
∣
∣
∣
∣

; (69)

�̃′s .=
1
2

(γ̃54, γ̃46, γ̃65) ≡ −i�̃s ⇒ �̃s2 = �̃′s2 ≡ −1
2

(
1
2

+ 1
)

· 14 ⇒ s =
1
2
; (70)

�̃s + �̃′s .= �sTS ≡
∣
∣
∣
∣
�sζ 0
0 0

∣
∣
∣
∣ ⇒ s = (1, 0). (71)

It is evident, that the operator v1 (68) changes 2 duplicate sets of FTS-
SU(2)-spins with s = 1

2 , however not affecting their sum: �s
�
+�s

�

′ = �̃s+�̃s′ ≡ �sTS;
but the nonunitary operator v1 changes the Hamiltonian of the quantum
mechanical SF equation (56) in the FTS representation:

v1(γ
�

7ω̂ ≡ −iω̂)v1 ≡ (−ĩγ̃0 ≡ −iΓ)ω̂ .= HFW
BTS ; Γ ≡ diag(1, 1, 1,−1), (72)

for the states of E(x) .= v1f
�
(x). This means, that the operator v1 changes

the object, described by the quantum mechanical equation (47) = (65) for
FTS states of the e−e+-dublet: the equation of motion for BTS states of the
E(x)-object has the form

(∂0 + iΓω̂)E(x) = 0, E(x) .= v1f
�
(x) ∈ S3,4. (73)
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This also means, that if the function f
�
(x) ∈ S3,4 describes B-states (73)

of the e−e+ object, then the function E(x) describes B-states of an ad hoc
boson object E(x) with s = (1, 0), which is a SUSY partner of the e−e+-
dublet. Naturally, the existence of the time-conserved F-SU(2)-spin �̃s with
s = 1

2 in the SO(8)BTS-algebra leads to the appearance for the B-SUSY-
partner of the e−e+-dublet of not only BTS solutions EB(x) = v1f

�

B , but

also EF (x)–solutions, defined by the F-spin �̃s (60). The sets of {EB}- and
{EF }-solutions of the Eq. (73) are invariant with respect to corresponding P̃B

and P̃F -representations of the group P. Therefore, in the complete analogy
to the FB-dual e−e+-dublet, an ad hoc B-object with the states, described
by the FW-φBTS equation (73), is a BF-dual object and SUSY partner of
the FB-dual e−e+. This concludes the elucidation of the FB-dualism for the
spinor field φex = f (for a e−e+-dublet) and BF-dualism of its SUSY partner
φ̃ex = E (tensor-scalar field) in quantum mechanical FW-φex-models, which
by use of FW-φ-operators V +ex can be easily translated into Loc-ψ-models
of these SUSY partners.

The nonunitary relation v1 (68) between corresponding characteristics
of FB- and BF-dual SUSY partners implies that the initial rest masses of
these partners can arbitrarily differ. A comprehensive treating of an ad hoc
boson field E(x) with s = (1, 0) requires a separate publication. The model
of the complex 4-component tensor-scalar field E(x) with an infinitely small
mass, which in the FW-φBTS model satisfies the Eq. (73) with m2 → 0, is an
appropriate model for an (asymptotically) free electromagnetic field in terms
of field strengths �E, �H (rather than potentials). The in- and out states of such
a field E(x) will give all experimentally observed physical values coinciding
with correspondent values of the transversal free electromagnetic field. A
detailed treatment of the SUSY partner for the e+e− object goes beyond the
scope of the present contribution.

4. Summary of Principal Results

In the Sect. 2 we formulate the basics of the simplified Wightman’s A-
approach for the free spinor field as a model for experimentally observable
asymptotic (in- / out-) states of relativistic microobjects—s = 1

2 particle-
antiparticle dublets and their possible SUSY partners. This A-approach is
based solely on three physically justified axioms, ensuring experimental ver-
ification of its consequences for both Loc-ψ and canonical FW-φ models for
an arbitrary representation of the algebra of observables. The cruciality of
adequate description of experimentally observable free field states is that all
field interaction models are actually formulated in terms of corresponding
constructions of free fields.

