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Abstract. Within the framework of a single mathematical approach based on the first 

iteration of the Dodd–Greider equations, direct and two-step mechanisms of electron 

capture have been described, and their correlation with angular distributions of reaction 

products have been ascertained. The purpose of this modification of the Dodd–Greider 

integral equations for the quantum mechanical operator of three-particle scattering with 

rearrangement is taking into account the Coulomb asymptotic behavior of wave functions 

in the problem of inelastic scattering with redistribution. On this basis, the theory of the 

reaction of single-electron charge exchange was constructed when collision of the 

hydrogen-like atom with a positively charged ion is performed with taking into account the 

effects of the multiple Coulomb scattering of electron by ion target residue. In particular, 

the amplitude of the reaction is distinguished as the first iterative term for solving the 

Dodd–Greider equations for the operator of three bodies, and the short-acting interaction 

that causes the electron transitions is taken into account in the distorting potential. It has 

shown that in the one-fold scattering approximation, this method leads to the so-called first 

Coulomb–Born approximation, where asymptotic behavior of particles in the input and 

output channels of the reaction is described by two-particle Coulomb wave functions. A 

more detailed study of the reaction of the resonance charge transfer between proton and 

hydrogen atom showed that without a correct inclusion of the Coulomb interaction into the 

wave function of the final state, to recreate Thomas’ peak in the angular distributions of the 

products of this reaction cannot be. The proposed method provides a good agreement with 

the experimental data of both complete and differential cross-sections due to advantages of 

this method, in particular, rather full consideration of the interaction after the collision and 

rapid convergence of the series of the Dodd–Greider perturbation theory. 
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1. Introduction 

The details of the elementary processes in atomic 

collisions are necessary for solving many problems of 

nuclear physics and astrophysics, physics and chemistry 

of plasma and controlled thermonuclear synthesis, upper 

atmosphere physics, quantum electronics, and so on. 

Appearance of modern powerful ion accelerators [1] in 

many laboratories in the world allowed to get unique 

experimental material, especially on high-charged ions 

and multielectron ion-atomic processes, which in totality 

did stimulating influence on the theory of atomic 

collisions. 

Experimental studies of charge exchange between 

protons and hydrogen or helium atoms [2, 3] confirmed 

the important role of the two-step electron capture 

mechanism, which was first considered on the basis of 

the classical mechanics by Thomas [4] and is called the 

Thomas mechanism of charge exchange. According to 

the model [4], the electron capture takes place as if in 

two stages: first, the flying particle is scattered by 

electron of target atom at the angle determined by 

kinematics of collision of two free particles which is 

called Thomas’ angle. In so doing, this flying particle 

causes the ionization of the target with the flight of 

electron at the angle 60° to the direction of the initial 
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beam, and then the emitted electron rescatters by ion-

residue in the direction of motion of the fast particle and 

is captured by it in a bound state. Quantum-mechanical 

analogue of this mechanism of charge exchange is 

electron transitions through a continuous spectrum from 

a target atom into the states related with the fast particle. 

With sufficiently large energies of particles, the 

two-step mechanism of electron capture is manifested in 

differential cross-sections at Thomas’ angle in the form 

of maximum – Thomas’ peak that is experimentally 

detected and is theoretically reproducible when the inter-

action is included in the final state, which is equivalent to 

taking into account many-time electron charge exchange 

by the residual ion. If, however, the charge exchange 

cross-sections are calculated without taking into account 

the interaction in the final state or in the one-time 

scattering approximation [5], the Thomas peak does not 

appear, but between theoretical and experimental cross-

sections the qualitative differences arise.  

The problem of describing the angular and energy 

dependences of the cross-sections of single-electron 

charge exchange between 
+
αZ

A  ions and B atoms: 

 

+− +→+
+

α
+
α BABA

ZZ )1(
   (1) 

 

became recently the object of not only experimental [2, 

3], but also theoretical [5, 6, 7, 8] study. According to the 

multiparticle scattering theory, we consider a system 

consisting of a flying particle, active electrons, and 

residual ion. Since the interaction of particles that take 

part in the reactions is the Coulomb one, the basis for the 

theoretical description can be taken as the modified 

integral equations by Fadeev–Yakubovsky for systems of 

several charged particles [9]. However, the practical 

realization of the theoretical apparatus of integral 

equations is associated with considerable computational 

difficulties. In the transition to the systems with a large 

number of particles, the theoretical apparatus is sharply 

complicated and, accordingly, the ability to carry out a 

rigorous quantitative calculation of such systems reduces. 

The possibility of analytical solution of the system of 

integral equations with potentials close to interatomic 

interactions is rather an exception, but not rule. 

Well-developed asymptotic (by large interatomic 

distances) methods of the theory of ion-atom collisions in 

our case do not work, because here, on the contrary, 

small interatomic distances are important [10, 11]. 

