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Photon and electron ionisation of helium to the 
n = 2  state of He' 

S M Burkov, N A Letyaev, S I Strakhova and T M Zajac 
Institute of Nuclear Physics, Moscow State University, Moscow 119899, USSR 

Received 13 June 1987 

Abstract. Partial photoionisation cross sections, the ratios of partial cross sections and 
anisotropy parameters in the angular distributions of photoelectrons are calculated in the 
region between the second and third ionisation thresholds of helium with the inclusion of 
all configuration interactions for a limited number of states of the subspaces of open and 
closed channels. The generalised partial oscillator strengths for transitions to the continuum 
of helium are calculated in the same approximation. The results are compared with 
experiment and calculations of different authors. 

1. Introduction 

In the last 20 years much effort has been devoted to obtaining complete information 
about the photoionisation of helium-like systems by photons and electrons in the region 
of quasistationary states converging to the second ionisation threshold. 

Modern experimental techniques together with more powerful theoretical methods 
enable the autoionised states of helum-like systems between the second and third 
thresholds to be studied. Whereas in the region below the second threshold, resonances 
decay exclusively via one open channel, at energies above the excitation threshold of 
the residual ions there exist resonances converging to the third threshold whose profiles 
can be studied through both the total ionisation cross sections and the partial cross 
sections for population of the ground and n = 2 excited state of the residual ion. 
High-resolution experiments by Woodruff and Samson (1982) provided the cross 
sections for resonance photoionisation of helium to the n = 2 state of the He+ ion. 
The earliest experiments (Dhez and Ederer 1973) on the total photoabsorption cross 
sections for helium in the region of 3s3p, the lowest resonance, have since been repeated 
and improved by Lindle et al (1985), who also obtained partial cross sections. The 
first theoretical results were reported by Senashenko and Wague (1979), Burkov and 
Strakhova (1984a), Salomonson et a1 (1985) and Burkov et a1 (1986). In the present 
paper we analyse the resonance photoionisation of helium over the energy range 
65.4-72.9 eV, taking into account the recent results of Lindle et a1 1985. 

Of great interest are the profiles of the resonances decaying into excited states of 
ions as a function of momentum transfer. Experimental data are not yet available. 
We have calculated the generalised partial oscillator strengths ( G O S )  for the ionisation 
of helium by fast electrons between the second and third thresholds over a wide range 
of momentum transfer. 

The key point in the problem of ionisation of an atomic system by fast electrons 
and photons is a description of the continuum final state. The cross section calculations 
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for the direct photoionisation of helium (Burkov and Strakhova 1984b, Berrington et 
a1 1982) and the calculations for the electron scattering on He’ ions (Haysak et al 
1982) indicated strong coupling of open channels in helium between the second and 
third thresholds. In the calculations made by Senashenko and Wague (1979) such 
coupling was neglected. 

Consistent calculations of the resonance ionisation cross sections have been carried 
out in the framework of the close coupling of open and closed channels (Berrington 
et a1 1982). This approach is not convenient for interpreting and comparing theory 
with experiment because the resonance characteristics are not parameters of the theory 
but are derived from the calculations made, as a rule, in the approximation of 
non-interacting resonances. The structures observed in the cross sections are often 
due to several overlapping resonances (Salomonson et a1 1985, Burkov et a1 1986). 
Attractive from this viewpoint is Fano’s configuration interaction method (Fano 1961, 
Fano and Cooper 1965) which reproduces the cross section curves to the same high 
precision as does the close-coupling method (Altick and Moore 1966, Burke and 
McVicar 1965) and, at the same time, permits estimates to be made of the spectroscopic 
characteristics of the resonances contributing to the shape of cross sections. However, 
Fano’s method has been substantiated only for the cases where at least one of the 
subspaces (subspace of open or closed channels) is filled by no more than a single 
state. An attempt was later made (Starace 1972) to extend Fano’s approach to the 
case of several resonances decaying via several open channels in the same real number 
representation. However, the expressions obtained for the photoabsorption cross 
sections (Starace 1972) were applied only to the problem with a single resonance; this 
was perhaps because of the presence of singularities in the energy dependence when 
solving the problem in cases other than those treated by Fano. A similar problem was 
treated by Combet-Farnoux (1982) and Davis and Feldkamp (1977, 1981). 

