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Abstract—The necessity of choosing multiparametric wavefunctions for describing the ground state of an
atom in the problems of ionization of atoms by photons and electrons has been substantiated for the He atom
as an example. Comparative analysis of application of different ground-state wavefunctions for this atom has
been performed. The energies, widths, and partial widths of the lower autoionization state 1P of the He atom
above the excited ion formation threshold has been performed. It is shown that in contrast to total widths of
quasi-stationary states, which differ insignificantly for different wavefunctions of the ground state, the partial
widths are substantially different.
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INTRODUCTION
In modern calculations of the cross sections of ion-

ization of atoms by photons, electrons, and other par-
ticles, the wavefunction of the initial state is chosen as
a rule in the same approximation as the wavefunction
of the final state. This was demonstrated in the articles
by Burke [1], Burke et al. [2], and Luke [3].

Fano [4] and Fano and Cooper [5] provided a
grounded proof of the fact that in analysis of excitation
of two-particle states for a large number of atoms of
chemical elements in the ground state, multielectron
correlations of type (nl)2 must be taken into account
above all. This is because the correlations in the
ground state play an important role when the single
shell of an atom contains only two electrons.

In calculations of the ionization cross sections of
two-electron systems (e.g., the He atom above the
threshold of formation of excited ions, namely, He+

(N = 2)), this circumstance is of fundamental impor-
tance because along with one-particle channel 1sεl, the
coupling with doubly excited channels 2sεL, 2pε(L – 1),
and 2pε(L + 1) must be taken into account in this
problem. The amplitude of excitation of these chan-
nels is determined by their coupling with channel 1sεl
in the final state as well as with multielectron correla-
tions in the ground state.

The problem of calculation of the ground-state
wavefunction for the model system considered here,
which is described by the projection of the Hamilto-

nian on the subspaces of the 1s, 2s, and 2p states of the
He+ ion, corresponds to the problem of coupling of
three closed channels. The system of equations of the
coordinate representation of the method of strong
coupling of channels in this case is transformed into
the Hartree–Fock equation in the multiconfigura-
tional approach [6–9].

The solution of this system of equations by the
method of interacting configurations corresponds to
the problem of determining the eigenvalues of the
matrix of a real-valued infinite-rank symmetric oper-
ator. As regards two-electron systems, this corre-
sponds to the solution of the multiconfigurational
problem taking into account (nl)2 configurations of the
corresponding atom.

1. PROBLEM OF CHOOSING
THE WAVEFUNCTION OF THE GROUND 

STATE OF THE HELIUM ATOM
The choice of the wavefunction of the ground state

of an atom is an important step in the theoretical
description of ionization of atoms. The criterion of the
choice of the wavefunction of the ground state is the
value of the ground-state energy of the atom, which is
obtained in calculations based on the use of a certain
wavefunction. The calculated value of the ground-
state energy not always coincides with the experimen-
tal energy value. In precision calculations of autoion-
ization state (AIS) parameters, this fact is of funda-
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ON THE CHOICE OF THE WAVEFUNCTION 941
mental importance. For this reason, the wavefunction
chosen for such calculations must exactly represent
the experimental value of the ground-state energy. The
most widely used class of the ground-state functions of
a helium-like system is the class of wavefunctions rep-
resented in works by Hylleraas [10–12]:

(1)

where ψnlm = sntlwmexp(–s/2)/(n + l + m + 2)! Here,
s = r1 + r2, t = r2 – r1, and u = r12 are the independent
variables determining the variational problem, and r1,
r2, and r3 are conventional notation for the mutual dis-
tances between the two electrons and the nucleus; n, l,
and m are the quantum numbers (principal, orbital,
and magnetic quantum numbers, respectively); Cnlm
are the corresponding coefficients of the expansion
in eigenfunctions ψnlm (see also, for example, formu-
las (10) and (10a) in [12] and comments to these for-
mulas).