Along with the rigorous formulations of the 

problem of three bodies in the literature on the theory of 

scattering, there are some examples of approximate 

dynamical equations that are suitable for a number of 

cases and do not need the sophisticated technique to their 

solving necessary for finding solutions of exact 

equations. In the role of such equations, we give 

preference to the Dodd–Greider equations [12] for the 

scattering operator with the rearrangement in the system 

of three particles. The known difficulties of the  

nonrelativistic quantum-mechanical problem of three-

particle scattering with rearrangement (mathematical 

fundamentals of the multiparticle scattering theory [9]) 

are solved in the Dodd–Greider theory by introducing 

into consideration two complementary three-particle 

potentials that exclude the appearance of disconnected 

diagrams in the nucleus of the obtaining equation for the 

transition operator. Therefore, the iterative series 

obtained on the basis of this equation are manifested as 

the rapidly convergence ones in this problem, which 

allows us to carry out not only evaluation, but even exact 

direct calculations. 

 
2. Application of the Dodd–Greider integral equations 

The complex problem of the interaction of atom and ion 

in the reaction (1) considered here is an idealized 

problem of nonrelativistic interaction of three spinless 

particles: α (projectile 
αZ

A ), γ (active electron −e ) and  

β (target ion +
B ) with the masses αm , γm  and βm , 

respectively. The motion of the center of mass is 

assumed to be separated. According to the possibility of 

splitting the three-particle system into the fragments 

α+γβ ),( , β+γα ),( , γ+βα ),( , we introduce the 

channel Hamiltonians jj VHH += 0 ( )γβα= ,,j  along 

with the full Hamiltonian VHH += 0 , where H0 is the 

operator of the kinetic energy of the system of three 

particles in the system of their center of mass, 

∑ γβα=
=

,,j jVV  being the full interaction. The lower 

index j in Vj defines a particle that does not take part in 

this interaction (for example, αV  is the operator of the 

pair interaction of the particles β  and γ ). We shall also 

define the channel “interaction” 
jυ . Let’s assume that it 

can be represented in the form of a sum of the Coulomb 

and rapidly descending short-acting parts. Coordinates 

used to describe the relative position of particles are 

related by the following relationships (the above masses 

are denoted by a and b): 

 

( ) αγ −= rxmas
rrr

, ( ) βγ += rsmbx
rrr

, sxR
rrr

−= . (2) 

 

In the terms of the corresponding Jacobian 

coordinates of the input and output channels of the 

reaction (1), the operator of the kinetic energy H0 can be 

represented in two equivalent forms: 
 

ba
H srxr

2222
0

rrrr ∆
−

µ

∆
−=

∆
−

µ

∆
−=

βα

βα , (3) 

 

where 
α

∆r
r , x

r∆ , 
β

∆r
r , s

r∆  are the Laplace operators for 

the variables αr
r

, x
r

, βr
r

, and s
r

, respectively. The values 

αµ  and βµ  denote the reduced masses of the 

corresponding groups of particles: 
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γβα

γβα
α

++

+
=µ

mmm

mmm )(
, 

γαβ

γαβ
β

++

+
=µ

mmm

mmm )(
. (4) 

 

Let us separate the channel potentials jυ  ),( βα=j  into 

two parts: 

 

jjjj WUVV +=−=υ ,  (5) 

 

one of which Wj (it is usually called the “distorting” 

potential) reveals small by the magnitude of the far-

acting Coulomb background that defines the asymptotic 

behavior of wave functions of the scattering problem at 

long distances, and another − Uj − gives the remainder 

generated by a purely short-acting part of the potential υj 

that causes transitions of electron and is considered as 

perturbation. 

From the definition of channel Hamiltonian 

( )βα HH , it follows that it describes the asymptotic 

situation, when the particle ( )βα  does not interact with 

anything, and the other two particles are in the bound 

state in the potential ( )βα VV . Thus, the proper states 

( )βα ΦΦ fi  of the Hamiltonian ( )βα HH  have the form 

of the products: 

 

( ) ( )αα
α ϕ=Φ rkixii

rrr
exp , 

 

( ) ( )ββ
β ϕ=Φ rkisff

rrr
exp , (6) 

 

where ( )fi ϕϕ  is the wave function of the bound state of 

the pair ( )γβ, ( )( )γα, , ( )ααrki
rr

exp ( )( )ββrki
rr

exp  is the plane 

wave describing the relative motion of free particles 

( )βα  and ( )γβ, ( )( )γα,  in the initial (final) state with the 

relative momentum ( )βα kk
rr

. Strictly speaking, in the case 

of charged particles in (6) plane waves in the initial and 

final states should be distorted by phase factors, 

logarithmically dependent on the distance between 

particles [9]. This distortion is caused by the physical fact 

that the asymptotic motion of particles in the Coulomb 

field is never free, and the particles weakly interact at 

infinitely large distances between them. It follows that in 

the case of long-range action, the above definitions of 

channel Hamiltonians require modification. 