In the present paper the general solutions of Fano’s equations are given in the 
complex energy representation. The subspaces of open and closed channels used have 
been previously diagonalised. In this approach all configuration interactions are taken 
into account and the expressions for cross sections contain no singularities in the 
energy dependence. 

The complex energy representation was first introduced by Siegert (1939) in the 
theory of nuclear resonance reactions. The concept of a complex energy is widely 
used to describe the nuclear disintegration in approximate versions of the unified 
theory of‘ nuclear reactions (Mahaux and Weidenmiiller 1969, Rotter et al 1975). At 
present there are theories based on the Siegert method (Schneider 1981, McCurdy and 
Rescigno 1979, Bardsley and Junker 1972) that approximately describe atomic reson- 
ances. 

2. Formalism and calculation procedure 

Following Fano (1961) the atomic wavefunction of helium in the region of quasi- 
stationary states at an excitation energy E we write 

PhE(r,, r2)  = 1 ahEmlm)+x bfA, (E’) lA’E’)  dE‘. (1) 
m A ’  loW 

Here A indicates the channel of the reaction or scattering, characterised by some 
definite asymptotic behaviour of the functions and by a set of quantum numbers of 
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ion and electron, Im) and IA‘E’) are the basis wavefunctions of the subspaces of open 
and closed channels satisfying the conditions 

( m l f i i n > =  8 n S m n  ( A E I I ~ I A ’ E ~ ) =  ES,, , .S(E - E ‘ )  
( 2 )  

where fi is the total Hamiltonian of the atomic system. The expansion coefficients 
a f n  and bFA,.(E’) satisfy the equations 

( A E  1 I n ,  = vnA ( E ) [ vnA I* = vAn 

In the papers by Starace (1972) and Mies (1968) developing the Fano formalism, 
equation (3) are formally solved in the real number representation of eigenchannels 
in the scattering K matrix. The resonances in the system manifest themselves as 
K -matrix singularities and hence involve computational difficulties (for example when 
inverting the K matrix). As a result the final expressions for the cross sections explicitly 
contain uncompensated singularities in the numerator and denominator. The particular 
cases examined by Fano (1961) and Fano and Cooper (1965), with at least one subspace 
containing no more than one state, do not present such difficulties. 

Unlike the authors mentioned above we present the formal solution of the set (3) 
in order to provide physical boundary conditions in the T-matrix representation: 

Here i is a complex unit, the complex constants AAA, are related to the normalisation 
of the function (1) and P is the principal value in (1) when (4) is inserted. The sign 
( * )  corrssponds to alternate phase choices of the function (1): 9 : ( * ) ( r , ,  r2) .  In our 
further calculations the basis wavefunction I A E )  asymptotically takes the form of a 
standing wave and is normalised as an energy 6 function, with energies in atomic 
units. Unlike Mahaux and Weidenmuller (1969) we expand the expression (4) as 
functions ( 2 )  which were previously diagonalised. Substitution of (4) in set (3) gives 

where is the principal value and 

y n m ( E ) = C  V n A ( E )  VAm(E)*  

We shall write the solution of (5) in terms of the eigenvectors and eigenvalues of the 
symmetric complex matrix 

Z,, ( E )  = 8,S,, + jm ”) d E  ’ - i y,,, ( E  ). 
7 0 E - E ’  

Let E, ( E )  - $iFn ( E )  be eigenvalues and B,, ( E )  the corresponding complex eigen- 
vectors of this matrix. Exploiting the orthogonality of the eigenvectors we can express 

E as 
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where 

S M Burkov, N A Letyaev, S I Strakhova and T M Zajac 

and to substitute ( 7 )  into the expressions (4) and (1) for the wavefunction 9 f ( - ) ( r l ,  r2 ) .  
As a result we obtain the following expression: 

In first-order perturbation theory the amplitude of the transition from the initial state 
q0 of helium to its final state as given by the wavefunction (9) is proportional to the 
matrix element 

(10) 

where i is the transition operator. Substituting (9) into (10) and taking account of 
kinematic factors we obtain the following expression for the partial-resonance ionisa- 
tion amplitudes: 

T A ( E ) S ( 9 1 f h E ( - ) ( r l  9 r 2 ) ~ i ~ y r O ( r l  3 r 2 ) )  