These functions successfully describe the ground-
state energy of He; however, their applications in ion-
ization problems is complicated by the method of cal-
culation of amplitudes, the complexity of calculation
of which is mainly due to the evaluation of the inte-
grals containing a factor of the form |r1 – r2|m. When
the channel’s strong coupling methods in the coordi-
nate representation are used, the amplitudes are calcu-
lated at each point in energy.

Detailed analysis of parameters using the Hylleraas
method is given in [13] taking into account the Fock
modification [14]. It was shown in [13] that even in the
sixth approximation, we have

(2)
where

Such a ground-state function gives an energy value
close to the experimental value, namely, E =
2.903557 a.u. In calculations, multiparametrical Hyl-
leraas wavefunctions (containing 6, 8, or even 56
parameters) are used as a rule.

In contrast to such a type of variational functions,
the wavefunctions obtained in the multiconfigura-
tional Hartree–Fock approximation fail to give the
values of the ground-state energy for helium, which
are close to the experimental value (see, for example,
[8, 9, 15]. In our opinion, the most accurate analysis of
multiparametrical variational wavefunctions for the
helium atom was performed by Pekeris [16, 17]. How-
ever, the application of such functions in serial calcu-
lations is complicated and cumbersome.

It is more convenient to seek the solution to the
Schrödinger equation for the ground state of He in the
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class of functions with inseparable variables. The most
widely used among them is the analytic form of the
Hartree–Fock wavefunction in the single-configura-
tional approximation

(3)

and the Eckart correlation function

(4)

where a0 is the Bohr radius and letters ξ and ζ in
expression (3) denote the numerical parameters that
are explained, for example, in [18, 19]. Coefficients Nr
and Na in these functions are chosen from the condi-
tion of normalization of wavefunction Ψ0(r1, r2) to
unity. However, functions of this form are used only
for obtaining rough estimates.

According to [20], the ground-state wavefunction
can be written in the form

(5)

where  can be represented in the form  =

(θ1, ϕ1) Ylμ(θ2, ϕ2); Bl is the expansion
coefficient, ri is the radius vector of the ith electron, ri

is the corresponding modulus,  ≡ 〈lμl – μ|LM〉

are the coefficients of vector summation, and Fl(r1, r2)
are the radial functions describing the contribution of
(nl)2 configurations to the ground state. The choice of
trial functions Fl(r1, r2) is arbitrary in the general case.
Only linear independence of the set and a correct
asymptotic form of the solution are required. In such a
case, functions Fl(r1, r2) can be written in the form

(6)

where  are arbitrary sets of the continuous function
of one variable, and α and β are parameters that are
chosen from the variational principle.

Generally speaking, one can avoid using the varia-
tional principle for calculating functions Fl(r1, r2) and

choose functions  in the form of the Coulomb basis.
However, the expansion of type (5), (6) in this case
converges very slowly, and a very large number of
expansion terms must be taken into account for
obtaining the required accuracy. The application of
the variational principle for choosing parameters α
and β noticeably accelerates the convergence of
expansion (6). Tweed [20] formulated the one-para-
metric variational problem for the expansion consid-
ered here. He proposed that functions (r) be sought
in the form

(7)

χ = −ξ + −ζ( ) (exp( ) 0.6 exp( ))rr N r r

χ α = −α α = 0( ) (exp( )), 2/ ,ar N r a

Ψ = ∑ 00
0 1 2 12 1 2( , ) ( ) ( ),l l l

l

r r BY r F r r

00
lY 00

lY

μμ∑ lY μ −μ
00
l lC

μ −μ
LM
l lC

α β α β⎢ ⎥= χ χ + χ χ⎣ ⎦∑1 2 1 2 2 1( , ) ( ) ( ) ( ) ( ) ,l
l mn m n n m

mn

F r r A r r r r

αχn

αχn

αχn

( )α αχ = − α = β( ) exp ; ,
2

n
n r r r



942 ZAYATS et al.
where α is determined from the conditions of the
ground-state energy minimum. Coefficients  are
calculated by diagonalization of the matrix of the cor-
responding Hamiltonian. Depending on the numbers
taken into account in expansion (6) of multiplets, the
class of the Tweed wavefunctions includes 21-, 31-,
and 41-parameter functions containing the (np)2,
(nd)2, and (nf)2 configurations, respectively. For the
computational procedure, we can use the following
formula:

(8)

Concluding the brief review, we note that analysis
of the wavefunctions of the ground state with an essen-
tially different approach can be carried out using the
Monte Carlo method. In [21], this is done, for exam-
ple, for a function of the form

(9)

The value of the ground-state energy of helium
obtained in this approximation is the closest to the
experimental value.

Wavefunction (8) will be used in further analysis.

2. CALCULATION OF PARTIAL 
SPECTROSCOPIC CHARACTERISTICS

OF AUTOIONIZATION STATES
IN THE REGION BETWEEN THE SECOND 

AND THIRD THRESHOLDS OF THE He ATOM
The diagonalization approximation [22, 23] makes

it possible to trace the channels into which the autoio-
nization states existing in the region above the thresh-
old of formation of excited He+ ions decay and in
which ratio this process occurs. This question is espe-
cially topical because it reveals the resonances that
decay into a certain channel (in this case, we can dis-
regard the coupling of channels for such states), as well
as the resonances decaying into several channels, for
which the channel coupling must necessarily be taken
into account. Such information can generally be
obtained from analysis of data by comparing the values
of positions and resonances in different approxima-
tions. However, this information is insufficient with-
out the data on the particle decay widths.

For calculating the transition oscillator strength (or
the ionization cross section), we must determine the
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ionization amplitude, which can be presented in the
general case in the form

(10)

where |0〉 ≡ |n0L0S0〉 is the wavefunction of the initial
state of the atom and C(E) is the kinematic factor.

Let us suppose that wavefunctions |λE〉 in relation
(10) satisfies the asymptotic conditions [1, 2]. As
shown in [24, 25], the matrix of the eigenstates of the
energy operator of the system is Aiλ = δiλ in this case.

Then, we can write wavefunction (r1, r2) in
expression (10) in the form

(11)

where

(12)

and we put in correspondence to index λ a set of quan-
tum numbers, which is defined by the relation for the
asymptotic form of wavefunctions [1].

Substituting expressions (11) and (12) into (10), we
define the resonant ionization partial amplitudes as

(13)

In this expression, εm(E) = 2[E – Em( )]/Γm( ) and
Γm( ) is the AIS width. This transition splits the
amplitude into two terms; the first term fixes the con-
tribution of the direct process, while the second term,
the contribution of the resonant process. The remain-
ing quantities appearing in formula (13) are defined by
the relations

(14)

The partial differential oscillator strength λ of the
operator of transition to ionization channel is propor-
tional to the squared modulus of expression (13). The
total ionization cross section is calculated by summing
all partial contributions over index λ. Then, the
expression for the cross section is parametrized as fol-
lows:
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The real-valued functions of total energy Pmλ(E) and
Qmλ(E) are doubled real and complex parts of complex
function Nmλ(E), which has the form

(16)

Thus, the resonant ionization cross section can be
determined by a set of total energy functions: (E),
Nαm(E), εm(E), and Γm(E).