With taking into account the comments made 

above, let us introduce for consideration the modified 

channel asymptotic states +αΦ i  and −βΦ f , that, in 

distinct from αΦi  and βΦ f , correctly describe effects 

of the far-acting Coulomb field in the processes of charge 

exchange. Let’s describe their structure. Let 

αααα −=ξ rkr
rr̂








 −=ξ ββββ rkr
rr̂

 are the parabolic 

coordinates of the particle ( )βα  before (after) collision; 

jk
r̂

( )βα= ,j  are the unit vector in the direction of the 

vector 1ˆ
: −= jjjj kkkk

rrr
. The functions ( )−β+α ΦΦ fi  are the 

products of the wave functions by the bound state of pair 

( )γβ, ( )( )γα,  and distorted plane wave ( )−
β

+
α ff  with the 

unit amplitude: 

 

( ) ( ) ( ) ( )αααα
+

α
+α σ+ϕ≡ϕ=Φ irkixrfx iii

rrrrr
exp , (7) 

( ) ( ) ( ) ( )ββββ
−

β
−β σ−ϕ≡ϕ=Φ irkisrfs fff

rrrrr
exp . (8) 

 

The Coulomb phases ασ  and βσ , distorting the plane 

waves, are defined by the equations: 

 

( )αααα ξν=σ kln , vnαα =ν , αµ= αv k
rr

, 

( )ββββ ξν=σ kln , vnββ =ν , ββ µ= k
rr

v . (9) 

 

The parameter ( )βα nn  that characterizes the value of the 

effective Coulomb interaction is equal to the product of 

the total charge of the pair ( )γβ, ( )( )γα,  on the charge of 

the third particle ( )βα . 

We will realize the further construction on the basis 

of separating the distorting potentials αW  and βW  into 

two parts: 

 

dWwW ααα += , dWwW βββ += , (10) 

 

where αw  and βw  are arbitrary short-acting potentials, 

which depend on the relative coordinates αr
r

 and βr
r

, 

respectively; it is assumed that these potentials descend 

enough rapidly at ∞→jr . We also assume that, for 

sufficiently large jr , the potentials jdW  coincide with 

the purely Coulomb ones: 

 

α

α
α→∞α ≡ →

α r

n
WW

c
drd , 

β

β
β∞→β ≡ →

β r

n
WW c

drd , (11) 

 

where ( )c
d

c
d WW βα  is the effective Coulomb potential 

acting between the particle ( )βα  and the center of mass 

of the system ( )γβ, ( )( )γα, . Denote with ( )dd HH βα  the 

modulated channel Hamiltonian generated by the 

potential ( )dd WW βα : 

 

dd WHH ααα += ,    dd WHH βββ +=  (12) 

 

and will construct ( )dd WW βα  
in such calculation in order 

to satisfy the Schrödinger equations: 

 

( ) 0=Φ− +α
α id EH ,   αα µ+= 22

kEE i , (13) 
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( ) 0=Φ− −β
β fd EH ,   ββ µ+= 22

kEE f . (14) 

 

Here, ( )fi EE  is the energy of the bound state of the pair 

( )γβ, ( )( )γα, , E  – total energy of the three-particle 

system. Introduction of the Hamiltonian ( )dd HH βα  has 

deep physical reasons. Electron at any point in the space 

undergoes the influence of the Coulomb field of each 

center – a fact well known from the general quantum-

mechanical problem of scattering by the Coulomb 

potential that distorts the phase of the scattered particle 

over the whole area of motion. So, perturbations 

dWα , dWβ , approximating the potential of a distant 

Coulomb center, must be taken into account in the 

channel (i.e., zero) Hamiltonian [13]. 

Let us now define the full Green function 

(resolvent) of the system of three particles: 

 

( ) ( ) 1−± ε±−= iHEEG . (15) 

 

Let’s denote by ( )−
β

+
α dd GG  Green’s function of the model 

channel Hamiltonian ( )dd HH βα : 

 

( ) 1−
α

+
α ε±−= iHEG dd , 

 

( ) 1−
β

−
β ε±−= iHEG dd , (16) 

 
where ε is the infinitely small positive number. Let us 

introduce in the consideration the wave operator by 

Möller ( )−
β

+
α ωω  [14], which transforms the channel 

eigenfunction ( )−β+α ΦΦ fi  into a distorted wave ( )−β+α χχ fi  

in the input (output) reaction channel (1): 

 
+α+

α
+α Φω=χ ii , −β−

β
−β Φω=χ ff . (17) 

 

Now we introduce the ±
αβU  [15], which possess 

such a property that their matrix elements between the 

Coulomb asymptotic states +αΦ i  and −βΦ f  on the 

mass surface are the physical amplitudes of the transition 
±

αβT  from the channel α  to the channel β  in the “post” 

and “prior” formalisms according to: 