TA ( E  = t:"(E ) + c H A n  ( E  )/ ( &n ( E  ) + i, (11) 
n 
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where P,,( E) /2  and R,, ( E ) / 2  are the real and imaginary parts of the complex function 
Nnh ( E )  determined by the following relation: 

where 

One can parametrise (12) when the so-called 'resonance approximation' is valid, i.e. 
if the functions & ( E ) ,  T , ( E )  and others vary smoothly with energy and may be 
replaced in Fano's formalism by their values at the resonance point; the behaviour of 
these functions with energy should be verified in every particular case. The partial 
ionisation cross sections may also be expressed in terms of the Fano-type parameters: 

The parameters in (14) are determined by the relations 

P',, = ( l N f l A ( / d l r )  cos2(; arg N,, 

qnA =tan(; arg NnA). (15) 

Using (12) and (14) it is easy to verify the relation for the parameters { q n A ,  p',,} and 
{P,,,, RnA}. Since the partial parameters {P,,, Rnh} enter linearly into the expression 
for cross sections, the total ionisation cross section will take a form similar to (12), 
where the functions {P , ,  R,} are determined as the real and imaginary parts of the 
complex expression: 

x m ( E ) = C  " , ( E ) *  

The complex matrices Z,, ( E )  were diagonalised numerically and the above for- 
mulae were used to calculate the photoionisation cross section of helium. In the 
calculations the operator i was replaced by the dipole transition operator and the 
amplitude (1 1) was determined from the matrix elelments (10) taking into account 
kinematic factors. 

In the Born approximation the differential GOS for ionisation are determined by 
the corresponding cross sections of the electron impact ionisation of atoms (Bell et a1 
1973). Specifically, the differential GOS for ionisation of helium leaving Het in an 
excited n = 2  state will be determined from the partial cross section of the helium 
ionisation to the n = 2 state of the ion. The latter can be obtained from the above 
formulae. In this case the operator ? must be replaced by the known Born operator, 
which depends on momentum transfer, and the expressions (lo)-(  11) should include 
the necessary kinematic factors. The formulae for the transition GOS are given, for 
example, by Robb et a1 (1975) and Jacobs (1975, 1976). 

The anisotropy parameter p in the angular distribution of photoelectrons is deter- 
mined from the photoionisation amplitude. To calculate the anisotropy parameter 
PnZ2 in the angular distribution of photoelectrons in the helium ionisation to the n = 2 
state of the Het ion we used well known formulae; see, for example, Kabachnik and 
Sazina (1976) or Jacobs and Burke (1972). The expression (9) was used in this case 
as a continuum wavefunction. 
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3. Diagonalisation of subspaces 

The diagonalisation of closed channels im) involves only diagonalisation of a real 
matrix. This does not present any problems and was used, for example, by Altick and 
Moore (1965), Balashov et a1 (1970) and Haysak et a1 (1982). For the subspace of 
open channels we used the method suggested by Fano and Prats (1963). We have 
solved numerically the following set of integral equations for the K matrix of electron 
scattering from the Het ion: 

Here = E - E A ,  E is is the excitation energy of He, E,, is the channel ionisation 
threshold of channel A, ? = fi - fro, fi and f i O  are the exact and model Hamiltonians 
of He and the functions are basis functions to channel A at energy E which are 
eigenfunctions of the Hamiltonian f i O .  

In the present calculation the basis wavefunctions are solutions of the equation 

( ?+ p+ ( n l (  A )  l$l nl( A ) )  - e) = 0. 

Here f and 0 are the kinetic and potential energy of the electron in the Hef 
nuclear field, l / r , 2  is the electronic interaction in helium and ln l (A))  is the Coulomb 
bound-state electronic wavefunction of the Hef ion corresponding to the channel A 
of the He atom. 

The expression for the diagonalised continuum wavefunction used to calculate the 
resonance ionisation amplitude (10) includes the K matrix in the following manner 
(Fano and Prats 1963, Bloch 1966, Strakhova and Zajac 1984, Strakhova and Shakirov 
1982): 

In our further calculations the wavefunction 9:(-) is normalised as an energy 6 function 
and AA, = (1 -iK(A, p, E ) ) - ' .  The set (16) was solved numerically by two methods: 
with iterations and without. In the latter case the set of four (three for the total 
momentum L = 0) integral equations was reduced, as by Bloch (1966) and Strakhova 
and Shakirov (1982), to a set of algebraic equations. ExcitaGon energies up to 20 au = 
40 Ryd were taken into account in the second term of (18). Comparison between the 
two methods shows that in order to obtain good accuracy the iteraction scheme should 
involve not less than six to eight iterations. 