We use the fact, that the singled-out character of the time variable
t = x0 as opposed to 3-coordinate �x ∈ R3 ⊂ M(1, 3) does not contradict
the relativistic (Poincaré) invariance in any representation, required by the
SRT principles. Therefore as a state space of the spinor field (and its SUSY
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partners) we consider the Schwartz test functions space S3,4 = S(R3)×C4, as
opposed to Schwartz generalized functions space S3,4∗. As the consequence
of this axiom, the space S3,4 appears to be a common domain and codomain
space of all involved operators (including operators of the equation of motion
in its various forms). In particular, mathematically correct is the use of the
pseudodifferential operator

√−Δ + m2 .= ω̂ in its combinations, including the
operators V ∓ (23) of the FW transformations of physical quantities in Loc-ψ
and FW-φ models in arbitrary representations of Dirac matrices γμ, which
ensures the mathematically correct detalization of the A-approach in these
models. Taking into account widespread variants of the FW approach, applied
to many particular problems of physics and chemistry (see, e.g., [28–30] and
references therein), the presented simplified A-approach can be useful for
ensuring the mathematical accuracy of solving these problems in FW settings.

The analysis [12,21] of limitations of both Loc-φ-, and FW-φ models for
a free spinor field is supplemented by additional issues. In particular, we point
at the fact, that the operator of the SU(2) spin �s = 1

2 (�Σ .= i(γ23, γ31, γ12)
(28) for a e−e+-dublet in the PD representation does not reflect the mirror
reflectivity of the dublet particles by the charge sign and chirality. Moreover,
the detailed analysis of different representations of the algebras of internal
variables of a dublet shows, that the principal drawback of spinor fields in
both Loc-ψ- and FW-φ models, the undefiniteness of the sign of the field
energy p0[ψ] = PFW

0 [ψ]<>0 (29), is related to the nonphysicality of commonly
used representations of the algebra of observables.

In Sect. 3.2, starting from the commonly used Pauli–Dirac (PD) repre-
sentation for the standard CD-algebra, we derive the transparent technique
of constructing the 29-dimensional ERCD-algebra in the form of representa-
tion of the SO(8) algebra in C4 (numbers of 28 nontrivial ζ-generators of the
SO(8) algebra in C4 are listed in Table 2).

From ERCD � SO(8)PD in the PD representation using nonsingular
operators of the similarity transformation of SO(8)PD we obtain the quan-
tum mechanical (QPD) representation of this algebra—in a definite sense
the simplest representation, different from the PD form, which nevertheless
ensures the positive sign of the energy P0. Besides that it also eliminates the
mentioned shortcoming of the representation of the spin for a e−e+-dublet
(see (51)). The extension of the algebra makes evident the appearance of two
additional SU(2)-spins �s′ (52) and �s + �s′ with mutually commuting compo-
nents. Introducing a novel representation (FTS, Sect. 3.3.2), diagonalizing
the square of the independent spin (�s + �s′)2, shows, that this spin describes
the bosonic compound states of a e−e+-dublet, thus pointing at intrinsic
FB-duality of this object. So, the PF,B-invariant sets of fermionic {fF } and
bosonic {fB} solutions of the equation of motion (65) = (47) for the dublet
have equal status of F- and B-states of a e−e+-dublet in the relativistic
quantum mechanical space H3,4 = L2(R3) × C4. This fact is a transparent
manifestation of the FB-dualism for the spinor field illustrated by the e−e+-
dublet. It is seen apparently: if we choose a full set in H3,4 as momentum,
B-chirality and charge—
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QB .=
(
�p = −∇, hB = �sTS�p/|�p|, g = iγ0

)
,

where B is the spin �sTS (62), then B-states, defined by 4-component state
vectors fB , are free (asymptotic) states of the positronium, which are anal-
ogous to the states of the π±

0 -triplet, complemented with a scalar ρ-meson.
At the end of Sect. 3.3 we revise briefly the technique of construction of the
A-approach for a quantum spinor field, identical to the “second quantiza-
tion” technique in the nonrelativistic quantum mechanics of identical states.
Finally, in Sect. 3.4 we briefly analyze the BTS representation, obtained via
application of a nonunitary nonsingular operator v1 (68) from the FTS rep-
resentation and describing B-states of an ad hoc 4-component tensor-scalar
field as a B-partner of the e−e+-dublet. This object, of course, possesses the
fermionic states of equal status, which reflects its BF-dualism.
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