

XXII International Seminar on Physics and Chemistry of Solids

Book of Abstracts

June 17-19, 2020 Lviv, Ukraine

COMPOSITIONAL AND TEMPERATURE DEPENDENCE OF THE REFRACTIVE INDEX OF NEW ARGENTUM-BASED CHALCOGENIDE GLASSES

Shpak O.

Uzhgorod National University, Ukraine, Uzhgorod, Pidhirna Street, 46; e-mail: shpak@uzhnu.edu.ua

According to [1], using a uniaxial model, the coefficient $\beta = dn/dT$ for solids in the region far from the phonon absorption bands ($\lambda > 10 \div 12 \mu m$) can be represented as a sum of two components:

$$\frac{dn}{dT} = -\frac{6\pi\chi_s}{n}\alpha - \frac{4\pi\chi_s}{n}\frac{1}{\omega_g}\frac{d\omega_g}{dT}\frac{1}{1 - \left(\frac{\omega}{\omega_g}\right)^2}$$

where α is the coefficient of linear expansion, χ_e is the electron polarization (susceptibility), ω_g is the frequency of the oscillator. The first component occurs due to the change in the density of matter, the second - due to the temperature change of its electronic structure, that is, the change in the magnitude ω_g .

Given that the parameter $d_{\omega g}/dT$ is generally negative, the components (1) respectively have opposite signs. In the visible spectral region for the ChSG system, the predominant contribution to dn/dT is made by the first component. As the proximal self absorption band $(\omega \to \omega_g)$ approaches, the contribution of the second component increases, and for certain (characteristic) wavelengths λ_0 , these components are mutually balanced (dn/dT = 0), and for the wavelengths smaller than some limiting λ_0 the second The component determines the sign of the temperature derivative n. In addition, the obtained results indicate that the value of λ_0 depends on the size of the band gap of the glasses under study, or in other words, the smaller ω_g , the greater λ_0 . For the studied glasses, the determined values of λ_0 are in the range of 1-3 microns. Among the studied alloys of the Ag-As-S system, only the stoichiometric composition of As_2S_3 takes the value dn/dT= 0 with a defined value of λ_0 equal to $\sim 0.96 \ \mu m$. For other compositions, the values $\lambda_0 \rightarrow dn/dT = 0$ are outside the studied region of the spectrum. The negative value of the coefficient dn/dT indicates the fact that in the investigated part of the spectrum, the temperature change of the density of glasses plays a dominant role.

[1] Y.F. Tsay, D. Bendov, S.S. Mitra, Phys. Rev. B. 8(6), 2688 (1973).