4. Approximate variants of the approach 

There are variants of this approach, for example the diagonalisation method (Balashov 
et a1 1970, Haysak et a1 1982). In this method the interaction of the previously 
diagonalised subspaces of open and closed channels is considered in perturbation 
theory. This corresponds to the formalism in which the matrix (6) retains only the 
first term, i.e. the interaction of diagonalised states of the closed channels with the 
continuous spectrum is neglected. 
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The next two terms in the matrix (6) describe the configuration interaction of 
diagonalised closed channels through open channels at the off- and on-shell points, 
respectively. When removing any term in (6) it is necessary to take the corresponding 
physical approximations in (9) in order to avoid mismatch. 

5. The structure model 

In our calculations the subspace of closed channels lm) contained 20 configurations 
corresponding to two-electron excitations between the second and third thresholds. 
Coulomb functions for charge 2 = 2 were used as basis functions to describe these 
states. The subspace of open channels contained four (three for the zero total momen- 
tum) configurations corresponding to the electron above the ground and first n = 2 
excited state of the residual ion. In the GOS calculations the sum over the total 
momentum of the system included the contribution of the first four terms. As follows 
from the non-resonance GOS calculations, the contribution of other terms can be 
neglected. The calculations were made using the Tweed (1972) 41-term wavefunction 
to describe the ground state. 

6. Results 

The positions and total widths were determined as the real and imaginary parts of 
eigenvalues of the complex matrix (6) taking into account all configuration interactions. 
In the diagonalisation approach the resonance energies were determined, as by 
Balashov et a1 (1970), through the eigenvalues of the real matrix, taking into account 
the interactions within the subspace of closed channels, and the widths were calculated 
following the perturbation approach. 

The calculations yielded the positions and widths of the singlet S, P, D and F 
resonances in helium converging to the threshold n = 3. Energies and widths of the 
lowest resonances of this series were calculated in a variety of papers (see, for example, 
Senashenko and Wague 1979, Burkov and Strakhova 1984a, Salomonson et a1 1985, 
Ho and Callaway 1985, Oberoi 1972, Chung 1972, Herrick and Sinanoklu 1975, Burke 
and Taylor 1969, Wakid and Callaway 1980 and the references therein). Our data on 
positions and widths agree with the results obtained in similar physical approximations. 
In the present paper we do not analyse positions and widths because these data have 
been intensely discussed in the literature. 

6.1. The cross sections of the direct photoionisation of helium 

The close-coupling calculations of the partial and total cross sections of the direct 
photoionisation of helium were carried out by Chang (1980) and twice by Burke and 
collaborators (Jacobs and Burke 1972, Berrington et a1 1982). It is interesting to 
compare the calculation of Chang (1980) with the calculation of Burke and Jacobs 
(1972). In these two calculations the continuum wavefunction far away from the 
threshold is calculated in the same manner, i.e. the coupling between the four open 
channels is taken into account. A slight difference between the results is probably due 
to the fact that Jacobs and Burke employ the Hylleraas (1929) He ground-state 
wavefunction with 56 parameters and Chang (1980) uses his own method of accounting 
for the ground-state correlation. The difference near the threshold can result from the 
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inclusion of pseudostates, in addition to four open channels, into the Jacobs and Burke 
calculations of the He continuum wavefunctions. These two calculations lead to 
opposite conclusions. Chang predicts the near-threshold photoionisation of helium to 
the 2s state of the Het ion and Jacobs and Burke predict if to the 2p state (figure 1). 
The total cross section of helium photoionisation to the ( n  = 2) state of the Hei ion 
is almost the same in both cases (figure 2). The experimental research by the techniques 
of fluorescence yield (Woodruff and Samson 1982) and photoelectron spectroscopy 
(Bizau et a1 1982) failed to resolve this discrepancy definitely. More accurate and 
powerful calculations of Berrington et a1 (1982) made in the R-matrix representation 
of the close-coupling of 1s-2s-2p states and 3s-3p-3d pseudostates of the Het ion to 
determine the He ground- and final-state wavefunctions and also the special experi- 
ments conducted by Schmidt et al (1982) and Lindle et a1 (1985) with the use of 
photoelectron spectroscopy, have substantiated the main physical conclusions made 
by Jacobs and Burke (1972). 