Proceeding from the above arguments, we can pass
to a system of characteristics of interacting AISs anal-
ogous to those introduced by Fano in [4] for an iso-
lated resonance using functions Pmα(E) and Qmα(E).
Then, the parameters assume the form

(17)

In the case of an isolated resonance, both systems
of functions (E) and (E) have a simple geomet-
rical meaning. Quantities (E) define the distance
between the extrema of the resonance curve and the
position of resonance Em( ), while functions (E)
are defined relative to the background of the ampli-
tude of the extrema. In the presence of several inter-
acting AISs, such an interpretation of functions (17) is
approximate. Set of functions (17) in the Fano theory
is determined unambiguously from the condition ρ2 >
0, which corresponds to the choice of the plus sign in
the notation adopted here. Therefore, the expression
for calculating the cross sections has the form

(18)

Depending on the definition of the subset of channels
α, this expression describes either total or partial char-
acteristics of excitation of the quasi-stationary states of
atoms.

It can be seen from expressions (15) and (18) that
the excitation and the decay of the mth quasi-station-
ary state in the group of channels α ∈ Δ is character-
ized by two complex-valued functions Nαm(E) and
ηm(E) = Em(E) – iΓm(E)/2. Functions ηm(E) appear in
expression (11). Zeros of these functions on the com-
plex plane determine the poles of the S scattering
matrix, which correspond to excitation of quasi-sta-
tionary states. According to the concepts formulated
by Siegert [26], the real part of the complex energy of
a pole determines the position of a resonance, while
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the imaginary part determines its width. Therefore,
the problem of determining the positions and widths
of resonances involves the solution of the system of
uncoupled complex equations

(19)
This equality holds only for complex values of

energy E. The solution of Eq. (19) requires analytic
continuation in the problem of determining the eigen-
vectors and eigenvalues of complex matrix Wnm(E):

(20)
Since the elements of matrix Wnm(E) are functions of
total energy E, its eigenvalues and eigenvectors also
depend on E. Since the imaginary and real parts of this
matrix are connected by the Hilbert transform, the
analytic continuation of Wnm(E) onto the entire com-
plex plane of energy E = E1 + iE2 is a matrix of the
form

(21)

Using the relations for the Cauchy-type contour
integral, we can show that

(22)

The positions of the poles are determined by values of
E1 and E2 for which matrix δnm(E1 + iE2) – (E1 +
iE2) degenerates. The degeneracy condition for the
matrix is the equality of its determinant to zero, which
gives the following set of equations for determining the
complex energies of quasi-stationary states:

(23)

Thus, for determining the position and width of the
mth resonance, we must solve system of equations (23).
As shown above, the introduction of spectroscopic
parameters characterizing the AIS profiles in the ion-
ization cross sections is associated with the possibility
of using the resonance approximation in formulas
(11)–(18). In the case when this approximation can be
used, the positions and widths of the resonance states
can be determined from Eq. (23) in the first order of
perturbation theory.

Let us find the solutions to the following equations:
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We assume that the roots of these equations are the
positions of AISs and define the width as the values of
functions Γm(E) for E = . In the problems of calcu-
lation of the differential characteristics of AIS exci-
tation, it is often necessary to determine the partial
widths of the decay of quasi-stationary states into a few
decay channels. In the diagonalization approxima-
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Table 1. Partial widths of lower five 1S resonances obtained
in the diagonalization approximation in the representation
of real numbers

No. E, eV Γ, eV 1sεs, eV 2sεs, eV 1pεp, eV

1 69.39400 0.08235 0.00264 0.07904 0.00067
2 70.48503 0.17282 0.00659 0.04469 0.12154
3 71.40519 0.04091 0.00269 0.03755 0.00067
4 71.91078 0.04045 0.00226 0.01187 0.02632
5 72.07814 0.01973 0.00155 0.01767 0.00053

Table 2. Partial widths of lower five 1P resonances obtained
in the diagonalization approximation in the representation
of real numbers

No. E, eV Γ, eV 1sεp, eV 2sεp, eV 2pεs, eV 2pεd, eV

1 69.91937 0.16584 0.00033 0.03206 0.09450 0.03899
2 71.24768 0.00101 0.00001 0.00063 0.00027 0.00011
3 71.47437 0.06436 0.00011 0.00240 0.00368 0.05817
4 71.66483 0.06522 0.00033 0.01596 0.04076 0.00818
5 71.78036 0.00066 0.00001 0.00007 0.00003 0.00057
tion, the partial width is introduced in terms of the
matrix element of the decay:

(25)

The total width corresponds to α = Δ( (E)) =
ΓmΔ(E). In the case of interacting quasi-stationary states,
we introduce the partial widths analogously to the proce-
dure in diagonalization approximation (25), namely,

(26)

where j is the partial channel index. However, total
width Γm(E) in this case, which is determined by
the diagonalization of the complex matrix, does not
coincide with the sum of partial widths as for expres-
sion (25).

In actual calculations using the strong channel
coupling method (see, for example, [27]), the position
of a resonance is determined by the energy value for
which the proper phase of the corresponding channel
is equal to π/2. The determination of this quantity is
reduced to the solution of the following equations:

(27)
where ηi(E) is the eigenvalue of the S matrix, which
corresponds to the ith channel. The set of the widths
can also be determined in terms of the value of func-
tion Γm(E) at points  satisfying condition (24).
However, such a method for determining the positions
and widths has a considerable disadvantage: the set of
the solutions to Eq. (24) also contains the roots asso-
ciated with so-called shape resonances in the continu-
ous spectrum of the atom. The identification of AISs
in this case involves direct analysis of the poles of the
S scattering matrix. With such a method of determin-
ing the positions of resonant states, each reaction
channel has its own set of solutions of the relevant
equation [6, 27]. As it regards the widths, these quan-
tities are determined by fitting of function ηi(E) when
the apparatus of the strong coupling method is
employed [6].

The states of helium in the region of the continuum
containing AISs converging to the third threshold were
described by the wavefunction [24] taking into
account all interconfigurational interactions of a finite
number of basis configurations corresponding to two-
electron excitations in the region between the second
and third thresholds (closed channels), and an elec-
tron with a positive value of energy above the ground
and first excited states of the He+ ion (open channels).
In our calculations, the states with the total angular
momentum L ≤ 3 of the helium atom were taken into
account.

For each angular momentum L, the subspace of
closed channels was filled by 20 configurations, and
the Coulomb wavefunctions with charge z = 2 were
used as the basis functions. Then, the subspace of

λ
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mE
these states was diagonalized preliminarily. The sub-
space of open channels included three configurations
for L = 0 and four configurations for other angular
momenta L. This corresponds to taking into account
the channels corresponding to the ground and first
excited state of the He+ ion (1sεL, 2sεL, 2pε(L – 1),
and 2pε(L + 1)).

3. RESULTS OF CALCULATIONS

For describing the ground state of the He atom,
one of the authors of this work and his colleagues in
[24, 25] used the 41-parameter Tweed wavefunction
[20] and obtained the exact values of the AIS parame-
ters for the helium atom, which lie in the region above
the excited ion formation threshold. It would be inter-
esting to analyze the effect of the choice of the ground-
state function on the partial characteristics of AISs.
The partial AIS widths in the helium photoionization
problem were calculated in [28] using the 6-parameter
Hylleraas function in the diagonalization approxima-
tion. Along with this approximation, the method of
interacting configurations in the representation of com-
plex numbers was used in [24, 25], and the results were
given in all approximations following from this method;
however, the 41-parameter Tweed function was used as
the ground-state function of the helium atom in all vari-
ants of calculations [20]. On the other hand, the con-
cept of partial width makes sense only in the diagonal-
ization approximation [22–25]. Tables 1–4 contain, in
particular, the resultant partial widths of lower AISs.