 
+α±

αβ
−β±

αβ ΦΦ= if UT . (18) 

 

For the transition operators ±
αβU , we may write the 

integral equations obtained and considered for the first 

time by Dodd and Greider [15]. Taking into account the 

further qualitative analysis, for an illustration we will 

write the equation for −
αβU : 

+ω−υω= +
ααα

−
β

−
αβ )(* WU  

.)(* −
αβ

−
βββ

−
β −υω+ UGW d  (19) 

 

In the prior-formalism of this theory, the potential 

βW  is arbitrary, and the potential αW  should not lead to 

rearrangement in the channel β . The first term in the 

right side of the equation (19) leads to an amplitude in 

the Born approximation with distorted waves 

 

≡Φω−υωΦ= +α+
ααα

−
β

−β−
αβ if WDWBT )()(

*  

+α
αα

−β χ−υχ≡ if W )( . (20) 

 

Although formally the equation (19) is accurate, its 

solution cannot be obtained as based on the approach 

associated with the use of standard methods of finding 

solutions of integral equations. The fact is that the core of 

the integral equation (19) contains disconnected diagrams 

that correspond to processes in which one of the particles 

does not interact with two other ones. Therefore, the 

arguments given in [15] raise doubts concerning the 

convergence of the Born series of the method of distorted 

waves, that is, iterative decomposition of the equation 

(19). This circumstance dictates the necessity of a certain 

rearrangement of the equation (19), which is similar to 

that performed when the equations of the multiple 

scattering theory and Faddeev’s equations are derived 

[16]. The integral equations obtained as a result of the 

rearrangement, in contrast to (19), do not contain 

disconnected diagrams in their nuclei and can be solved 

by the standard methods. We will not describe here the 

bulky constructions that correspond to such a 

rearrangement of the equation (19), because they were 

considered in detail in the paper [12]. Let’s bring only 

the final result. For this, we introduce the auxiliary 

potential ℵυ  that corresponds to the virtual intermediate 

channel “ℵ ”, as well as the corresponding to it Green’s 

operator ( ) 1−
ℵ

+
ℵ ε+υ+−= iHEg . In these notations, the 

modified (with taking account the long-range nature of 

the Coulomb interactions) Dodd–Greider equation for 

quantum mechanical operator −
αβU  of a three-particle 

scattering with rearrangement results in the final form: 

 
−
αβ

−
αβ += KUIU , (21) 

 

where 
 

( )[ ] ( ) +
ααα

+
ℵββ

−
β ω−υ−υ+ω= WgWI 1* ,  

 

( ) +
βℵ

+
ℵββ

−
β υ−υω= dGgWK * . (22) 

 

The main advantage of Eq. (21) before Eq. (19) is 

that the arbitrariness in the choice of the potentials vκ and 

Wβ can be used in order to obtain the equations with 
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predefined properties. Using (21), the amplitude of the 

transition −
αβT  (18) can be represented as follows: 

 

+ΦΦ=ΦΦ= +α−β+α−
αβ

−β−
αβ ifif IUT  

MSIKU ifif +ΦΦ=ΦΦ+ +α−β+α−
αβ

−β , (23) 

 

where MS are the terms that take into account the 

multiple rescattering. If assuming that the processes with 

multiple scattering do not affect the shape of the angular 

distribution, then the second term in (23) can be omitted. 

In this case, the amplitude of the reaction (1) in the prior-

formalism is given by the expression: 

 

( )[ ] ×−υ+ωΦ= ββ
+
ℵ

−
β

−β−
αβ WgT f 1*

 

( ) +=Φω−υ× −
αβ

+α+
ααα )(DWBTW i  

( )[ ] ( ) +α+
αααββ

+
ℵ

−
β

−β Φω−υ−υωΦ+ if WWg
* . (24) 

 

The comparison of the equations (20) and (24) shows 

that the first term −
αβT  in the right side of (24) indicates 

the amplitude of the direct one-step charge exchange 

mechanism within the Born approach with the distorted 

waves. The second term in (24) directly describes the 

two-step mechanism of electron capture through an 

intermediate state that is located in discrete or continuous 

spectrum. An analogous result takes place also for the 

amplitude of the transition +
αβT  in the post-formalism: 

 

( ) ×−υωΦ=
ββ

−
β

−β+
αβ WT f

*
 

( )[ ] .1 +α+
ααα

+
ℵ Φω−υ+× iWg  (25) 

 