It is to be noted, however, that the experimental data of different authors are in 
poor agreement. A detailed description of the behaviour of the direct photoionisation 
cross section between the second and third threshold is lacking. What is required is 
a more frequent scanning in this interval of the excitation spectrum because here the 
energy dependence of the direct transitions strongly affects the resonance profiles. 

Our calculations (figure 1) agree with the data of Jacobs and Burke (1972) and 
Berrington et a1 (1982) over a wide energy region. 

Figure 1. Ratio of the cross sections of the direct photoionisation of helium to the 2p and 
2s states of the He' ion. The present calculations with the inclusion of the close coupling 
of four open channels are shown by the full curve; for comparison are the celebrations 
of  Jacobs and Burke (1972), - . - .  -; Chang (1980), - .. - .. -; Berrington er a1 
(1982), -x-x--; Salomonson et a1 (1985), - - .24- -. Experimental data is also shown: 
U,  Lindle et a1 (1985); 0, Bizau er a1 (1982); e, Schmidt et a1 (1982); A, Krause and 
Wuilieumier (1972). Only the L form of calculations is presented. 
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Differences between our results and those by Burke et a1 (1982) are observed in a 
narrow energy interval between the second and third thresholds. Here the simplifying 
assumptions of different approaches play a significant role; among others the inclusion 
of pseudostates, the ground-state correlations and subthreshold states. We have 
obtained a different energy dependence of the background of direct transitions: the 
resonances are on the high-energy side of the partial cross sections. The calculations 
of Jacobs and Burke (1972) and Berrington et a1 (1982) locate resonances on the 
low-energy side. This will lead to rather different estimates of the spectroscopic 
characteristics of the resonances converging to the ( n  = 3) threshold and can be verified 
by comparing the calculated characteristics with the available experimental data. 

I I , I 

70 80 90 100 110 

Photon energy ( e V i  

Figure 2. Cross sections of the direct photioionisation of helium to the n = 2 state of the 
He+ ion. The notation is the same as in figure 1 .  The experimental data are from Woodruff 
and Samson (1982). 

6.2. Resonance photoionisation 

In figure 3 the cross section of the resonance ionisation of helium to the n = 2 state 
of the He+ ion is shown, and in figure 4 the ratio of the partial cross sections of the 
helium photoionisation to the n = 2 and n = 1 state of the He+ ion between the second 
and third thresholds. Our calculations reproduce the experimental data. Of particular 
interest is the region of the minimum at 70 eV. The experimental partial n = 2 cross 
sections (Woodruff and Samson 1982) drop to zero in this region while the measure- 
ments by Lindle et a1 (1985) do not reproduce this effect (figure 3,4) .  It will be noted 
(table 1) that the error bars in the data by Woodruff and Samson (1982) are higher 
compared with those of Lindle et a1 (1985), and at the same time the experimental 
resolution of Woodruff and Samson (1982) is better. The theoretical R-matrix calcula- 
tion by Salomonson et a1 (1985) also yields non-zero cross sections. We find it desirable 
to improve both the theoretical and experimental data in this region. 

Figure 5 gives the values of the anisotropy parameter in the angular distributions 
of photoelectrons in the helium ionisation to the n = 2 states of the He+ ion (the 
comparison between the calculated and experimental curves). The structure in the 
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I I I I  I I I I I  I 

0.1 1, 

I 

6 9  7 0  7 1  7 2  73 
Photon energy i e V l  

Figure 3. Cross sections of the resonance photoionisation of helium to the n = 2 state of 
the He+ ion between the second and third thresholds. Present calculations: -,the method 
of configuration interaction in the complex number representation; - - -, the diagonali- 
sation approximation with the inclusion of the close coupling of open channels; - - - -, 
the calculation of Salomonson er al (1985) in K-matrix theory. Experimental data: 0,  
Woodruff and Samson (1982); x , Lindle et al (1985). 

anisotropy parameter, also in the partial photoionisation cross sections, is due to 
contribution from several resonances. Only the first peak corresponds to the lowest 
resonance (3s3p’p). 