Analysis of the application of various wavefunc-
tions was carried out for the lower 1P state described in
Table 2. The results of this analysis are given in Table 5.
TECHNICAL PHYSICS  Vol. 63  No. 7  2018
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Table 3. Partial widths of lower five 1D resonances obtained
in the diagonalization approximation in the representation
of real numbers

No. E, eV Γ, eV 1sεd, eV 2sεd, eV 2pεp, eV 2pεf, eV

1 69.66939 0.15198 0.00001 0.00342 0.14499 0.00356
2 70.50481 0.12298 0.00076 0.00837 0.11141 0.00244
3 71.22368 0.01108 0.00227 0.00306 0.00332 0.00244
4 71.54640 0.21438 0.00571 0.00076 0.20598 0.00193
5 71.56122 0.03308 0.00018 0.00776 0.02507 0.00008

Table 4. Partial widths of lower five 1P resonances obtained
in the diagonalization approximation in the representation
of real numbers

No. E, eV Γ, eV 1sεf, eV 2sεf, eV 2pεd, eV 2pεg, eV

1 70.88120 0.08686 0.00006 0.03679 0.02921 0.02079
2 71.48071 0.00495 0.0000001 0.00185 0.00244 0.00065
3 71.99411 0.02403 0.00002 0.00749 0.01043 0.00608
4 72.13817 0.00074 0.0000004 0.00054 0.00016 0.00004
5 72.13959 0.00347 0.000002 0.00160 0.00128 0.00058

Table 5. Parameters of the lower 1P autoionization state of the He atom in the energy range above the excited ion formation
threshold, obtained using different wavefunctions of the ground state

Functions E, eV Γ, eV 1sεs, eV 2sεp, eV 2pεp, eV 2pεd, eV

6-parameter Hylleraas function [28] 69.89 0.150 0.893(−3) 0.918(−1) 0.313(−1) 0.257(−1)
41-parameter Tweed function 69.92 0.165 0.312(−3) 0.945(−1) 0.320(−1) 0.389(−1)
6-parameter Hylleraas function 69.90 0.154 0.871(−3) 0.814(−1) 0.315(−1) 0.407(−1)
8-parameter Hylleraas function 69.81 0.158 0.852(−3) 0.836(−1) 0.310(−1) 0.425(−1)
Monte Carlo function [21] 69.91 0.159 0.476(−3) 0.991(−1) 0.235(−1) 0.359(−1)
Table 5 contains the parameters of the lower 1P
state in the problem of photoionization of the helium
atom above the excited ion formation threshold. The
calculations were performed for different wavefunc-
tions of the ground states. Analysis shows that the
parameters of the quasi-stationary states depend on
the choice of the wavefunction of the ground state.

CONCLUSIONS

The calculations of resonant cross sections in the
photoionization problems and analysis of resonant
profiles provide information on the structure of
atomic systems and make it possible to choose the the-
oretical models more correctly; the choice of the
ground-state wavefunction affects the values of the
corresponding resonance parameters.

Investigations in the excitation energy range above
the second ionization threshold (or above the thresh-
old of formation of excited He+ ions) are similar in
many respects to earlier investigations carried out in
the energy range between the first and second ioniza-
tion thresholds but are much more effective. The spec-
trum of the characteristics in question is richer. This is
due to the possibility of population of the ground state
as well as excited state of the residual ions that subse-
quently pass to the ground state by emitting a photon
during direct as well as resonant ionization by photons
and electrons. This makes it possible to investigate the
profiles of resonances converging to the threshold N =
3 of the He atom both in total and partial ionization
cross sections; the coupling of channels in these pro-
cesses must necessarily be taken into account. The
choice of the ground-state wavefunction directly
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affects the values of the corresponding matrix ele-
ments appearing in the ionization cross section.

The results of calculations demonstrate that in con-
trast to total AIS widths, the partial widths are sub-
stantially different for different wavefunctions of the
ground state. It can be seen from Table 5 that the total
widths are also different when they are calculated on
the basis of different wavefunction in the same
approach; however, the difference in partial widths is
larger in this case. This could be explained by the dif-
ference in the ground-state wavefunctions. However,
further investigations are required for detailed analysis
of the reasons for these effects.
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