In conclusion, let us consider again the fundamental 

properties of the equation (21). From the formal point of 

view, it is difficult to be solved like to the Faddeev-type 

equations [9]. However, the equation (21) need not be 

precisely solved. The essence of this method is that there 

is only an iterative approximation for the operator that 

describes its system rearrangement. The Dodd–Greider 

theory [12] gives good results in the study of single- and 

double-electron processes with redistribution of particles 

[6, 8], since the second and higher orders of the series of 

perturbation theory, which are obtained when iterating 

the integral equation (21) for the transition operator −
αβU , 

do not contain in disconnected diagrams their nuclei, in 

contrast to the usual series of perturbation theory. Thus, 

transformation of the equation (19) to (21) of the type of 

the distorted waves method allows to obtain the iterative 

series (they are usually called quasi-Born or Coulomb–

Born series) for the transition operator that, as shown in 

[6, 17, 18], converge rapidly, that is, the first iterations of 

the corresponding integral equations allows one to obtain 

a result that practically coincides with the exact solution. 

3. Amplitude of the charge exchange 

Let us transform the initial expression (24) for the 

amplitude of the reaction −
αβT . For this purpose, we 

introduce into consideration the scattering state vector 
−βΨ f  in such a manner: 

 

( )[ ] −β
ββ

+
ℵ

−β χ−υ+=Ψ ff Wg *1 . (26) 

 
We substitute (17) and (26) into (24), as a result we 

obtain the following representation for the amplitude of 

the reaction −
αβT  with taking into account the direct and 

two-step mechanisms: 

 

( ) +α
αα

−β−
αβ χ−υΨ= if WT . (27) 

 

To derive a differential equation for the wave 

function −βΨ f , we multiply both parts of the equation 

(26) left by ( )ε−υ+− ℵ iHE
*

 and go to the boundary 

0+→ε . As a result, we obtain the equation: 

 

( ) −β
ℵ

−β
ℵ χυ=Ψυ+− ffHE ** . (28) 

 

Since the search for solutions of the 

nonhomogeneous equation (28) with the real local 

potential ℵυ  is related with great mathematical 

difficulties, then it is worthwhile to try replacing this 

potential with the operator. It is also necessary that the 

solution of the corresponding homogeneous equation 

permits the representation in the form: 

 

( ) −
β

−β ϕ=Ψ hsff

r
. (29) 

 
To separate the only solution from the set of 

solutions of the differential equation (28), we must 

supplement this equation with the boundary conditions: 

 

( ) ( ) =ϕ=Φ →Ψ β
−

β
−β

∞→

−β

β

rfsffrf

rr
 

( ) ( )[ ]βββββ ξ−ϕ= kivrkisf lnexp
rrr

. (30) 

 
Substituting the function (29) into the equation (28), we 

obtain the equation with respect to −
βh : 

 

( )( ) +υ−−−ϕ −
ββ hHEEs ff 0

r
 

( ) ( ) ( )( ) 0/1
* =ϕυ+∇ϕ∇+ −

βℵ
−
β hshsb fsfs

rr
rr . (31) 

 
To eliminate the disconnected diagrams from the nucleus 

K (22), the operator ℵυ  must be chosen so that it acts 

only on a variable s
r

, which is related to a pair subsystem 
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( )γα, . This operator ℵυ  is derived, for example, from 

the formula: 

 

( ) ( ) ( )( )ssb fsfs

rr
rr (/1 ϕΨ∇ϕ∇−=Ψυℵ  (32) 

 

on the set of elements Η∈Ψ , where H is a subspace of 

states that corresponds to a continuous spectrum of the 

energy operator H [6]. Consequently, with the choice of 

the operator ℵυ  in the form (32), the nucleus K of the 

integral equation (21) is determined only by the terms to 

which fully disconnected diagrams correspond. This 

means that the iterative series of the equation (21) must 

converge faster in the broader energy region than the 

initial Born series in the three-body problem. 

With taking into account the explicit form (32) of 

the operator ℵυ  and expression (3) for the operator of 

the kinetic energy H0, the equation (31) takes the form: 
 

0
R22

=









−+

∆
+

µ

∆
+− −

β
βαβ

α

α h
ZZ

x

Z

a
EE xr

f

rr

. (33) 

 

According to the formulas (29) and (30), the asymptotic 

behavior of the function −
βh  for ∞→βr  has the form of 

a distorted plane wave with the unit amplitude: 
 

= → β
−

β→∞

−
β

β

)(rfh
r

r
 

( ) ( )







+

υ

−
−= ββββ

αβ
ββ rkrk

ZiZ
rki

rrrr
ln

'

1
exp . (34) 

 

In the case of the change α→ rR , the variables in the 

equation (33) are separated, and the corresponding wave 

functions are explicitly expressed in two-part terms: 

 

( ) ( )α
−−−−

β ℑℜ= rxCh
rr )()()( . (35) 

 

The two-particle Coulomb wave functions of scattering 

( )x
r)(−ℜ  and ( )α

−ℑ r
r)(

 are determined through a confluent 

hypergeometric function by equalities: 

 