6.3. Fast electron ionisation 

In figure 6 the partial COS in the helium ionisation to the n = 2 state of the He+ ion 
are shown. As in the photoionisation cross section, the structures in the COS are due 
to contributions from several resonances, and therefore the treatment of these structures 
in the single-resonance approximation is not optimal. Table 1 lists the momentum 
transfer dependence of the profile parameter q of the lowest resonances in the partial 
COS. The dependence of the profile parameter of the lowest ‘S resonance contains a 
singularity in the region of momentum transfer Q = 3-4 au. Such singularities (see 
expression (15)) were also observed in the dependences of the profile resonance 
parameter below the second threshold of helium ionisation (Lipovetsky and Senashenko 
1974). The ionisation cross section does not exhibit any singularities in this case, as 
follows from the above formalism. Dependences of the type given in table 2 help one 
to a better understanding of how the C O S  curves from figure 5 will change at different 
values of momentum transfer. 
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I 

1' 
I I I I 

9 70 71 72 73 
Photon energy (eV1 

Figure 4. Ratio of partial cross sections of the photoionisation of helium to the n = 2 and 
n = 1 states of He+. The fuJl curve is the present calculation by the method of interaction 
configurations in the complex number representation. The dots are the experimental data 
of Lindle et al (1985). The broken curve is the fitting of the experimental data by Lindle 
et al (1985) with the monochromator broadening removed. The calculated position of the 
'P resonances and the monochromator resolution in the experiments of Lindle et al (1985) 

.are given at the top of the figure. 

Table 1. Parameters of the lowest ' P  resonance in He from the series of resonances 
converging to the threshold n = 3 in the total and partial photoionisation cross sections. 
The notation is as in Woodruff and Samson (1982). Errors are given in parentheses. 

.- 

Calculation of 
Senashenko and 

Parameter This work Experimental data Wague (1979) 

A ( M b )  0.120 0.120 (2)" 0.081 (14)b 0.072 
B ( M b )  -0.005 -0.044 (2)" -0.065 (8)b  -0.004 
4 0.960 0.7asd 0.48 (9)' 0.95 
P 2  0.670 0.88a,d 0.98j':$ 0.39 
C (Mb) 0.061 0.097 ( 0.086.(7)b 
A ( M b )  0.068 0.18 (8)" 0.032 (6)' 0.046 
B (Mb) -0.042 -0.032 (56)a 0.010 (5 ) '  0.015 

~l0l.l 9 0.553 0.84 (30)" 1.36 (20)' 1.37 
P2 0.067 0.11 (3)" 0.012 (3)c 0.018 
C ( M b )  1.050 0.989 (20)" 0.957 (30)' 

a Lindle et a1 (1985). 
Woodruff and Samson (1982). 
Dhez and Ederer (1973). 
The Fano parameters obtained by recalculating the Shore (1968) parameters by the 

formulae given, for example, by Lindle et al (1985). 
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N 

c e 

1 -0.2 
I I Photon energy l ev1  
I t  
I '  
k' 

-0.4 i 
Figure 5. Anisotropy parameter in the angular distribution of photoelectrons in the helium 
ionisation to the n = 2 states of the He+ ion. The notation is the same as in figure 4. 

I I I I 
6 9  7 0  7 1  7 2  7 3  

Excitation e n e r g y  I e V l  

Figure 6. Generalised partial oscillator strengths in the helium ionisation to the n = 2 state 
of the He+ ion at the momentum transfer Q = 1 au. Present calculations: -, the method 
of configuration interaction in the complex number representation; - - - -, the diagonalisa- 
tion approximation. 
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Table 2. Profile of the lowest singlet resonances of the series converging to the n = 3 
threshold in He+ as a function of momentum transfer in the helium ionisation by fast 
electrons to the n = 2 state of the He+ ion. The present configuration interaction calculation 
is in the complex number representation 

Momentum Profile of resonances with the total momentum L 
transfer 
(au) L = O  L = l  L = 2  L = 3  

0.1 
0.3 
0.5 
1 .o 
1.5 
3.0 
3.5 
4.0 
5.0 

6.18 
4.76 
3.55 

-0.54 
-1.37 
-5.19 

4.75 
2.67 

300 

0.98 
1.07 
1.08 
1.06 
1.03 
1.02 
1 .oo 
1 .oo 
1.14 

2.70 
9.80 

3.86 
1.84 
0.64 
0.55 
0.50 
0.44 

10.0 

1.20 
1.15 
1.38 
1.81 
2.10 
2.12 
1.50 
0.81 

-1.10 
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