×






 π








+=ℜ

ββ−

q

aZ

q

iaZ
x

2
exp1Г)(

)( r
 

 

( ) ( )xqiiqxqiaZFxqi
rrrr

−−× β ,1,exp , (36) 

 

×






 πµ
−







 µ
−=ℑ

βαα

α

βαα−

q

ZZ

q

ZZi
x

2
exp1Г)(

)( r
 

 

( ) ( )ααααβαααα −µ−× xqixiqqZZiFxqi
rrrr

,1,exp . (37) 

 

The coefficient )(−C  and variables q
r

 and αq
r

, 

which appear when separating the variables, can be 

determined by stitching −
βh  with the eikonal asymptotic 

limit (34) at .∞→βr  

Summing up, let us write the wave function of the 

finite state −βΨ f  that describes the scattering the charged 

particle β  by a hydrogen-like system ( )γα,  in our 

problem: 

 

( ) ( ) ( ) ( )α
−−

βββ
−β ℑℜϕµ=Ψ rxrkisf

iv
f

t
rrrrr )()(

exp
'

, (38) 

 

where 

 

( ) ( ) ( )xixiviFvNx tt

rrr
υ′−υ′−′−′=ℜ +− ,1,)()( , 

 

υ′=′ βZvt , ββ µ= k
rr

v ,  

 

( ) ( ) ( )αβαβ
−

α
− −−′′=ℑ rkirikviFvNr

rrr
,1,)()( , 

 

( ) ( ) ( )2exp1Г
)(

ttt vvvN ′π′+=′+ , 

 

( ) ( ) ( )2exp1Г)(
vvvN ′π′−=′− . 

 

The function −βΨ f  takes into account interaction of 

the bound electron γ with the residual target ion β  and 

interaction of heavy particles α and β between 

themselves. The wave function of the initial state 
+αχi  is 

determined from [19]. Using these expressions for wave 

functions and transition operator [14], as well as the 

relations (27) and (38), we can obtain the following 

representation for the amplitude of the charge-transfer 

reaction with account of Coulomb interaction in the final 

state: 

 

( ) ( ) ( )×ϕ−υ= ββαααα
−

αβ ∫∫ srkirkixdrdvNT f

rrrrrrr *
exp,  

 

[ ] ( ) ( )×υ′+υ′′ϕ−× ααα xixiviFxsZrZ ti

rrr
,1,  

 

( )×−−× ααααα rkirikivF
rr

,1,  

 

( )αβαβ −′−× rkirikviF
rr

,1, , (39) 

 

where 

 

( ) ( ) ( )( )×′+′−+µ=υ α
′−

βα viviivvN t
vt 11Г1Г,  

( )[ ]2exp tvvv ′−′+π−× α . (40) 

 

Calculation of the amplitude (39) in the general case, 

when 1≠βZ , is complicated by the presence of three 

confluent hypergeometric functions under the integral 

sign. However, there is an important special case when 

calculating the matrix element in (39) can be reduced to 

one-dimensional numerical integration. The above is 

related to the charge exchange reaction at the collision of 

proton (or some other charged particle: positron, nucleus 

etc.)   with  hydrogen  atom  )1( =βZ .   In  this  case,  the  



SPQEO, 2019. V. 22, N 2. P. 171-181. 

Lazur V.Yu., Aleksiy V.V. et al.  Taking the Сoulomb effects into account in the reactions of one-electron 

177 

Coulomb parameter 0=αv  and the confluent 

hypergeometric function ( )ααααα −− rkirikivF
rr

,1,  in the 

formula (39) is equal to unity. We note that in our 

consideration the effects of multiple Coulomb 

rescattering of captured electron by the ion-residue of the 

target are already approximately summed up in the 

distorting factor ( )x
r)(−ℜ . 

For further calculations, we will use the expressions 

for wave functions of bound states [6, 14] and the 

integral representation for the confluent hypergeometric 

function [20]: 

 

( )
( )

×
−

=
acaB

zcaF
,

1
,,  

 

× ( )∫
−−− −

1

0

1)1( )exp(1 ztttdt
aca , (41) 

 

where ),( yxB  is the Euler beta-function [20] that simply 

expresses through the Г -function 

( ))(Г)(Г)(Г),( yxyxyxB += , and the integration must 

be carried out in the complex plane z, choosing the 

correct contour (dependent on a ) that bypasses the 

points 0 and 1. Changing the order of integration for 

integrals included in (40) (the integral function possesses 

properties sufficient for such a transposition of integrals), 

we obtain the representation for −
αβT : 

 

( )
( ) ( )

×
′+′−′−′

=υ
= α−

αβ
viviBviviB

NvN
T

tt 1,1,

0, 2  
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( ) ( )

,
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1

1

0

1

0
1

2
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1

1
11∫ ∫ +′

′

′

−′
−

−
×

vi

vi

vi

vi

t

ttItdt

t

tdt

t

t

 (42) 

 

( ) ,lim,
22

021 JZttI
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
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







ε∂λ∂

∂
−

λ∂λ∂

∂
=

ββα
α→ε  (43) 

 

( ) ( )
×

λ−
−= α

ββα∫∫ s

s
rkrdxdJ

exp
exp
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( ) ( ) ( ) ( )xit
x

x

r

r
tkirki

rrrrr
vexp

expexp
exp 1

21
2

δ−δ−
+×

α

α
βαα (44) 

 

with 21 tikβ−ε=δ , 12 tvi ′−λ=δ β , αα =λ Z , ββ =λ Z .  
 

Using the results of our previous works [6, 14] for 

the matrix element J, we obtain: 

 

∫
∞

γ

++

π
=

0 2212
2

11
2

2

2

16

cxcxc

dx

a

m
J , (45) 

 

where 

( )2
21

2

2111 ρ+ρ+−= qqc
rr

,  
 

( )[ ] ( )[ ]2
2

2
2

2
1

2
122 αα λ+ρ+λ+ρ+= qqc , 

 

( )[ ] +ρ+ρ+−λ= α
2

21

2

2112 qqc
rr

 

[ ] [ ]2
2

2
1

2
1

2
2

2
1

2
2 qqq ++λ=ρ+ρ++λρ+ αα . 

 

Let us transform the formula (45) by separating the 

dependence of t1 and t2 in the explicit form in the 

denominator of the subintegral expression. After 

completing this transformation, the obtained expressions 

can be combined in the following representation for the 

amplitude of charge exchange 
 

( ) ×=υ
π

= αα
−

αβ ZNvN
a

T 22

2

0,
16

 

∫
∞

ββα
→ε ∏


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










ε∂λ∂

∂
−

λ∂λ∂

∂
×

0

22

0 )(lim dxx , (46) 

 

where 
 

( ) ( )( ) ×′+′−′−′=∏ −1
1,1,)( viviBviviBx tt  

 

( )
( )

( )∫ ∫
+++

−

−
×

+

′

′

−′1

0

1

0 2121
1

2

22

1

1
1

1 1

1 tCtDtBtAt

dtt

t

dtt
iv

vi

vi

vi

t

t

. (47) 

 

Explicit expressions for the coefficients A, B, C, and D 

are given in Appendix. After integrating by t1 and t2 [20], 

the final expression for )(x∏  has the form: 

 

( ) ( ) ×++=∏
′′−− tvivi

ABADAx 11)( 1  

( )( )









++

−
−′×

BADA

ACBD
ivviF t ;1,, . (48) 

 

We compare the proposed approach with the 

method of continuum distorted wave (CDW) 

approximation. For the first time, the CDW approach was 

used by Cheshire [21] for calculations of the cross-

sections of resonance charge exchange of fast protons on 

hydrogen atoms. Later in his work [22] Gayet showed 

that the amplitude of the transition in the CDW approach 

can be obtained as the first quasi-Born term of series of 

the perturbation theory by Dodd–Greider [15] for the 

operator of three-particle scattering with rearrangement. 

It is worthwhile to emphasize that, in the standard CDW 

approximation, only the interaction before and after 

collisions of active electron with far removed core is 

taken into account. At large scattering angles, as it 

follows from the calculations of differential cross-

sections of charge exchange in the eikonal 

approximation, an important role is played by interaction 

of the heavy particles α  and β  between themselves, 

which, however, is not taken into account in the CDW 

approximation. 
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4. Results of calculations 

We consider the application of the foregoing formalism 

to the calculation of angular and energy dependences of 

the cross-sections of the reaction of charge exchange of 

proton on hydrogen atom: 

 
++ +→+ H)1(H)1(HH ss . (49) 

 

This reaction represents a special interest and serves as a 

standard for checking different theories of processes with 

rearrangement, since in this case potentials of interaction 

in the channels and the wave functions of bound states 

are precisely known. 

First, before proceeding to discuss the results of the 

investigating the reaction (49), let us note the following 

things. For the process (1), the scattering amplitude −
αβT  

has a distinct maximum (in fact, there are two ones) 

within the region of small angles 1<<µ≤Θ γm , 

( )βαβα +=µ mmmm . It is this area of the angles of 

scattering that is considered below. In the case of the 

reaction (49), when the particles α  and β  are protons, 

the exchange part of the scattering amplitude is 

negligibly small. 

Results of calculations of total cross-sections with 

amplitudes from [19] (dashed curve) and equation (46) 

(solid curve) in comparison with the results of the CDW 

method (dashed-point curve) and the smoothed results of 

experiments [17] (dots) are presented in Fig. 1. With 

decreasing the velocity of colliding particles, the CDW 

approximation becomes incorrect [17] and, as seen from 

Fig. 1, leads to overestimated values of the cross-

sections, but the proposed in this work model of 

approximation of distorted waves with accounting the 

Coulomb interaction in the final state is better agreed 

(Fig. 1, solid curve) with the experimental data. 

 

 

 
 
 

Fig. 1. Total cross-sections of the charge exchange process at 

the collision of proton with hydrogen atom. 

The demands for the improvement of theoretical 

representations have led to the fact that main emphasis of 

theoretical and experimental works shifted from the 

study of integral values, which characterize different 

processes, to the study of the differential values that give 

more detailed information about the role of different 

mechanisms of the reaction and is more rigid test for 

theoretical models. In differential cross-sections of 

charge exchange, the two-step mechanism of electron 

capture is manifested in the form of a characteristic sharp 

maximum at the angle of scattering by Thomas TΘ  – 

Thomas’ peak. Experimentally, the Thomas peak was 

first observed in the angular distributions of hydrogen 

atoms formed during the charge exchange of protons on 

helium [23] at an energy of several Mega-electron-Volts 

at the angle 0.5 milliradian. 

The results of calculating the differential cross-

sections of electron capture by protons in hydrogen with 

the amplitudes from the work [13] and equation (46) for 

two  energy  values are compared  with the  experimental 

 

 

 
 

 
 
Fig. 2. Differential cross-sections of charge exchange of 

protons on hydrogen in dependence on the scattering angle in 

the coordinates of the center of mass system. The energy of 

protons is 125 keV (a) and 500 keV (b). 
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data [24], the results of the CDW method [17] and 

Oppenheimer–Brinkman–Kramer (OBK) approximation 

in Fig. 2. The greatest interest for methodical 

comparisons is calculations of angular distributions with 

the amplitude of simple one-step charge exchange 

mechanism [19] and calculations by formula (46), when 

into the analysis of the reaction (49), except for the one-

step one, the two-step (Thomas’) electron capture 

mechanism is also included. It is seen that taking into 

account two-step effects leads to appearance of the 

pronounced maximum (Thomas’ peak) at the site of the 

Jackson–Schiff “laydown”, which is obtained within the 

framework of the simple one-step mechanism. 

At large scattering angles, the interaction of heavy 

particles plays an important role, which, however, is not 

accounted in the CDW approximation. In our 

consideration, accounting of this interaction in the wave 

function of the finite state 
−βΨ f

 (multiplier ( )α
−ℑ r

r)(
 in 

the formula (39)) leads to a more smooth decrease of the 

cross-sections with the growth of the scattering angle, 

which corresponds to the observed experimental behavior 

of the cross-sections. 

In conclusion, it should be emphasized that, when 

using the Coulomb–Born approximation, we neglect the 

effects of rescattering, that is, we do not take into account 

the possible multi-step mechanisms of the reaction. With 

increasing incident particles energy, we observe increase 

of the role of two-step transitions through the 

intermediate state that is located in a discrete or 

continuous spectrum. Quantitative description of these 

transitions becomes possible only with the total inclusion 

of the interaction after collision into the wave function of 

the final state, which is equivalent to accounting the 

effects of the multiple rescattering of electron by the ion-

residue of target.  

5. Conclusion 

As can be seen from the above discussion, the universal 

mathematical basis for construction of approximated 

charge exchange theory can be based on equations of the 

quantum scattering theory in systems of several particles, 

and the iterations of these equations form representation 

for the amplitudes in the form of the series (23), and the 

number of terms taken into account defines the order of 

rescattering.  

Summing up the results of the theoretical studies of 

Thomas’ peak in differential cross-sections, first of all, it 

should be noted that the Coulomb rescattering of electron 

by the ion-residue of the target in the final state affects 

stronger than all the others on the form of the angular 

distributions, which is equivalent to rather total 

accounting the interaction after the collision. If so charge 

exchange cross-sections are calculated without 

accounting the Coulomb interaction in the final state or 

in the one-step approximation, then the Thomas peak 

does not occur in the angular distributions, and there are 

qualitative differences between the theoretical and 

experimental cross-sections. Fig. 2 shows the example of 

such a “direct” analysis of the experimental cross-section 

for the reaction (49) on the base of the formulae of the 

OBK approximation, which leads to increasing the cross-

sections at small scattering angles and very fast their 

descending at large scattering angles.  

In general, the obtained correlations of theoretical 

and experimental data allows one to conclude about the 

adequacy of the method of calculating differential cross-

sections of charge exchange in the wide area of energies 

and proton scattering angles, which is based on the use in 

calculations of the amplitude of the first quasi-Born term 

of the iterative series the Dodd–Greider equation, 

modified for the Coulomb interaction. 

 

 

Appendix 

Here are the expressions for the coefficients A, B, C, and D from (47): 
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
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( ) ) ( )( ) ( )( ) ]423222
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